Molecular bio Lecture Week 11

79
Canary archipelago

Transcript of Molecular bio Lecture Week 11

Page 1: Molecular bio Lecture Week 11

Canary  archipelago      

Page 2: Molecular bio Lecture Week 11

Canary  archipelago      

Page 3: Molecular bio Lecture Week 11

Canary  archipelago      

Page 4: Molecular bio Lecture Week 11

Canary  archipelago      

Page 5: Molecular bio Lecture Week 11

The  difficulty  with  the  Canarian  islands  is  the  fact  that  the  age  decreases  with  the  distance  from  Africa.      This  results  in  the  older  islands  have  a  mix  of  old  and  young  species.    

Canary  archipelago      

Page 6: Molecular bio Lecture Week 11

Canary  archipelago      

Page 7: Molecular bio Lecture Week 11

 However,  the  Canaries  also  provide  examples  where  phylogeographical  analysis  has  shown  a  pa>ern  of  colonisa?on  not  predictable  by  distance  to  the  nearest  con?nent  and  in  opposi?on  to  the  progression  rule.      

Canary  archipelago      

Page 8: Molecular bio Lecture Week 11

Canary  archipelago      

Fringella  coelebs  

Page 9: Molecular bio Lecture Week 11

Canary  archipelago      

Page 10: Molecular bio Lecture Week 11

Canary  archipelago      

Fringella  coelebs  

maderensis   canariensis  

palmae  

Page 11: Molecular bio Lecture Week 11

Canary  archipelago      

The  finches  colonised  the  Canaries  via  the  Azores  and  Madeira  

Azores  

Mainland  

Madeira  

Canaries  

Page 12: Molecular bio Lecture Week 11

Back-­‐dispersal  refers  to  lineages  that  generally  may  follow  the  progression-­‐rule,  but  in  which  one  or  more  cases  of  dispersal  from  a  younger  to  an  older  island  occur,  with  subsequent  specia?on  occurring  from  the  back-­‐dispersed  colonist.      

Canary  archipelago      

Pimelia  beetle  

Page 13: Molecular bio Lecture Week 11

Madagascar  

Page 14: Molecular bio Lecture Week 11

Madagascar  

Page 15: Molecular bio Lecture Week 11

How  many  colonisa?on  events  did  occur  on  Madagascar?    

The  mammals  are  represented  by  five  orders  only,  nearly  all  of  them  endemic:  • carnivores  (the  Malagasy  civets,  mongooses  and  fossa  species)    

Madagascar  

Galidia  elegans  

Page 16: Molecular bio Lecture Week 11

• rodents    

Malagasy  giant  rat  

Madagascar  

Page 17: Molecular bio Lecture Week 11

• primates  

Madagascar  

Lemurs  

Page 18: Molecular bio Lecture Week 11

• insec?vores  

Madagascar  

Tenrecs  

Lowland  Streaked  Tenrec  (Hemicentetes  semispinosus).    

Page 19: Molecular bio Lecture Week 11

Madagascar  

Madagascar  sucker-­‐footed  bat  (Myzopoda  aurita)    

• Bats  

Page 20: Molecular bio Lecture Week 11

Malagasy  mongooses  

Fossa  

Malagasy  civet  

Madagascar  

Page 21: Molecular bio Lecture Week 11

Madagascar  

The  phylogene?c  tree,  constructed  using  various  mt  genes,  and  2  nuclear  genes,  shows  that  the  Malagasy  clade  is  monophyle3c.    

Mungo9c9s  decemlineata:  Two  subspecies  are  described:  M.  d.  decemlineata,  in  the  northern  range  of  the  species,  and  M.  d.  lineata,  formerly  known  only  from  the  holotype  at  the  southern  limit  of  the  range,  but  since  recorded  in  the  Manombo  River  valley  (Hawkins  et  al.  2000,  Goodman  et  al.  2005).  

Page 22: Molecular bio Lecture Week 11

Madagascar  

Page 23: Molecular bio Lecture Week 11

Madagascar  

Did  the  mongooses  arrive  together  with  the  lemurs?  

NO  

Page 24: Molecular bio Lecture Week 11
Page 25: Molecular bio Lecture Week 11

Madagascar  

The  phylogene?c  evidence  indicates  that  there  was  only  a  single  colonisa?on  event  for  the  carnivores,  and  that  the  arrival  of  the  carnivores  on  Madagascar  about  18-­‐24  mya  came  much  later  than  that  of  the  lemurs,  who  got  there  about  62-­‐66  mya.      This  suggests  that:    •   Oceanic  dispersal  over  such  distances  is  rare  The  order,  rather  intriguingly  matches  the  order  of  events  in  the  breaking  of  Gondwanaland,  but  not  the  ?mings.  

Page 26: Molecular bio Lecture Week 11

The  Extraordinary  Evolu3onary  History  of  the  Re3culoendotheliosis  Viruses    Anna  Maria  Niewiadomska,    Robert  J.  Gifford    

PLoS  Biol  11(8):  e1001642.  doi:10.1371/journal.pbio.1001642  

Retroviruses  (family  Retroviridae)  inserted  into  germline  cells  and  subsequently  inherited  as  host  alleles  are  called  endogenous  retroviruses  (ERVs)(ver?cal  transmission).  

