Module 2- Semiconductor Physics

8
FaaDoOEngineers.com 2.1 Semiconductor Physics In the problems assume the parameter given in following table. Use the temperature T = 300 K unless otherwise stated. Property Si Ga As Ge Bandgap Energy 1.12 1.42 0.66 Dielectric Constant 11.7 13.1 16.0 Effective density of states in conduction band N c ( ) cm -3 28 10 19 . ´ 47 10 17 . ´ 104 10 19 . ´ Effective density of states in valence band N v ( ) cm -3 104 10 19 . ´ 70 10 18 . ´ 60 10 18 . ´ Intrinsic carrier concertration n i ( ) cm -3 15 10 10 . ´ 18 10 6 . ´ 24 10 18 . ´ Mobility Electron Hole 1350 480 8500 400 3900 1900 1. In germanium semiconductor material at T = 400 K the intrinsic concentration is (A) 26 8 10 14 . ´ cm -3 (B) 18 4 10 14 . ´ cm -3 (C) 85 10 14 . ´ cm -3 (D) 36 10 14 . ´ cm -3 2. The intrinsic carrier concentration in silicon is to be no greater than n i = ´ 1 10 12 cm -3 . The maximum temperature allowed for the silicon is (Assume E g = 112 . eV) (A) 300 K (B) 360 K (C) 382 K (D) 364 K 3. Two semiconductor material have exactly the same properties except that material A has a bandgap of 1.0 eV and material B has a bandgap energy of 1.2 eV. The ratio of intrinsic concentration of material A to that of material B is (A) 2016 (B) 47.5 (C) 58.23 (D) 1048 4. In silicon at T = 300 K the thermal-equilibrium concentration of electron is n 0 4 5 10 = ´ cm -3 . The hole concentration is (A) 45 10 15 . ´ cm -3 (B) 45 10 15 . ´ m -3 (C) 0 3 10 6 . ´ - cm -3 (D) 0 3 10 6 . ´ - m -3 5. In silicon at T = 300 K if the Fermi energy is 0.22 eV above the valence band energy, the value of p 0 is (A) 2 10 15 ´ cm -3 (B) 10 15 cm -3 (C) 3 10 15 ´ cm -3 (D) 4 10 15 ´ cm -3 6. The thermal-equilibrium concentration of hole p 0 in silicon at T = 300 K is 10 15 cm -3 . The value of n 0 is (A) 38 10 8 . ´ cm -3 (B) 4 4 10 4 . ´ cm -3 (C) 2 6 10 4 . ´ cm -3 (D) 4 3 10 8 . ´ cm -3 7. In germanium semiconductor at T = 300 K, the acceptor concentrations is N a = 10 13 cm -3 and donor concentration is N d = 0. The thermal equilibrium concentration p 0 is (A) 2 97 10 9 . ´ cm -3 (B) 2 68 10 12 . ´ cm -3 (C) 2 95 10 13 . ´ cm -3 (D) 2 4 . cm -3 Statement for Q.8-9: In germanium semiconductor at T = 300 K, the impurity concentration are N d = ´ 5 10 15 cm -3 and N a = 0 8. The thermal equilibrium electron concentration n 0 is www.nodia.co.in

description

semiconductor physics

Transcript of Module 2- Semiconductor Physics

  • FaaDo

    OEngi

    neers.c

    om

    2.1 Semiconductor Physics

    In the problems assume the parameter given in

    following table. Use the temperature T 300 K unless

    otherwise stated.

    Property Si GaAs Ge

    Bandgap Energy 1.12 1.42 0.66

    Dielectric Constant 11.7 13.1 16.0

    Effective density ofstates in conduction

    band Nc ( )cm3

    28 1019. 47 1017. 104 1019.

    Effective density ofstates in valence

    band Nv ( )cm3

    104 1019. 70 1018. 60 1018.

    Intrinsic carrierconcertration

    ni ( )cm3

    15 1010. 18 106. 24 1018.

