Module 2 Examples

download Module 2 Examples

of 73

Transcript of Module 2 Examples

  • 8/12/2019 Module 2 Examples

    1/73

    CS 546: Module 2

    Spring 2014

  • 8/12/2019 Module 2 Examples

    2/73

    Outline

    Horizontal and Vertical Asymptotes

    Local minimum/maximum

    Inflection points Antiderivative/Integral

    Definite Integral

  • 8/12/2019 Module 2 Examples

    3/73

    definition: horizontal asymptote

  • 8/12/2019 Module 2 Examples

    4/73

    example

    Here we see that as x

    approaches negative

    infinity and positive

    infinity y approaches

    0.

  • 8/12/2019 Module 2 Examples

    5/73

    recipe for finding

    horizontal asymptotes

    (1) Find the limit of the function as x approaches infinity

    (2) Find the limit of the function as x approaches negative infinity

  • 8/12/2019 Module 2 Examples

    6/73

    recipe for finding the limit of afractional polynomial as thevariable approaches infinity

  • 8/12/2019 Module 2 Examples

    7/73

    recipe for finding the horizontalasymptote of a fractional

    polynomial as the variableapproaches infinity

  • 8/12/2019 Module 2 Examples

    8/73

    example

  • 8/12/2019 Module 2 Examples

    9/73

    recipe for finding the limit atx approaches negative infinity

    (1) Replace x with (-x)

    (2) Find the limit as x goes to positive infinity instead

  • 8/12/2019 Module 2 Examples

    10/73

    1

    2limlim

    2

    x

    xy xx

    0

    example

    1)(

    2)(lim 2

    x

    xx

    1

    21lim

    2

    x

    xx

  • 8/12/2019 Module 2 Examples

    11/73

    )1(

    25limlim

    3

    3

    x

    xy xx

    515

    example

    125lim

    3

    3

    xxx

  • 8/12/2019 Module 2 Examples

    12/73

    )1(

    25limlim

    3

    3

    x

    xy xx

    5

    example

    )1)((2)(5lim 3

    3

    xxx

    )1(

    25lim

    3

    3

    x

    x

    x

    1

    25lim

    3

    3

    x

    xx

  • 8/12/2019 Module 2 Examples

    13/73

    definition: vertical asymptote

  • 8/12/2019 Module 2 Examples

    14/73

    example

    1x

  • 8/12/2019 Module 2 Examples

    15/73

    recipe for findinghorizontal asymptotes

    Find the points where the function has a restriction on

    the domain

  • 8/12/2019 Module 2 Examples

    16/73

    example

    1x

    When x = 1, the function does notexist, thus there is a restriction on

    the domain when x = 1.

  • 8/12/2019 Module 2 Examples

    17/73

    Derivatives

    Last weeks module covered derivatives. What

    can we use derivatives for?

    graphing aid

    finding critical points

    Local and global maxima

    Local and global minima

    Points of inflection

  • 8/12/2019 Module 2 Examples

    18/73

    example

    xxh 2)(' 2)( xxh

    x

    )(xh

    002)0(' xh

    212)1(' xh

    422)2(' xh

    x h(x) h(x)

    -2 4 -4

    -1 1 -2

    0 0 0

    1 1 2

    2 4 4

    By looking at the derivative, h(x), we can see that h(x) is decreasing when x is less

    than 0 because the derivative is negative. We can also see that h(x) is increasing when

    x is greater than 0 because the derivative is positive.

  • 8/12/2019 Module 2 Examples

    19/73

    0x

    5.1x

    2.2x

    8.2x

    maximum

    minimum

    maximum

    inflection point

    In this plot we see that

    there are two local maxima

    and one local minimum.

    Notice that right before the

    local maximum the function

    is increasing (the derivative

    is positive), and right after

    the local maximum thefunction is decreasing (the

    derivative is negative).

    Notice that right before the

    local minimum the function

    is decreasing (the derivativeis negative), and right after

    the local minimum the

    function is increasing (the

    derivative is positive).

    There is also one inflectionpoint.

