MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242...

18
©Fraunhofer ISE/Foto: Guido Kirsch © Fraunhofer ISE FHG-SK: ISE-PUBLIC MODULE DESIGN, YIELD AND LCOE How larger solar cells impact power, efficiency and performance Max Mittag, Andrea Pfreundt, Jibran Shahid, Sebastian Nold, Andreas Beinert Fraunhofer Institute for Solar Energy Systems ISE Webinar PV-magazine Freiburg, 23.04.2020 www.ise.fraunhofer.de

Transcript of MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242...

Page 1: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

©Fraunhofer ISE/Foto: Guido Kirsch

© Fraunhofer ISE FHG-SK: ISE-PUBLIC

MODULE DESIGN, YIELD AND LCOE

How larger solar cells impact power, efficiency and performance

Max Mittag, Andrea Pfreundt, Jibran Shahid, Sebastian Nold, Andreas Beinert

Fraunhofer Institute for Solar Energy Systems ISE

Webinar PV-magazine

Freiburg, 23.04.2020

www.ise.fraunhofer.de

Page 2: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

2

FHG-SK: ISE-PUBLIC

Larger Cells Motivation & Problems

More power output per cell, Same amount of handling steps

Reduced costs in cell production

Higher cell power higher module power

Larger cell = higher currents = higher electrical losses

Larger cell = changed area/circumference-ratio = reduced internal reflection gains

Larger cell = larger module

mechanical stress, logistics, equipment reconfiguration,…

Advantages

Challenges

Page 3: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

3

FHG-SK: ISE-PUBLIC

Cell-to-Module (CTM) Ratio Introduction

Module power cell power

Module efficiency cell efficiency Cell-to-Module power losses = financial losses

Page 4: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

4

FHG-SK: ISE-PUBLIC

Cell-to-Module (CTM) Ratio CTMefficiency and CTMpower

Large power gains, low efficiency High efficiency, small power gains

solar cell solar cell

CTMpower

CTMefficiency

CTMpower

CTMefficiency

Cells are bought at €/Wp; Modules are sold at €/Wp

Increase of CTMpower = economic advantage for module manufacturers

Where is the benefit of larger cells for modules ?

𝐶𝑇𝑀𝑃𝑜𝑤𝑒𝑟 =𝑃𝑚𝑜𝑑𝑢𝑙𝑒

𝑃𝑐𝑒𝑙𝑙𝑠

𝐶𝑇𝑀𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 =𝜂𝑚𝑜𝑑𝑢𝑙𝑒

𝜂 𝑐𝑒𝑙𝑙𝑠

?

Page 5: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

5

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

Analysis performed using SmartCalc.CTM

Bottom-up analysis of module designs

Easily access ible via graphical user interface

Round wire, shingling, bifaciality, non-STC performance, cell size & metallization, material variation,…

Reduction in development costs & strategic concept analys is

Half Cell

M2

Larger Cells

M4, M6, M12

Third Cells

M12

Optimization

Vertex

SmartCalc.CTM www.cell-to-module.com

free demo version

Why did Trina designed the Vertex module the way they did?