    MobilityElectron

    Hole1350480

    8500400

    39001900

    1. In germanium semiconductor material at T 400 K

    the intrinsic concentration is

    (A) 26 8 1014. cm3 (B) 18 4 1014. cm3

    (C) 8 5 1014. cm3 (D) 3 6 1014. cm3

    2. The intrinsic carrier concentration in silicon is to be

    no greater than ni 1 1012 cm3. The maximum

    temperature allowed for the silicon is (Assume

    Eg 112. eV)

    (A) 300 K (B) 360 K

    (C) 382 K (D) 364 K

    3. Two semiconductor material have exactly the same

    properties except that material A has a bandgap of 1.0

    eV and material B has a bandgap energy of 1.2 eV.

    The ratio of intrinsic concentration of material A to

    that of material B is

    (A) 2016 (B) 47.5

    (C) 58.23 (D) 1048

    4. In silicon at T 300 K the thermal-equilibrium

    concentration of electron is n045 10 cm3. The hole

    concentration is

    (A) 4 5 1015. cm3 (B) 4 5 1015. m3

    (C) 0 3 10 6. cm3 (D) 0 3 10 6. m3

    5. In silicon at T 300 K if the Fermi energy is 0.22 eV

    above the valence band energy, the value of p0 is

    (A) 2 1015 cm3 (B) 1015 cm3

    (C) 3 1015 cm3 (D) 4 1015 cm3

    6. The thermal-equilibrium concentration of hole p0 in

    silicon at T 300 K is 1015 cm3. The value of n0 is

    (A) 3 8 108. cm3 (B) 4 4 104. cm3

    (C) 2 6 104. cm3 (D) 4 3 108. cm3

    7. In germanium semiconductor at T 300 K, the

    acceptor concentrations is Na 1013 cm3 and donor

    concentration is Nd 0. The thermal equilibrium

    concentration p0 is

    (A) 2 97 109. cm3 (B) 2 68 1012. cm3

    (C) 2 95 1013. cm3 (D) 2 4. cm3

    Statement for Q.8-9:

