Moeller

24
3 rd OpenFOAM Workshop Politecnico di Milano, Milan, ITALY 10-11 July 2008 I ti ti f th fl d th Investigation of the flow around the Ahmed body using RANS and URANS with various turbulence models 1 The Virtual Vehicle Competence Center (ViF), Graz, Austria Sebastian MÖLLER 1 , Daniele SUZZI 1 , Walter MEILE 2 MEMBER OF K plus Kompetenzzentrenprogramm Ein Kompetenzzentrum der 2 Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer (ISW), Graz, Austria ISW PROJECT PARTNER Eine Förderinitiative des Bundesministeriums für Verkehr, Innovation und Technologie (BMVIT). Gefördert mit Mitteln der FFG, des Landes Steiermark und der steirischen Wirtschaftsförderung (SFG)

description

moeller li birşey..

Transcript of Moeller

Page 1: Moeller

3rd OpenFOAM WorkshopPolitecnico di Milano, Milan, ITALY

10-11 July 2008

I ti ti f th fl d th Investigation of the flow around the Ahmed body using RANS and URANS y g

with various turbulence models

1 The Virtual Vehicle Competence Center (ViF), Graz, Austria

Sebastian MÖLLER1 , Daniele SUZZI1, Walter MEILE2

MEMBER OF

K plus KompetenzzentrenprogrammEin Kompetenzzentrum der

( )2 Graz University of Technology, Institute of Fluid Mechanics and

Heat Transfer (ISW), Graz, Austria ISW

PROJECT PARTNER

Eine Förderinitiative des Bundesministeriums für Verkehr, Innovation und Technologie (BMVIT).Gefördert mit Mitteln der FFG, des Landes Steiermark und der steirischen Wirtschaftsförderung (SFG)

Page 2: Moeller

Overview

Introduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 2OpenFOAM workshop Milano 2008

Page 3: Moeller

Overview

Introduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 3OpenFOAM workshop Milano 2008

Page 4: Moeller

Introduction

Si l ti f fl d th bl ff Ah d b d “

Objective• Simulation of flow around the bluff „Ahmed body“ as an

example for the application of OpenFOAM in industrial vehicle aerodynamicsy

Method• Variation of meshes, turbulence models, convection schemes and

simulation methods (steady/unsteady) to find good overall settings• Simulation of cases with various angles of attack • Evaluation of the results against measurement data and results of

l l ti ith th CFD calculations with other CFD programs• Evaluation of different solver settings for optimal use of resources

10.07.2008 4OpenFOAM workshop Milano 2008

Page 5: Moeller

Overview

dIntroduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 5OpenFOAM workshop Milano 2008

Page 6: Moeller

2. Test case definition

Bluff body for validation of

Ahmed bodyBluff body for validation of measurements and simulations in vehicle aerodynamics

simple geometrysimple geometrytypical stream shapesexperimental data exist, e.g.:

S.R. Ahmed, SAE Paper 840300

S. Becker, H. Lienhart,C. Stoots,ERCOFTAC workshop 9.4 (2000): ERCOFTAC workshop 9.4 (2000): LDA-Measurement

W. Meile (ISW of Graz UT), 2007,forces and pressure distribution

10.07.2008 6

p

OpenFOAM workshop Milano 2008

Page 7: Moeller

Overview

dIntroduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 7OpenFOAM workshop Milano 2008

Page 8: Moeller

Simulation environmentGeometry of the wind tunnel is given by a recommendation of Ercoftac: 15 x 1.87 x 1.4 m³

viscous incompressible and turbulent flowpressure outlet

wind tunnel:

Inflow velocity: 40 m/s (air)

viscous, incompressible, and turbulent flow symmetry„simpleFoam“ chosen as Solver

Inflow velocity: 40 m/s (air)Reynolds number: ~2.8 Mio.