  • 8/12/2019 Module 2 Examples

    20/73

    definition: inflection point

  • 8/12/2019 Module 2 Examples

    21/73

    finding points of inflection

    If a function has an inflection point, then its second derivative

    equals 0 at this point. Thus, inflection points are among the points

    at which the second derivative equals 0. So, to find inflection points

    we first find the second derivative of a function, set it equal to zero

    and then find the roots of the equation.

  • 8/12/2019 Module 2 Examples

    22/73

    definition: second derivative

  • 8/12/2019 Module 2 Examples

    23/73

    example23)(' xxh

    3)( xxh ?)('' xh

    xxh 6)(''

  • 8/12/2019 Module 2 Examples

    24/73

    recipe for findingcritical points (local minima,

    maxima and inflection points)(1) Find the derivative of the function

    Set the derivative equal to 0 and solve for x.

    Plug in values between critical points to determine if the identified critical pointsare local minima, local maxima, or inflection points.

    (2) Find the second derivative of the function Set the second derivative equal to 0 to find any points where a change in

    concavity occurs.

    Any additional critical points identified here will be inflection points.

    E pl fi di g l l

  • 8/12/2019 Module 2 Examples

    25/73

    Example: finding localminimum/maximum

    x

    h(x) = ex(x+3)

    1. Find the derivativeh(x) = ex(x+4)

    Set the derivative equal to 0 and solve for x.

    h(x) = ex(x+4) = 0

    The function will equal 0 when ex= 0 (this never happens)or when x+4 = 0 (this happens at -4).

    x=-4 is either a minimum or a maximum.

    2. Plug in values around this pointh(x=-3.9) = 0.002, h(x=-4.1) = -0.002

    Since the derivative is positive before x=-4 (the function isincreasing) and negative after x=-4 (the function is

    decreasing), x=-4 is a maximum.

    E pl : fi di g i fl tio

  • 8/12/2019 Module 2 Examples

    26/73

    Example: finding inflectionpoint

    x

    h(x) = ex(x+3), h(x) = ex(x+4)

    1. Find the second derivative

    h(x) = ex(x+5)

    Set the second derivative equal to 0 and solve for x.

    h(x) = ex(x+5) = 0

    The function will equal 0 when ex= 0 (this never

    happens) or when x+5 = 0 (this happens at -5).The inflection point occurs at x=-5.

  • 8/12/2019 Module 2 Examples

    27/73

    example

    a. Horizontal or vertical asymptotes, if they exist.

    b. Points of maximum or minimum, and the functions value at these points.

    c. Inflection points and the value of the function at these points.

    d. Describe the behavior of the graph of this function.

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    28/73

    35

    53 xxy a. Horizontal or vertical asymptotes, if they exist.

    example

  • 8/12/2019 Module 2 Examples

    29/73

    If there is a restriction on the domain, then there will be a vertical asymptote on

    the edge of that restriction. If , then there will be a vertical

    asymptote at .

    If the limits in (1) or (2) = (a constant, not infinity), then there is a horizontal

    asymptote at .

    recipe for findinghorizontal asymptotes

    (1) Find the limit of the function as x approaches infinity(2) Find the limit of the function as x approaches negative infinity

    recipe for findingvertical asymptotes

    Find the points where the function has a restriction on the domain

    ),(),( ccxcx

    cy

    c

  • 8/12/2019 Module 2 Examples

    30/73

    Horizontal asymptotes:

    (1) Find the limit of the function as x approaches infinity

    35

    53lim xxx

    (2) Find the limit of the function as x approaches negative infinity

    35 53lim xxx

    example

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    31/73

    recipe for finding the limit atx approaches negative infinity

    (1) Replace x with (-x)

    (2) Find the limit as x goes to positive infinity instead

  • 8/12/2019 Module 2 Examples

    32/73

    Horizontal asymptotes:

    (1) Find the limit of the function as x approaches infinity

    35

    53lim xxx

    (2) Find the limit of the function as x approaches negative infinity

    35 53lim xxx

    35)(5)(3lim xxx

    35 53lim xx

    xno horizontal asymptote

    example

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    33/73

    Find the points where the function has a restriction on the domain

    Vertical asymptotes:

    ),( x

    no vertical asymptote

    example

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    34/73

    Points of maximum or minimum, and the functions value at these points.

    example

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    35/73

    recipe for findingcritical points

    (1) Find the derivative of the function Set the derivative equal to 0 and solve for x. This will help us find points where the tangent

    line is flat.