    In germanium semiconductor at T 300 K, the

    impurity concentration are

    Nd 5 1015 cm3 and Na 0

    8. The thermal equilibrium electron concentration n0

    is

    www.nodia.co.in

  • FaaDo

    OEngi

    neers.c

    om

    (A) 5 1015 cm3 (B) 115 1011. cm3

    (C) 115 109. cm3 (D) 5 106 cm3

    9. The thermal equilibrium hole concentration p0 is

    (A) 396 1013. (B) 195 1013. cm3

    (C) 4 36 1012. cm3 (D) 396 1013. cm3

    10. A sample of silicon at T 300 K is doped with

    boron at a concentration of 2 5 1013. cm3 and with

    arsenic at a concentration of 1 1013 cm3. The

    material is

    (A) p type with p01315 10 . cm3

    (B) p type with p0715 10 . cm3

    (C) n type with n01315 10 . cm3

    (D) n type with n0715 10 . cm3

    11. In a sample of gallium arsenide at T 200 K,

    n p0 05 and Na 0. The value of n0 is

    (A) 9 86 109. cm3 (B) 7 cm3

    (C) 4 86 103. cm3 (D) 3 cm3

    12. Germanium at T 300 K is uniformly doped with

    an acceptor concentration of Na 1015 cm3 and a donor

    concentration of Nd 0. The position of fermi energy

    with respect to intrinsic Fermi level is

    (A) 0.02 eV (B) 0.04 eV

    (C) 0.06 eV (D)0.08 eV

    13. In germanium at T 300 K, the donor

    concentration are Nd 1014 cm3 and Na 0. The

    Fermi energy level with respect to intrinsic Fermi

    level is

    (A) 0.04 eV (B) 0.08 eV

    (C) 0.42 eV (D) 0.86 eV

    14. A GaAs device is doped with a donor concentration

    of 3 1015 cm3. For the device to operate properly, the

    intrinsic carrier concentration must remain less than

    5% of the total concentration. The maximum

    temperature on that the device may operate is

    (A) 763 K (B) 942 K

    (C) 486 K (D) 243 K

    15. For a particular semiconductor at T 300 K

    Eg 15. eV, m mp n* *

    10 and ni 1 1015 cm3. The

    position of Fermi level with respect to the center of the

    bandgap is

    (A) 0.045 eV (B) 0.046 eV

    (C) 0.039 eV (D) 0.039 eV

    16. A silicon sample contains acceptor atoms at a

    concentration of Na 5 1015 cm3. Donor atoms are

    added forming and n type compensated

    semiconductor such that the Fermi level is 0.215 eV

    below the conduction band edge. The concentration of

    donors atoms added are

    (A) 12 1016. cm3 (B) 4 6 1016. cm3

    (C) 39 1012. cm3 (D) 2 4 1012. cm3

    17. A silicon semiconductor sample at T 300 K is

    doped with phosphorus atoms at a concentrations of

    1015 cm3. The position of the Fermi level with respect

    to the intrinsic Fermi level is

    (A) 0.3 eV (B) 0.2 eV

    (C) 0.1 eV (D) 0.4 eV

    18. A silicon crystal having a cross-sectional area of

    0.001 cm2 and a length of 20 m is connected to its

    ends to a 20 V battery. At T 300 K, we want a

    current of 100 mA in crystal. The concentration of

    donor atoms to be added is

    (A) 2 4 1013. cm3 (B) 4 6 1013. cm3

    (C) 7 8 1014. cm3 (D) 8 4 1014. cm3

    19. The cross sectional area of silicon bar is 100 m2.

    The length of bar is 1 mm. The bar is doped with

    arsenic atoms. The resistance of bar is

    (A) 2.58 m (B) 11.36 k

    (C) 1.36 m (D) 24.8 k

    20. A thin film resistor is to be made from a GaAs film

    doped n type. The resistor is to have a value of 2 k.

    The resistor length is to be 200 m and area is to be

    10 6 cm2. The doping efficiency is known to be 90%.

    The mobility of electrons is 8000 cm V s2 . The

    doping needed is

    (A) 8 7 1015. cm3 (B) 8 7 1021. cm3

    (C) 4 6 1015. cm3 (D) 4 6 1021. cm3

    21. A silicon sample doped n type at 1018 cm3 have a

    resistance of 10 . The sample has an area of 10 6

    www.nodia.co.in

    108 Semiconductor Physics Chap 2.1

  • FaaDo

    OEngi

    neers.c

    om

    cm2 and a length of 10 m . The doping efficiency of

    the sample is ( n 800 cm V s2

    )

    (A) 43.2% (B) 78.1%

    (C) 96.3% (D) 54.3%

    22. Six volts is applied across a 2 cm long

    semiconductor bar. The average drift velocity is 104

    cm s. The electron mobility is

    (A) 4396 cm V s2 (B) 3 104 cm V s2

    (C) 6 104 cm V s2 (D) 3333 cm V s2

    23. For a particular semiconductor material following

    parameters are observed:

    n 1000 cm V s2

    ,

    p 600 cm V s2

    ,

    N Nc v 1019 cm3

    These parameters are independent of

    temperature. The measured conductivity of the

    intrinsic material is 10 6 1( ) cm at T 300 K.

    The conductivity at T 500 K is

    (A) 2 10 4 ( ) cm 1 (B) 4 10 5 ( ) cm 1

    (C) 2 10 5 ( ) cm 1 (D) 6 10 3 ( ) cm 1

    24. An n type silicon sample has a resistivity of 5

    cm at T 300 K. The mobility is n 1350

    cm V s2 . The donor impurity concentration is

    (A) 2 86 10 14. cm3 (B) 9 25 1014. cm3

    (C) 11 46 1015. cm3 (D) 11 10 15. cm3

    25. In a silicon sample the electron concentration

    drops linearly from 1018 cm3 to 1016 cm3 over a length

    of 2.0 m. The current density due to the electron

    diffusion current is ( )Dn 352cm s .