Ahmed body:wall/wall functions

no slip: wall functionsvelocity inlet

wall/wall functions

slip

10.07.2008 8

ground floor divided to achieve correct boundary layer thickness

Boundary conditions for OpenFOAM

OpenFOAM workshop Milano 2008

Page 9: Moeller

Meshes

hybrid hexahedron dominant

Commercial meshing program SPIDER

hybrid, hexahedron-dominant meshes with prisms and tetrahedrons in the transition and boundary layersand boundary layersstepwise refinement determined by geometrical boxes around the Ahmed bodyAhmed body

10.07.2008 9OpenFOAM workshop Milano 2008

Page 10: Moeller

Variations

Geometry 25° slant35° slant

Simulation and comparison of all cases with straight inflow (0° angle of attack)

35 slant

Meshes very coarse (~1 Mio. cells)coarse (~2-2.5 Mio. cells) ( g )

12 variations(only best results are presented)

fine (~4.7 Mio. cells)

Turbulence model SST („kOmegaSST“)RKE ( realizableKE“)

Simulations with different convection schemes only for

RKE („realizableKE )

Convection scheme Upwind (1st order)Linear limited y

a reference case4 variations

Si l ti ith diff t

SFCDMUSCL

Angle of attack 0° Simulations with different angles of attack only for a reference case

3 variations

Angle of attack 0°9°15°

10.07.2008 10

3 variations

OpenFOAM workshop Milano 2008

Page 11: Moeller

Numerics

Personal “best practice” for the numerical settingsOpenFOAM version 1.4.1p

Flow solver simpleFoam (modified)

Turbulence model RKETurbulence model RKE

Schemes fordiscretization

• „Gauss SFCD“ or „Gauss SFCDV“ for convection• „Gauss linear“ or „corrected“ for other operators„ „ p

Linear solver • GAMG (Multigrid)for pressure with: smoother = GaussSeidel

nCellsInCoarsestMesh = number CPU's x 40-50

• PbiCG (conjugated gradients) for other variables

Solver tolerance 1.0e-07 for all variables

Relaxation coefficients • 0.3 for pressure• 0.5 for other variables

10.07.2008 11OpenFOAM workshop Milano 2008

Nonorthogonal correction number of correctors for an iteration 1-3

Page 12: Moeller

Overview

dIntroduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 12OpenFOAM workshop Milano 2008

Page 13: Moeller

Straight flow (1/2) Velocity magnitude [m/s]Streamlines

25° slant

Typical structures of symmetrical vortices

Significant differences gbetween the two cases in the wake area

35° slant

10.07.2008 13OpenFOAM workshop Milano 2008

Page 14: Moeller

Straight flow (2/2) Velocity fields in symmetry plane

Ux profiles

6225° slant 35° slant

62

[m/s]0

10.07.2008 14

[m/s]

Attached flow over the slant Detached flow over the slantOpenFOAM workshop Milano 2008

Page 15: Moeller

Mesh variationIntegral drag and lift coefficients

Best results for the following cases:0,40025° slant

Best results for the following cases:

0 200

0,300 0,299 0,3000,274

0,3010,345

0,316 0,3300,307 Ahmed 25°

Case 1 ~1.1 Mio. cells SST SFCD

0,100

0,200Case 2 ~2 Mio. cells RKE SFCD

Case 3 ~4.7 Mio. cells SST upwind

Ahmed 35°Measurement Case 1 Case 2 Case 3

0,000

0,400 c_d35° slant

Ahmed 35°

Case 4 ~1.2 Mio. cells SST SFCD

Case 5 ~2.4 Mio. cells SST SFCDCdC

0 200

0,300 0,2790,313

0,2920,247

0,212

c_lCase 6 ~4.6 Mio. cells SST limited

linear

Cl

Strong deviations from measurements for the lift coefficient in all cases with

0,100

0,200

0 004

0,156 0,159

35° slantMeasurement Case 4 Case 5 Case 60,000 0,004

10.07.2008 15OpenFOAM workshop Milano 2008

Page 16: Moeller

Turbulence model variation

All calculations for 25° slant

Integral drag and lift coefficients

and SFCD Scheme

Turbulence models:Turbulence models:• RKE: realizable-k-ε• SST: k-ω-SST

Meshes:• Coarse (~2 Mio. cells)

Fine ( 4 7 Mio cells)• Fine (~4.7 Mio. cells)c_dc_lCdCl

In most cases the RKE model provides slightly higher drag and lift values

10.07.2008 16

g gthan the SST model

OpenFOAM workshop Milano 2008

Page 17: Moeller

Convection scheme variation

• Ahmed body 25° slant• Fine mesh

Integral drag and lift coefficients

Fine mesh• SST turbulence model

(1st order)

• The first-order solution provides better results !?

10.07.2008 17

• The MUSCL scheme appears to be the best second order one.