Page 6: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

6

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

Larger cells lead to higher module power and efficiency

CTMpower decreases

CTMefficiency increases

cell format 156.75 158.75 161 166 210

half cell

Cell / string spacing normal

Module design 6x24

Module power [Wp] 406 417 429 456 725

CTMpower 102.3% 102.3% 102.3% 102.1% 101.0%

module efficiency [%] 20.2 20.2 20.2 20.3 20.7

CTMefficiency 89.0% 89.2% 89.3% 89.6% 91.4%

Page 7: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

7

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

Problematic module dimensions with larger cells

Solution: fewer strings and shorter strings

cell format 156.75 158.75 161 166 210

half cell

Cell / string spacing normal

Module design 6x24

Module power [Wp] 406 417 429 456 725

CTMpower 102.3% 102.3% 102.3% 102.1% 101.0%

module efficiency [%] 20.2 20.2 20.2 20.3 20.7

CTMefficiency 89.0% 89.2% 89.3% 89.6% 91.4%

Module length [m] 2.02 2.04 2.07 2.13 2.65

Module width [m] 1.00 1.01 1.03 1.06 1.32

Page 8: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

8

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

cell format 156.75 158.75 161 166 210

half cell third cell

Cell / string spacing normal

Module design 6x24 5x20 5x30

Module power [Wp] 406 417 429 456 725 504 511

CTMpower 102.3% 102.3% 102.3% 102.1% 101.0% 101.6% 103.0%

module efficiency [%] 20.2 20.2 20.2 20.3 20.7 20.5 20.5

CTMefficiency 89.0% 89.2% 89.3% 89.6% 91.4% 90.5% 90.6%

Module length [m] 2.02 2.04 2.07 2.13 2.65 2.22 2.25

Module width [m] 1.00 1.01 1.03 1.06 1.32 1.11 1.11

Why not just build a half cell module?

Page 9: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

9

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

Increas ing electrical losses for larger cells

Solution: third cut cells

cell format 156.75 158.75 161 166 210

half cell third cell

Cell / string spacing normal

Module design 6x24 5x20 5x30

Module power [Wp] 406 417 429 456 725 504 511

CTMpower 102.3% 102.3% 102.3% 102.1% 101.0% 101.6% 103.0%

module efficiency [%] 20.2 20.2 20.2 20.3 20.7 20.5 20.5

CTMefficiency 89.0% 89.2% 89.3% 89.6% 91.4% 90.5% 90.6%

Module length [m] 2.02 2.04 2.07 2.13 2.65 2.22 2.25

Module width [m] 1.00 1.01 1.03 1.06 1.32 1.11 1.11

Interconnector losses k12, rel 0.5% 0.5% 0.6% 0.6% 1.3% 1.3% 0.6%

Page 10: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

10

FHG-SK: ISE-PUBLIC

Larger cells: Impact on Modules Roadmap to Trina Vertex

Trina Vertex

Smaller spacings decrease power but increase efficiency

cell format 156.75 158.75 161 166 210

half cell third cell

Cell / string spacing normal small

Module design 6x24 6x20 5x30 5x30

Module power [Wp] 406 417 429 456 725 504 511 505

CTMpower 102.3% 102.3% 102.3% 102.1% 101.0% 101.6% 103.0% 101.7%

module efficiency [%] 20.2 20.2 20.2 20.3 20.7 20.5 20.5 21.1

CTMefficiency 89.0% 89.2% 89.3% 89.6% 91.4% 90.5% 90.6% 93.2%

Module length [m] 2.02 2.04 2.07 2.13 2.65 2.22 2.25 2.18

Module width [m] 1.00 1.01 1.03 1.06 1.32 1.11 1.11 1.10

Interconnector losses k12, rel 0.5% 0.5% 0.6% 0.6% 1.3% 1.3% 0.6% 0.5%

Page 11: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

11

FHG-SK: ISE-PUBLIC

Cell-to-System (CTS) Analysis

Laboratory conditions (STC) real world (non-STC)

Half cells with lower electrical losses in systems

PERC with lower module temperature than AlBSF

HJT with better temperature coefficients

Different module designs have different outdoor performance

Cell-to-System bottom-up multi-physics analysis of loss channels in PV modules at realistic non-STC conditions for flexible module designs

Optical Model

Thermal Model

Electrical Model

Module Power / Yield

Material Properties & Module Design

Envi

ron

men

t &

Op

erat

ion

SmartCalc.CTM www.cell-to-module.com

free demo version

Loss channel analysis at Fraunhofer ISE

Page 12: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

12

FHG-SK: ISE-PUBLIC

CTS-Analysis Vertex Non-STC Performance

Higher power density (Wp/m²) for Vertex than for half cell module

Slightly higher temperature for Vertex

(higher active area share higher absorption higher temperature)

Electrical losses of half cell relatively lower at low irradiance (Ploss = I² x R)