    (A) 9 3 104. A cm2 (B) 2 8 104. A cm2

    (C) 9 3 109. A cm2 (D) 2 8 109. A cm2

    26. In a GaAs sample the electrons are moving under

    an electric field of 5 kV cm and the carrier

    concentration is uniform at 1016 cm3. The electron

    velocity is the saturated velocity of 107 cm s. The drift

    current density is

    (A) 1 6 104. A cm2 (B) 2 4 104. A cm2

    (C) 1 6 108. A cm2 (D) 2 4 108. A cm2

    27. For a sample of GaAs scattering time is sc 10 13 s

    and electrons effective mass is m me o* . 0 067 . If an

    electric field of 1 kV cm is applied, the drift velocity

    produced is

    (A) 2 6 106. cm s (B) 263 cm s

    (C) 14 8 106. cm s (D) 482

    28. A gallium arsenide semiconductor at T 300 K is

    doped with impurity concentration Nd 1016 cm3. The

    mobility n is 7500 cm V s2

    . For an applied field of

    10 V cm the drift current density is

    (A) 120 A cm2 (B) 120 A cm2

    (C) 12 104 A cm2 (D) 12 104 A cm2

    29. In a particular semiconductor the donor impurity

    concentration is Nd 1014 cm3. Assume the following

    parameters,

    n 1000 cm V s2

    ,

    NT

    c

    2 10300

    19

    3 2

    cm3,

    NT

    v

    1 10300

    19

    3 2

    cm3,

    Eg 11. eV.

    An electric field of E 10 V cm is applied. The

    electric current density at 300 K is

    (A) 2.3 A cm2 (B) 1.6 A cm2

    (C) 9.6 A cm2 (D) 3.4 A cm2

    Statement for Q.30-31:

    A semiconductor has following parameter

    n 7500 cm V s2

    ,

    p 300 cm V s2

    ,

    ni 3 6 1012. cm3

    30. When conductivity is minimum, the hole

    concentration is

    (A) 7 2 1011. cm3 (B) 1 8 1013. cm3

    (C) 1 44 1011. cm3 (D) 9 1013 cm3

    31. The minimum conductivity is

    (A) 0 6 10 3 1. ( ) cm (B) 17 10 3 1. ( ) cm

    (C) 2 4 10 3 1. ( ) cm (D) 6 8 10 3 1. ( ) cm

    www.nodia.co.in

    Chap 2.1 Semiconductor Physics 109

  • FaaDo

    OEngi

    neers.c

    om

    32. A particular intrinsic semiconductor has a

    resistivity of 50 ( ) cm at T 300 K and 5 ( ) cm at

    T 330 K. If change in mobility with temperature is

    neglected, the bandgap energy of the semiconductor is

    (A) 1.9 eV (B) 1.3 eV

    (C) 2.6 eV (D) 0.64 eV

    33. Three scattering mechanism exist in a

    semiconductor. If only the first mechanism were

    present, the mobility would be 500 cm V s2 . If only

    the second mechanism were present, the mobility

    would be 750 cm V s2 . If only third mechanism were

    present, the mobility would be 1500 cm V s2 . The net

    mobility is

    (A) 2750 cm V s2 (B) 1114 cm V s2

    (C) 818 cm V s2 (D) 250 cm V s2

    34. In a sample of silicon at T 300 K, the electron

    concentration varies linearly with distance, as shown

    in fig. P2.1.34. The diffusion current density is found

    to be Jn 0 19. A cm2. If the electron diffusion

    coefficient is Dn 252cm s, The electron concentration

    at is

    (A) 4 86 108. cm3 (B) 2 5 1013. cm3

    (C) 9 8 1026. cm3 (D) 5 4 1015. cm3

    35. The hole concentration in p type GaAs is given by

    px

    L

    10 116 cm3 for 0 x L

    where L 10 m. The hole diffusion coefficient is

    10 cm s2 . The hole diffusion current density at

    x 5 m is

    (A) 20 A cm2 (B) 16 A cm2

    (C) 24 A cm2 (D) 30 A cm2

    36. For a particular semiconductor sample consider

    following parameters:

    Hole concentration p e

    x

    Lp

    0

    1510

    cm3,x 0

    Electron concentration n e

    x

    Ln0

    145 10

    cm3,x 0

    Hole diffusion coefficient Dp 10 cm s2

    Electron diffusion coefficients Dn 25 cm s2

    Hole diffusion length Lp 5 10 4 cm,

    Electron diffusion length Ln 10 3 cm

    The total current density at x 0 is

    (A) 1.2 A cm2 (B) 5.2 A cm2

    (C) 3.8 A cm2 (D) 2 A cm2

    37. A germanium Hall device is doped with 5 1015

    donor atoms per cm3 at T 300 K. The device has the

    geometry d 5 10 3 cm, W 2 10 2 cm and L 0 1.

