Molecular genotyping in PTCL - ER Congressi · 2018. 5. 15. · Dr. Olivier A. Bernard Dr. Elias...

19
Teresa Palomero, PhD Institute for Cancer Genetics Department of Pathology and Cell Biology Herbert Irving Comprehensive Cancer Center Columbia University Medical Center Molecular genotyping in PTCL

Transcript of Molecular genotyping in PTCL - ER Congressi · 2018. 5. 15. · Dr. Olivier A. Bernard Dr. Elias...

  • Teresa Palomero, PhD

    Institute for Cancer Genetics

    Department of Pathology and Cell Biology

    Herbert Irving Comprehensive Cancer Center

    Columbia University Medical Center

    Molecular genotyping in

    PTCL

  • Recurrent mutations in AITL and PTCL, NOS

    IDH2

    NH2 452

    R1

    72

    K

    DNMT3A

    D7

    02

    N

    L6

    50

    Q

    N8

    38

    D

    R7

    36

    C

    R8

    82

    H

    V6

    90

    D

    NH2 PHD Methyltransferase 912

    L6

    48P

    N8

    79D

    PWWP

    RHOA

    G1

    7V

    ,G

    17

    EC

    16

    R

    D1

    20

    Y

    CAAXNKxD

    NH2

    TET2

    Cys DSBH 2002

    S1

    870

    L

    C12

    21

    Y

    L1

    34

    0R

    L1

    378

    FH

    138

    0L

    H18

    81

    R

    C127

    3F

    S1

    898

    F

    T1

    9I

    NH2 GG Effector 193

    CD28

    NH2 220

    D124E

    ,D

    124V

    NH2 537

    R1

    76

    C

    Immunoglobulin domain

    T195P

    ,T

    195I

    FYN

    SH2SH3 Kinase domain

    Y5

    31

    H

    L1

    74

    R

    TML S2

    S3

    Epig

    enet

    ic r

    egu

    lato

    rsTC

    R s

    ign

    alin

    g p

    ath

    way

  • Recurrent activating FYN kinase mutations in PTCL

    P-SRC

    (Palomero, Couronne et al., Nat Genet 2014)

  • Mechanisms of FYN constitutive activation in PTCL

    P

    SH2

    SH3

    CSK

    SH3

    SH2

    InactiveActive

    FYN-SH2

    Input

    (Palomero, Couronne et al., Nat Genet 2014)

  • Dasatinib (BMS-354825)

    Inhibition of oncogenic mutant FYN activity by Dasatinib

    (Palomero, Couronne et al., Nat Genet 2014)

  • AITL PTCL−NOS ALCL NK

    VAV1ALK

    CREBBPCCND3STAT6

    STAT5BJAK1

    STAT3TP53

    PRDM1PLCG1

    VAV1ATM

    CARD11DNMT3A

    FYNCD28IDH2TET2

    RHOA

    Gene fusions

    Mutations

    FrameshiftStop gainMissenseIn-frame deletionIn-frame gene fusion

    Identification of frequent alterations in VAV1 in PTCL

    (Abate, da Silva Almeida et al., PNAS 2017)

  • CH Ac DH PH C1 SH3 SH2 SH3 845NH2VAV1

    941NH2 CH Ac DH PH C1 SH3 SH2VAV1-THAP4 nitrobindin

    VAV1 THAP4

    A GA GA A CCATCA GCA GGCCA GCA GA GCCCCCCA A GATGA A CCCA GTG

    VAV1 MYO1F

    A GA GA A CCATCA GCA GGCCA GCA GA GCC TA CGCGGA A GGGA ATGGCC

    952NH2 CH Ac DH PH C1 SH3 SH2 SH3VAV1-MYO1F

    884NH2 CH Ac DH PH C1 SH3 SH2VAV1-S100A7 EF1 EF2

    A GA GA A CCATCA GCA GGCCA GCA GGCT T T T TGA A A GCA A A GATGA GCA A

    VAV1 S100A7

    A

    B

    C

    D

    C-terminal VAV1 gene fusions in PTCL

    (Abate, da Silva Almeida et al., PNAS 2017)

  • VAV1 splice site deletions induce alternative splicing

    by eliminating an exonic silencer

    (Abate, da Silva Almeida et al., PNAS 2017)

  • Deletions affecting the c-terminal SH3 domain of VAV1

    induce an open active conformation of the protein

    (Abate, da Silva Almeida et al., PNAS 2017)

  • Recurrent mutations in RHOA in PTCL

    PTCL PTCL NOS AITL

    (Palomero et al., Nat Genet 2014)

  • RHOA G17V impairs RHOA activation by

    interfering with RHOA pathway activation

    • Cytoskeleton remodeling

    • Migration

    • Receptor signaling regulation

    F-ACTIN

    ROCK

    RHO-GEF

    RHOA

    RHO-GAP

    RHOA

    RHOA

    G17V

    P

    GTP

    GTPGDP

    CD28

    CD3

    FYNLCKZAP70

    TCR CD4

    Ga bg

    RHOA G17V

    • does not upload GTP

    • does not interact with effectors

    • has high affinity for RHO-GEFs

    (Palomero et al., Nat Genet 2014)

  • Tamoxifen-induced expression of Rhoa G17V

    in CD4+ cells leads to TFH differentiation

    (Cortes et al., Cancer Cell 2018)

  • Rhoa G17V CD4+ T-cells show increased

    expression of Tfh markers

    (Cortes et al., Cancer Cell 2018)

  • Rhoa G17V increases the activity of ICOS-regulated

    signaling pathways in vitro

    (Cortes et al., Cancer Cell 2018)

  • Expression of RHOA G17V in a Tet2 null

    background leads to AITL development

    (Cortes et al., Cancer Cell 2018)

  • Inhibition of ICOS signaling blocks AITL growth in vivo

    (Cortes et al., Cancer Cell 2018)

  • (Cortes et al., Cancer Cell 2018)

  • RHO GTPases pathways play a key role in PTCL

    ICOS

    FYN

    VAV1

    RHOA

  • Acknowledgements

    Dr. Stefano Pileri

    Dr. Maria Antonella Laginestra

    Dr. Ross Levine

    Dr. Iannis Aifantis

    Dr. Ari Melnick

    Dr. Giorgio Inghirami

    Dr. Danilo Fiore

    Dr. Joan Guitart

    Dr. Estela Martinez

    Dr. Govind Bhagat

    Dr. Olivier A. Bernard

    Dr. Elias Campo

    Dr. Miguel Angel Piris

    Dr. Izidore Lossos

    Dr. Jose R. Cortes

    Dr. Ana da Silva Almeida

    Anisha Cooke

    Dr. Adolfo Ferrando

    Dr. Lucile Couronne

    S. Aidan Quinn

    Dr. Marta Sanchez Martin

    Christine S. Kim

    Dr. Mi-Yeon Kim

    Dr. Raul Rabadan

    Dr. Francesco Abate

    Sakellarios Zairis

    Dr. Hossein Khiabanian

    Dr. Larisa Geskin

    Christina Patrone

    Dr. Xosé R Bustelo

    Javier Robles-Valero

    http://www.lls.org/http://www.lls.org/