 Thus,  it  is  possible  to  inves?gate  the  evolu?on  of  the  interac?on  between  host  and  virus  by  means  of  phylogene?c  analyses  

Page 27: Molecular bio Lecture Week 11

Copyright  (c)  The  McGraw-­‐Hill  Companies,  Inc.    Permission  required  for  reproduc?on  

or  display.  

Page 28: Molecular bio Lecture Week 11
Page 29: Molecular bio Lecture Week 11

The  three  major  proteins  encoded  within  the  retroviral  genome:    Gag,  Pol,  and  Env.  

Page 30: Molecular bio Lecture Week 11

The  re3culoendotheliosis  viruses  (REVs)  comprise  several  closely  related  amphotropic  (i.e.  non-­‐specialist)  retroviruses  isolated  from  birds    

Previous  Work:  REV  groups  robustly  within  the  Gammaretrovirus  genus  and  is  hypothesised  to  have  originated  in  mammals  

Page 31: Molecular bio Lecture Week 11

Amniotes  

Page 32: Molecular bio Lecture Week 11

Horizontal  transfer  between  species  

Authors  speculate  it  is  a  recent  infec?on  of  birds  

Page 33: Molecular bio Lecture Week 11

Spleen necrosis virus (SNV) and DIAV (Duck infectious anemia virus). Both these viruses were isolated from ducks that were experimentally infected with Plasmodium lophurae (SNV in 1959 and DIAV in 1972).  

h>p://saturn.adarc.org/paleo/site/html/fossil-­‐record/DIAV.html  

Anas  platyrhynchos  

Page 34: Molecular bio Lecture Week 11

1999  paper  concludes  that  Echidna’s  were  the  unlikely  source  for  the  REV  lineage  

Page 35: Molecular bio Lecture Week 11

Figure  1.  Evolu3onary  rela3onships  among  the  RT  genes  of  exogenous  Gammaretroviruses  and  related  ERVs.  

Shaded  boxes  indicate  taxa  that  are  known  to  occur  as  exogenous  retroviruses.    

The phylogeny shown was constructed using NJ and a multiple sequence alignment spanning 140 amino acid residues in the reverse transcriptase protein (RT)  

Page 36: Molecular bio Lecture Week 11

All mammalian ERVs exhibiting a high degree of sequence similarity to REV in the gag-pol domain exhibited no such similarity in env, and vice versa. This can be assumed to reflect the recombinant genome structure of REV  

Echidna-ERV, Galidia-ERV, and Mungotictis-ERV grouped robustly with REV isolates in phylogenies constructed using both the pol and env coding domains establishing that they share a common, recombinant ancestor with these viruses.  

Page 37: Molecular bio Lecture Week 11

Madagascar  

Page 38: Molecular bio Lecture Week 11

Madagascar  

Mongooses  did  not  arrive  together  with  the  lemurs  

Germline invasion occurred between 18 and 8 Ma

Page 39: Molecular bio Lecture Week 11

Origin of the Avian REVs

ML phylogenies constructed using (a) an alignment spanning residues 183–481 of the Pol polyprotein (DIAV coordinates) and containing REV and mammalian gammaretroviruses sequences  

Page 40: Molecular bio Lecture Week 11
Page 41: Molecular bio Lecture Week 11

In  conclusion,  historical,  phylogene?c,  and  paleovirological  evidence  supports  a  scenario  wherein  REVs  originated  as  mammalian  retroviruses  that  were  iatrogenically  introduced  into  avian  hosts,  and  subsequently  integrated  into  the  FWPV  and  GHV-­‐2  genomes,  genera?ng  recombinant  DNA  viruses  that  now  circulate  in  wild  birds  and  poultry  

Thus,  rather  than  mere  ver3cal  transmission,  there  is  human-­‐assisted  horizontal  transmission.      Zoos  and  domes3cated  animals  

What  about  the  echidna?  It  is  from  the  Philadelphia  Zoo.    

Page 42: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Page 43: Molecular bio Lecture Week 11

Scott Baker (http://mmi.oregonstate.edu/c-scott-baker)

Using DNA species identification to trace illegal whale meat

From which whale species is the meat really and is the meat from whales shot for scientific research in the places Japanese officials say?