    cm. The current is Ix 250 A, the applied voltage is

    Vx 100 mV, and the magnetic flux is Bz 5 10 2

    tesla. The Hall voltage is

    (A) 0.31mV (B) 0.31 mV

    (C) 3.26 mV (D) 3.26 mV

    Statement for Q.38-39:

    A silicon Hall device at T 300 K has the

    geometry d 10 3 cm , W 10 2 cm, L 10 1 cm. The

    following parameters are measured: Ix 0 75. mA,

    Vx 15 V, VH 5 8. mV, tesla

    38. The majority carrier concentration is

    (A) 8 1015 cm3, n type

    (B) 8 1015 cm3, p type

    (C) 4 1015 cm3, n type

    (D) 4 1015 cm3, p type

    39. The majority carrier mobility is

    (A) 430 cm V s2 (B) 215 cm V s2

    (C) 390 cm V s2 (D) 195 cm V s2

    40. In a semiconductor n01510 cm3 and ni 10

    10

    cm3. The excess-carrier life time is 10 6 s. The excess

    hole concentration is p 4 1013 cm3. The

    electron-hole recombination rate is

    (A) 4 1019 cm s 3 1 (B) 4 1014 cm s 3 1

    (C) 4 1024 cm s 3 1 (D) 4 1011 cm s 3 1

    www.nodia.co.in

    110 Semiconductor Physics Chap 2.1

    5 1014

    x(cm)

    n(c

    m)

    -3

    0.010

    n(0)

    0

    Fig. P2.1.34

  • FaaDo

    OEngi

    neers.c

    om

    41. A semiconductor in thermal equilibrium, has a

    hole concentration of p01610 cm3 and an intrinsic

    concentration of ni 1010 cm3. The minority carrier

    life time is 4 10 7 s. The thermal equilibrium

    recombination rate of electrons is

    (A) 2 5 1022. cm s 3 1 (B) 5 1010 cm s 3 1

    (C) 2 5 1010. cm s 3 1 (D) 5 1022 cm s 3 1

    Statement for Q.42-43:

    A n-type silicon sample contains a donor

    concentration of Nd 106 cm3. The minority carrier

    hole lifetime is p0 10 s.

    42. The thermal equilibrium generation rate of hole is

    (A) 5 108 cm s 3 1 (B) 104 cm s 3 1

    (C) 2 25 109. cm s 3 1 (D) 103 cm s 3 1

    43. The thermal equilibrium generation rate for

    electron is

    (A) 1125 109. cm s 3 1 (B) 2 25 109. cm s 3 1

    (C) 8 9 10 10. cm s 3 1 (D) 4 109 cm s 3 1

    44. A n type silicon sample contains a donor

    concentration of Nd 1016 cm3. The minority carrier

    hole lifetime is p0 20 s. The lifetime of the majority

    carrier is ( . )ni 15 1010 3cm

    (A) 8 9 106. s (B) 8 9 10 6. s

    (C) 4 5 10 17. s (D) 113 10 7. s

    45. In a silicon semiconductor material the doping

    concentration are Na 1016 cm3 and Na 0. The

    equilibrium recombination rate is Rp01110 cm3s1. A

    uniform generation rate produces an excess- carrier

    concentration of n p 1014 cm3. The factor, by

    which the total recombination rate increase is

    (A) 2 3 1013. (B) 4 4 1013.

    (C) 2 3 109. (D) 4 4 109.

    ***********

    Solutions

    1. (D) n N N ei c v

    E

    kT

    g

    2

    Vt

    0 0259400

    3000 0345. .

    For Ge at 300 K,

    Nc 104 1019. , Nv 6 0 10

    18. , Eg 0 66. eV

    n ei2 19 18

    3 0 66

    0 0345104 10 6 0 10400

    300

    . .

    .

    .

    ni 8 5 1014. cm3

    2. (C) n N N ei c v

    E

    kT

    g

    2

    ( ) . .

    .