    Plug in values between critical points to determine if the identified critical points are local

    minima, local maxima, or inflection points.

    (2) Find the second derivative of the function Set the second derivative equal to 0 to find any points where a change in concavity occurs.

    Any additional critical points identified here will be inflection points.

  • 8/12/2019 Module 2 Examples

    36/73

    Find the derivative of the function

    Set the derivative equal to 0 and solve for x. This will help us find

    points where the tangent line is flat.

    Plug in values between critical points to determine if the identified

    critical points are local minima, local maxima, or inflection points.24 1515' xxy

    )1(15 22 xx

    0)1)(1(15

    2 xxx

    015?

    2 x

    0)1(

    ?

    x

    0)1(?

    x

    0x

    1x

    1x

    criticalpoints

    minimum, maximum, or inflection point?

    example

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    37/73

    example

    0x1x 1x

    )1,( )0,1( )1,0( ),1(

    221

    21 2

    24 1515' xxy

    24 )2(15)2(15 24 )2

    1(15)

    2

    1(15 24 )

    2

    1(15)

    2

    1(15 24 )2(15)2(15

    4151615 )4

    1(15)

    16

    1(15 )

    4

    1(15)

    16

    1(15 4151615

    1801645

    1645

    180

    maximum inflectionpoint minimum

    Range

    Test Point

    Derivative ofthe function at

    the test point

    Increasing (+)or Decreasing (-)

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    38/73

    example

    0x1x 1x

    maximum inflectionpoint minimum

    )0,0()2,1( )2,1(

    35 )1(5)1(3 y

    2y

    24 1515' xxy

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    39/73

    example

    c. Inflection points and the value of the function at these points.

    35

    53 xxy

  • 8/12/2019 Module 2 Examples

    40/73

    recipe for findingcritical points

    (1) Find the derivative of the function Set the derivative equal to 0 and solve for x. This will help us find points where the tangent

    line is flat.

    Plug in values between critical points to determine if the identified critical points are local

    minima, local maxima, or inflection points.

    (2) Find the second derivative of the function Set the second derivative equal to 0 to find any points where a change in concavity occurs.

    Any additional critical points identified here will be inflection points.

  • 8/12/2019 Module 2 Examples

    41/73

    example

    Find the second derivative of the function

    Set the second derivative equal to 0 to find any points where a change

    in concavity occurs.

    Any additional critical points identified here will be inflection points.

    xxy 3060'' 3

    )12(30 2 xx

    0

    030?

    x

    0)12(?

    2 x

    0x

    21x

    inflectionpoints12 2 x2

    12 x

    212 x

    35

    53 xxy

    24

    1515' xxy

  • 8/12/2019 Module 2 Examples

    42/73

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    0

    0

    example

    maximum

    inflection point

    minimum

    0x1x 1x

  • 8/12/2019 Module 2 Examples

    43/73

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -1.5 -1 -0.5 0 0.5 1 1.5 2

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    example

    maximum

    inflection point

    minimum

    inflection point

    inflection point

  • 8/12/2019 Module 2 Examples

    44/73

    the setting: antiderivatives

    Given: )(xf

    Find: )(xF such that )()(' xfxF dxxf )(

  • 8/12/2019 Module 2 Examples

    45/73

    example

    Find: such that)(xF

    The derivative of what function will give us x3?

    Given: )(xf3)(' xxF

    3

    x dxx

    3

  • 8/12/2019 Module 2 Examples

    46/73

    Given: )(xf

    Find: )(xF such that )()(' xfxF

    the setting: antiderivatives

    cxFdxxf )()(

    integral signintegrand

    take integralwith respect to x

    antiderivativeconstant ofintegration

    dxxf )(

  • 8/12/2019 Module 2 Examples

    47/73

    example

    Find: such that3)(' xxF )(xF

    3

    x dxx

    3

    Given: )(xf

    cxFdxxf )()(

    cxdxx

    43

    4

    14

    4

    1)(, xxF

    31444

    1)(' xxxF

    The derivative of what function will give us x3?