OpenFOAM workshop Milano 2008

Page 18: Moeller

Angle of attack variation

0° 9° 15°

0,279 0,323 0,400cd

Ahmed body, 35° slant, ~2.5 Mio. cells, SST

0,279 0,323 0,4000,004 0,093 0,565

-0,003 0,426 0,8380,292 0,354 0,4420 156 0 547 0 673

d

cl

cs

cd

clCoefficients referring

0,9Measurement

0,156 0,547 0,6730,020 0,414 0,751

cl

cs

gto Ahmed-body

coordinate system

0,6

0,7

0,8MeasurementOpenFOAM

0,3

0,4

0,5

c_d

0,0

0,1

0,2 c_lc_sc_dc_l

0° 9° 15°-0,1

10.07.2008 18

c_s

OpenFOAM workshop Milano 2008

Page 19: Moeller

Results from other CFD programs

25° slant0 299 M

Integral drag and lift coefficients from different CFD codes

I t l b h kc_d

0,2990,2950,2990,3020,301

MessungCode 1Code 2Code 3OpenFOAM – Case 2

• Internal benchmarks• steady state

c_l

0,3450,387

0,2400,398

0,307

35° slant

0,000 0,050 0,100 0,150 0,200 0,250 0,300 0,350 0,400 0,450

Strong deviation of lift ffi i t f

c_d

0,2790,276

0,2510,277

0,292

coefficients from measurement data in all cases with 35° slant;

t f thi lit

c_l

0,0040,013

-0,0460,007

0 156

MessungCode 1Code 2Code 3OpenFOAM – Case 5

apart from this, quality of results similar to the results from other

-0,100 -0,050 0,000 0,050 0,100 0,150 0,200 0,250 0,300 0,350

0,156 Ope O Case 5 programs

10.07.2008 19OpenFOAM workshop Milano 2008

Page 20: Moeller

Unsteady flow simulation (1/2)Time development of forces on the Ahmed body

Numerics• Calculation for 25° slant, 2 Mio. cells,

RKE, MUSCL, Crank-NicolsonI iti li d b th t d t t

Forces [N]• Initialised by the steady state

simulation• Δt=0.0004 s

Ti [ ]Time [s]

• The simulation reaches a quasi stationary behaviour• Drag and lift forces are too small compared to the measurements

10.07.2008 20OpenFOAM workshop Milano 2008

Drag and lift forces are too small compared to the measurements and to the results of steady state simulation with the same mesh

Page 21: Moeller

Unsteady flow simulation (2/2)Velocity fields

t=0.15[m/s]

Plane parallel to the ground

Symmetry plane – wake area

0 16

steady

p g

t=0.16

t=0.17unsteady

t=0.18

The local velocity field of the URANS simulation appears more realistic than

10.07.2008 21OpenFOAM workshop Milano 2008

simulation appears more realistic than the one of the steady state result

Page 22: Moeller

Overview

dIntroduction

T t d fi itiTest case definition

Numerical methodNumerical method

ResultsResults

ConclusionsConclusions

10.07.2008 22OpenFOAM workshop Milano 2008

Page 23: Moeller

Conclusions

• Good simulation results, except for the lift coefficients in the 35° slant cases

• Full flexibility in modelling and numerics, but

good CFD knowledge and user experience are needed;

for industrial applications, a unified wall treatment for the wholerange of y+ down to the wall is needed;

the graphical interface has still to be enhanced for industrialthe graphical interface has still to be enhanced for industrialapplications.

• User guides and tutorials are good for the first steps in OpenFOAM, but

consistent and complete documentation for the use of componentscontained in the distribution are needed

OpenFOAM appears to be a reasonable supplement to commercial CFD programs in industrial applications with a high potential of improvement

10.07.2008 23

with a high potential of improvement

OpenFOAM workshop Milano 2008

Page 24: Moeller

Th kThank youfor your attention!for your attention!

Q ti ?Questions?

This presentation was created at and sponsored by The This presentation was created at and sponsored by ‚The Virtual Vehicle Competence Center (vif)‘, Graz/Austria. Initiated by the K plus Competence Center Program and sponsored by Land Steiermark and Steirischesponsored by Land Steiermark and SteirischeWirtschaftsförderungsgesellschaft mbH.

10.07.2008 24OpenFOAM workshop Milano 2008