    10 2 8 10 104 10300

    12 2 19 19

    3 1 12

    Te

    e

    kT

    T e T313 10

    8

    3

    9 28 10

    . , By trial T 382 K

    3. (B)n

    n

    e

    e

    iA

    iB

    E

    kT

    E

    kT

    gA

    gB

    2

    2

    e

    E E

    kT

    gA gB

    2257 5. n

    niA

    iB

    47 5.

    4. (A) pn

    ni

    0

    2

    0

    10 2

    4

    1515 10

    5 104 5 10

    ( . ). cm3

    5. (A) p N ev

    E E

    kT

    F v

    0

    ( )

    104 10190 22

    0 0259..

    .e 2 1015 cm3

    6. (B) p N ev

    E E

    kT

    F v

    0

    ( )

    E E kTN

    pF v

    v

    ln0

    At 300 K, Nv 10 1019. cm3

    E EF v

    0 0259104 10

    100 239

    19

    15. ln

    .. eV

    n N ec

    E E

    kT

    c F

    0

    ( )

    At 300 K, Nc 2 8 1019. cm3

    E Ec F 112 0 239 0 881. . . eV

    n044 4 10 . cm3

    7. (C) pN N

    NN

    na d ad

    i0

    2

    2

    2 2

    For Ge ni 2 4 103.

    p0

    13 132

    13 210

    2

    10

    22 4 10

    ( . ) 2 95 1013. cm3

    www.nodia.co.in

    Chap 2.1 Semiconductor Physics 111

  • FaaDo

    OEngi

    neers.c

    om

    8. (A) nN N

    NN

    nd a da

    i0

    2

    2

    2 2

    5 10

    2

    5 10

    22 4 10

    15 152

    13 2( . ) 5 1015 cm3

    9. (B) pn

    pi

    0

    2

    0

    13 2

    13

    2 4 10

    2 95 10

    ( . )

    . 195 1013. cm3

    10. (A) Since N Na d , thus material is p-type ,

    p N Na d03 3 132 5 10 1 10 15 10 . . cm3

    11. (D) kT

    0 0259200

    3000 0173. . eV

    For GaAs at 300 K,

    Nc 4 7 1017. cm3, Nv 7 0 10

    18. , Eg 1 42. eV

    n ei2 17 18

    3 1 42

    0 01734 7 10 7 0 10200

    300

    . .

    .

    .

    ni 1 48. cm3

    n n p pn

    i

    2

    0 0 0

    2 0

    2

    55

    n ni0 5 3 3 . cm3

    12. (A) kT

    0 0259400

    3000 0345. . eV

    n N N ei c v

    E

    kT

    g

    2

    For Ge at 300 K,

    Nc 104 1019. cm3 , Nv 6 10

    18 cm3 , Eg 0 66. eV

    n ei2 19 18

    3 0 66

    0 0345104 10 6 10400

    300

    .

    .

    .

    7 274 1029.

    ni 8 528 1014. cm3

    pN N

    na a i0

    2

    2

    2 2

    10

    2

    10

    27 274 10

    15 152

    29.

    p0151 489 10. cm3

    E E kTp

    nFi F

    ln 0

    0

    0 03451 489 10

    8 528 10

    15

    14. ln

    .

    .

    0 019. eV

    13. (A) nN N

    nd d i0

    2

    2

    2 2

    For Ge at T 300 K, ni 2 4 1013. cm3

    n0

    14 142

    13 2 1410

    2

    10

    22 4 10 1055 10

    ( . ) . cm3

    E E kTn

    nF Fi

    i

    ln 0

    0 02591055 10

    2 4 10

    14

    13. ln

    .

    .

    0 0383. eV

    14. (A) nN N

    nd d i0

    2

    2

    2 2

    n ni 0 05 0.

    n n015 15 2

    0

    215 10 15 10 0 05. ( . ) ( . )

    n01530075 10. cm3

    ni 1504 1014. cm3

    n N N ei c v

    E

    kT

    g

    2

    For GaAs at T 300 K,

    Nc 4 7 1017. , Nv 7 10

    18, Eg 1 42. eV

    ( . ) .

    .

    .1504 4 7 10 7 10300

    2 17 18

    3 1 42 300

    0 025

    Te 9T

    By trial and error T 763 K

    15. (A) E E kTm

    mFi midgap

    p

    p

    3

    40 0446ln .