Page 44: Molecular bio Lecture Week 11
Page 45: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Vireo  gilvus  Tringa  solitaria   Sturnella  magna  

Page 46: Molecular bio Lecture Week 11

Cistothorus  palustris  

Sturnella  magna  

Vireo  gilvus  

Tringa  solitaria  

Page 47: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Page 48: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Page 49: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Will  depend  on  the  DNA  barcoding  gap  

recently  diverged  species  might  not  be  dis?nguishable  on  the  basis  of  their  COI  sequences  

Page 50: Molecular bio Lecture Week 11

Mitochondrial  DNA  

Page 51: Molecular bio Lecture Week 11

DNA  barcoding  GAP  

Page 52: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

MOTU  is  an  acronym  coined  in  the  late  1990's  by  Blaxter  et  al  to  describe  the  clusters  of  specimens  based  on  sequence  iden?ty.  (h>p://www.nematodes.org/research/barcoding/motu_defined.shtml)  

Debate  whether  that  is  the  case  -­‐  not  always  –  different  taxa  may  either  show  few  or  large  amounts  of  varia?on      One  needs  to  decide  what  level  of  molecular  difference  defines  a  biologically  relevant  taxon  

Page 53: Molecular bio Lecture Week 11

•  species  delimita?on  based  upon  varia?on  within  the  cytochrome  c  oxidase  subunit  I  gene  

•  assumes  gene?c  varia?on  between  species  >  within  species  

•  clustering  of  sequences  into  groups  (MOTUs)  that  differ  by  a  pre-­‐defined  number  of  base  pairs  

DNA  barcoding  GAP  

Page 54: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Correct  species  iden?fica?on  is  of  course  important  in  a  variety  of  research  contexts  (e.g.  ecological  –  see  talk  Dr  Gibbs,  CEH)    If  North  American  birds  reveal  cryp?c  species  and  specia?on  events,  what  about  these:    

As  few  as  1%  of  global  parasitoid  species  have  so  far  been  described    

Page 55: Molecular bio Lecture Week 11

Species  iden3fica3on  and  discovery  

Ideally,  DNA  barcoding  should  be  used  alongside  tradi?onal  taxonomic  tools  and  using  other  genes  than  COI,  so  that  problem  cases  can  be  iden?fied  and  errors  detected.    It  is  a  great  first  step  though  to  detect  errors  in  species  iden?fica?on  and  detect  cryp?c  species.    

Page 56: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 57: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Ver?cal  gene  transfer  

Page 58: Molecular bio Lecture Week 11

Oceanic  metagenomics  

horizontal  gene  transfer  

Page 59: Molecular bio Lecture Week 11

Oceanic  metagenomics  

horizontal  gene  transfer  

Page 60: Molecular bio Lecture Week 11

Oceanic  metagenomics  

horizontal  gene  transfer  

Page 61: Molecular bio Lecture Week 11

Oceanic  metagenomics  

horizontal  gene  transfer  

En?re  biochemical  pathways  may  be  passed  from  one  bacterial  species  to  another  in  a  single  DNA  transfer  

Page 62: Molecular bio Lecture Week 11

Oceanic  metagenomics  

horizontal  gene  transfer  

Page 63: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Classically,  microbiologists  studied  prokaryotes  by  growing  them  in  culture,  isola?ng  pure  strains  to  study  their  morphology,  biochemistry,  metabolism  and  in  general  how  they  adapt  to  environmental  condi?ons.    Problem:    Majority  (99%)  of  bacterial  species/strains  are  difficult  to  grow  in  culture,  and  they  quickly  “adapt”  to  lab  condi?ons  

Page 64: Molecular bio Lecture Week 11

Oceanic  metagenomics  

From  natural  samples  containing  complex  mixtures,  it  is  possible  to  amplify  and  determine  sequences  directly  without  culturing  individual  strains.      1.  Clarify  evolu?onary  rela?onships  2.  appreciate  the  rela?onships  and  interac?ons  among  

different  species  that  share  an  ecosystem  3.  Thus  open  up  research  into  bacteria/organisms  we  could  

otherwise  not  study    

Page 65: Molecular bio Lecture Week 11

Oceanic  metagenomics  

16s  rRNA  

Pros:  1.  Tradi?onal  role  as  a  

molecule  that  varies  at  an  appropriate  rate  to  dis?nguish  ancient  phylogene?c  branching  pa>erns  

2.  It  is  not  prone  to  horizontal  gene  transfer    

Page 66: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Cons:    rRNA  does  not  reveal  any  details  of  the  metabolism  or  other  adapta?ons  of  the  species    

Page 67: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 68: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 69: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Genomes  as  “parts”  lists  –  in  some  ways  as  we  are  trying  to  do  in  the  field  of  evo-­‐devo.      Easier  to  do  in  bacteria  as  they  are  unicellular    Evo-­‐devo  deals  with  mul?cellular  organisms  which  poses  challenges  

Page 70: Molecular bio Lecture Week 11

Oceanic  metagenomics  

h>p://www.sorcerer2expedi?on.org/version1/HTML/main.htm  

Page 71: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 72: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 73: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 74: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 75: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 76: Molecular bio Lecture Week 11

Oceanic  metagenomics  

1  billion  base  pairs  were  sequenced    A  millimetre  of  ocean  water  may  contain  100  to  200  species    A  total  of  1800  different  microbial  species  were  found  in  the  samples    148  previously  unknown  species  (labelled  as  phylotypes  –  MOTUs)    1.2  million  unknown  genes    Many  photosynthe?c  bacteria  do  not  use  chlorophyl  

Page 77: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 78: Molecular bio Lecture Week 11

Oceanic  metagenomics  

Page 79: Molecular bio Lecture Week 11

Oceanic  metagenomics