Opposing effects

Power density advantage of Vertex compared to half cell reference

𝜂𝑟𝑒𝑙 = 1 − 𝑇𝑚𝑜𝑑 − 25°𝐶 ∙ 𝛾𝑃𝑀𝑃𝑃 ∙𝑃𝐸

𝑃1000 𝑊/𝑚²∙1000𝑊/𝑚²

𝐸

Normalizes temperature effects Normalizes irradiance effects

Mittag, M. et al, „Techno-Economic Analysis of Half-Cell Modules”, EU PVSEC 2019 Mittag, M. et al, „Thermal Modelling of PV Modules and Processes“, EU PVSEC 2019

Page 13: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

13

FHG-SK: ISE-PUBLIC

LCoE-Estimation

Cost estimation based on a lot of sensitive data

Simple approach chosen here

52% of module costs are solar cells

Modules with higher active area share have higher production costs

Vertex module has higher absolute module costs (€)

Vertex has higher power density

Differences in module performance

Not all system costs depend on area

LCoE estimation

Cost structure of half cell module manufacturing

ITRPV 2019

Cost analysis based on exemplary manufacturing using a simple model Costs are not prices (no margins included, no logistics, etc.)

Page 14: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

14

FHG-SK: ISE-PUBLIC

LCoE-Estimation

Module manufacturing costs estimated

DC yield calculation performed with SmartCalc.CTM

System costs estimated

80% system efficiency (lowers module yield)

Inverter & Cabling increase with module wattage

Ground & Mounting increase with module area

LCoE estimation based on simple approach

ITRPV 2019 144 half Vertex 144 half Vertex per module per Watt

Inverter 100% 124% 100% Wiring 100% 124% 100% Mounting 100% 119% 100% 96% Ground 100% 105% 100% 84%

System Costs 144 half Vertex [€/module] 100% 117%

[€/m²] 100% 99% [€/kWp] 100% 95%

[€ct/kWh] 100% 95%

Yield calculation for Breisach, Germany

144 half Vertex 100% 122%

144 half Vertex 100% 124%

Page 15: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

15

FHG-SK: ISE-PUBLIC

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Max Mittag

www.ise.fraunhofer.de

[email protected]

Page 16: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

16

FHG-SK: ISE-PUBLIC

Holistic Module Development Mechanical Stress

Power, Costs, Reliability, Integration…

Module Development becomes increasingly difficult due to many new approaches

Example: Mechanical Stress

Larger modules

Increased mechanical stress

Larger cells

Increased mechanical stress

Cut cells

Reduced stress

Complex evaluation of new designs

Half cell module Third cell module

Mechanical load simulation (5400 Pa push load)

Beinert, A. et al, „Thermomechanical evaluation of new PV module designs by FEM simulations”, EU PVSEC 2019

Page 17: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

17

FHG-SK: ISE-PUBLIC

Module Comparison

Reference Module

392 Wp

19.8% module efficiency

CTMpower = 98.0%

CTMefficiency = 87.4%

Trina Vertex

505 Wp

21.1% module efficiency

CTMpower = 101.7%

CTMefficiency = 93.2%

Page 18: MODULE DESIGN, YIELD AND LCOE · Webinar PV-magazine Freiburg, 23.04.2020 . R 23 G 156 B 125 R 242 G 148 B 0 R 31 G 130 B 192 R 226 G 0 B 26 R 177 G 200 B 0 R 254 G 239 ... „Techno-Economic

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 177 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

© Fraunhofer ISE

18

FHG-SK: ISE-PUBLIC

Module Comparison

Reference Module

6x24 (144) cells

156.75 x 78.375 mm² (fsq)

2.02 x 1.00 m² module area

Glass, white backsheet

10 round wire interconnectors

22.65% (2.76 Wp) *

Trina Vertex

2x 5x15 (150) cells

210 x 70 mm² (fsq) third cut cells

2.18 x 1.10 m² module area **

Glass, white backsheet

10 round wire interconnectors

22.65% (3.31 Wp) *

* Assumed for analysis ** Datasheet Trina Vertex