    *

    *eV

    16. (A) n N N N ed a c

    E E

    kT

    c F

    0

    For Si, Nc 2 8 1019. cm3

    N ed

    5 10 2 8 1015 190 215

    0 0259.

    .

    . 119 1016. cm3

    17. (A) E E kTN

    NF Fi

    d

    i

    ln

    0 025910

    15 100 287

    15

    10. ln

    .. eV

    18. (D) RV

    I

    20

    100200

    m

    L

    RA

    2 10

    200 0 001

    3

    ( ) ( . )

    0 01 1. ( ) cm

    e nn 0, For Si, n 1350.

    0 01 1 6 10 135019 0. ( . )( )n

    n0134 6 10 . cm3,

    n ni0 n Nd0

    19. (B) N nd i n Nd0 , e nn 0,

    RL

    A

    L

    e N An d

    ,

    www.nodia.co.in

    112 Semiconductor Physics Chap 2.1

  • FaaDo

    OEngi

    neers.c

    om

    0 1

    1 6 10 1100 5 10 100 1019 16 8.

    ( . )( )( )( ) 11 36. k

    20. (A) RL

    A

    , e nn 0 , RL

    e n An

    0

    nL

    e ARn0

    n Nd0 0 9 .

    20 10

    0 9 1 6 10 8000 10 2 108 7 10

    4

    19 6 3( . )( . )( )( )( ). 15 cm3

    21. (B) e nn 0, RL

    A

    , nL

    e ARn0

    10 10

    1 6 10 800 10 10

    4

    19 6( . )( )( )( ) 7 81 1017. cm3

    Efficiency

    n

    Nd

    0

    17

    18100

    7 8 10

    10100 78 1

    .. %

    22. (D) EV

    L

    6

    23 V/cm, v Ed n ,

    ndv

    E

    10

    3

    4

    3333 cm V s2

    23. (D) 1 eni n p( )

    10 1 6 10 1000 6006 19 ( . )( )ni

    At T 300 K, ni 391 109. cm3

    n N N ei c v

    E

    kT

    g

    2

    E kTN N

    ng

    c v

    i

    ln2

    Eg 2 0 025910

    391 10

    19

    9( . ) ln

    . 1122. eV

    At T 500 K , kT

    0 0259500

    3000 0432. . eV,

    n ei2 19 2

    1 122

    0 043210

    ( )

    .

    . cm3,

    ni 2 29 1013. cm3

    ( . )( . )( )1 6 10 2 29 10 1000 60019 13

    5 86 10 3 1. ( ) cm

    24. (B)

    1 1

    e Nn d

    Ne

    d

    n

    1

    1

    5 1 6 10 135019( . )( ) 9 25 1014. cm3

    25. (B) J eDdn

    dxn n

    ( . )( )1 6 10 3510 10

    2 10

    1918 16

    4 2 8 104. A cm2

    26. (A) J evn ( . )( )( )1 6 10 10 1019 7 16 1 6. A cm2

    27. (A) ve E

    md

    sc

    e

    *

    ( . )( )( )

    ( . )( . )

    1 6 10 10 10

    0 067 9 1 10

    19 13 5

    31

    26 2 103. m s 2 6 106. cm s

    28. (A) N nd i n Nd0

    J e n En 0 ( . )( )( )( )1 6 10 7500 10 10 12019 16 A cm2

    29. (D) n N N ei c v

    E

    kT

    g

    2

    ( )( )

    .

    .2 10 1 1019 191 1

    0 0259e 7 18 1019.

    ni 8 47 109. cm3

    N n N nd i d 0

    J E e n En 0

    ( . )( )( )( ) .1 6 10 1000 10 100 1 619 14 A cm2

    30. (A) e n e pn p0 0 and nn

    pi

    0

    2

    0

    en

    pe pn

    ip

    2

    0

    0 ,

    d

    dp

    e n

    pen i p

    0

    2

    0

    20

    1( )

    p nin

    p

    0

    1

    2

    3 6 107500

    300

    12

    1

    2

    .

    7 2 1011. cm3

    31. (B)

    min

    22

    i p n

    p n

    i p nen

    2 1 6 10 3 6 10 7500 30019 12. ( . ) ( )( )

    17 10 3 1. ( ) cm

    32. (B) 1

    e ni ,

    1

    11

    2

    1

    2

    2

    2

    1

    2

    n

    n

    e

    e

    i

    i

    E

    kT

    E

    kT

    g

    g

    0 12

    1 1

    1 2.

    e

    E

    k T T

    g

    E

    k

    g

    2

    330 300

    330 30010

    ln

    E kg 22 300 10( ) ln 1 31. eV

    33. (D)1 1 1 1

    1 2 3

    www.nodia.co.in

    Chap 2.1 Semiconductor Physics 113

  • FaaDo

    OEngi

    neers.c

    om

    1 1

    500

    1

    750

    1

    1500 250 cm V s2

    34. (B) J eDdn

    dxn n

    0 19 1 6 10 255 10 0

    0 010

    1914

    . ( . )( )( )

    .

    n,

    n( ) .0 2 5 1013 cm3

    35. (B) J eDdp

    dxeD

    d

    dx

    x

    Lp p

    10 116 e D

    L

    p1016

    ( . )( )( )1 6 10 10 10

    10 10

    19 16

    4

    J 16 A cm2

    36. (B) J eDdp

    dx

    eD

    Lp p

    x

    p

    p

    0

    0

    1510

    J e Ddn

    dxn n

    x

    0

    0

    5 1014 eD

    Ln

    n

    J J JeD

    L

    eD

    Lp n

    p

    p

    n

    n

    10 5 1015 14

    1 6 1010 10

    15 10

    5 10 25

    105 219

    15

    4

    14

    3.

    ( ) ( ). A cm2

    37. (A) VI B

    nedH

    x z

    ( )( )

    ( )( . )( ).

    250 10 5 10

    5 10 1 6 10 5 100

    6 2

    21 19 5313 mV

    38. (B) VH is positive p-type

    VI B

    epdp

    I B

    eV dH

    x z x z

    H

    p

    ( . )( )

    ( . )( . )( )

    0 75 10 10

    1 6 10 5 8 10 10

    3 1

    19 3 5

    8 08 10 8 08 1021 3 15. .m cm3

    39. (C) uI L

    epV Wdp

    x

    x

    ( . )( )

    ( . )( . )( )( )

    0 75 10 10

    1 6 10 8 08 10 15 10

    3 3

    19 21 4 ( )10 5

    p 39 10 2. m V s2 390 cm V s2

    40. (A) n-type semiconductor

    Rp

    p

    0

    13

    6

    194 10

    104 10 cm s 3 1

    41. (C) nn

    pi

    0

    2

    0

    10 2

    16

    410

    1010

    ( )cm3

    Rn

    n

    n

    00

    0

    4

    7

    1010

    4 102 5 10

    . cm s 3 1

    42. (C) Rp

    n

    p

    00

    0

    , pn

    ni

    0

    2

    0

    , n Nd0610 cm3

    p0

    10 2

    16

    415 10

    102 25 10

    ( . ). cm3

    Rn 0

    4

    6

    92 25 10

    10 102 25 10

    .. cm s 3 1

    43. (B) Recombination rate for minority and majority

    carrier are equal . The generation rate is equal to

    Recombination rate.

    G R Rn p 0 092 25 10. cm s 3 1

    44. (A) Recombination rates are equaln p

    n p

    0

    0

    0

    0

    ,

    N nd i

    n Nd0 , pn

    ni

    0

    2

    0

    n p

    i

    p

    n

    p

    n

    n0

    0

    0

    00

    2

    2 0

    10

    15 1020 10

    16

    10

    2

    6

    . 8 9 106. s

    45. (D) N n n Nd i d 0

    pn

    ni

    0

    2

    0

    10 2

    16

    415 10

    102 25 10

    ( . ). cm3

    Rp p

    Rp

    p

    p

    p

    00

    0

    00

    0

    4

    11

    72 25 10

    102 25 10

    .. s

    Rp

    p

    p

    0

    14

    7

    2010

    2 25 104 44 10

    .. cm s 3 1

    R

    R

    p

    p0

    20

    11

    94 44 10

    104 44 10

    ..

    ***********

    www.nodia.co.in

    114 Semiconductor Physics Chap 2.1