  • 8/12/2019 Module 2 Examples

    48/73

  • 8/12/2019 Module 2 Examples

    49/73

    antiderivative power rule

    dxxnxn

    xn 1n 1n

    1n

  • 8/12/2019 Module 2 Examples

    50/73

    example

    dxx3

    c

    x

    4

    4

    cx 44

    1

    cn

    xdxx

    nn

    11

    cn

    xdxx

    nn

    11

    3, n

    c

    x

    dxx

    1313

    34

    4

    1)( xxF

    31444

    1)(' xxxF

  • 8/12/2019 Module 2 Examples

    51/73

    example

    dxx

    c

    x

    2

    2

    cx 22

    1

    cn

    xdxx

    nn

    11

    cn

    xdxx

    nn

    11

    1, n

    c

    x

    dxx

    1111

    12

    2

    1)( xxF

    31222

    1)(' xxxF

  • 8/12/2019 Module 2 Examples

    52/73

    dxxgdxxfdxxgxf )()()()(

    properties of indefinite integrals

  • 8/12/2019 Module 2 Examples

    53/73

    example

    dxxx3

    dxxdxx3

    dxxgdxxfdxxgxf )()()()(

  • 8/12/2019 Module 2 Examples

    54/73

    example

    dxx3

    c

    x

    4

    4

    cx 44

    1

    cn

    xdxx

    nn

    11

    cn

    xdxx

    nn

    11

    3, n

    c

    x

    dxx

    1313

    34

    4

    1)( xxF

    31444

    1)(' xxxF

  • 8/12/2019 Module 2 Examples

    55/73

    example

    dxx

    c

    x

    2

    2

    cx 22

    1

    cn

    xdxx

    nn

    11

    cn

    xdxx

    nn

    11

    1, n

    c

    x

    dxx

    1111

    12

    2

    1)( xxF

    31222

    1)(' xxxF

  • 8/12/2019 Module 2 Examples

    56/73

    dxxgdxxfdxxgxf )()()()(

    cxGxF )()(

    example

    dxxx3

    dxxdxx3

    cx44

    1

    2124

    2

    1

    4

    1ccxx

    1

    cx22

    1

    2

  • 8/12/2019 Module 2 Examples

    57/73

    properties of indefinite integrals

    dxxgdxxfdxxgxf )()()()(

    dxxfkdxxfk )()(

    cxGxF )()(

  • 8/12/2019 Module 2 Examples

    58/73

    example

    Find: such that 2)(' xF)(xF2

    dx2

    Given: )(xf

    The derivative of what function will give us 2?

    dxx02

    dxxfkdxxfk )()( 2,)( 0

    kxxf

    dxxdxx 00 22 c

    x

    12

    1

    cx 2

  • 8/12/2019 Module 2 Examples

    59/73

    helpful hints

    When you are asked for the antiderivative of a function, f(x),

    then you are looking for the function whose derivative is

    equal to f(x)

    You can always (and should!) check your work to see if youranswer is correct by taking the derivative to make sure that it

    is equal to f(x)

    Use the properties of derivatives to help break the problem

    down into more approachable parts

    Dont forget the constant of integration (the +c)

  • 8/12/2019 Module 2 Examples

    60/73

    example

    Find: such that 2)(' xF)(xF2

    dx2

    Given: )(xf

    The derivative of what function will give us 2?

    dxx02

    dxxfkdxxfk )()( 2,)( 0

    kxxf

    dxxdxx 00 22 c

    x

    12

    1

    cx 2

  • 8/12/2019 Module 2 Examples

    61/73

    antiderivative rules

    cn

    xdxx

    nn

    11

    dxex

    cex

    dx1 cxdx dxx0

    cdxxgdxxfdxxgxf )()()()(

    cdxxfkdxxfk )()(

    1, n

  • 8/12/2019 Module 2 Examples

    62/73

    the setting: indefinite integral

    cxFdxxf )()(

  • 8/12/2019 Module 2 Examples

    63/73

    )()()()( aFbFxFdxxf b

    a

    b

    a

    the setting: definite integral

    )()(' xfxF where

    If is continuous on the interval from a to b)(xf

    limits of integration

  • 8/12/2019 Module 2 Examples

    64/73

    )()()()( aFbFxFdxxf b

    a

    b

    a

    the setting: definite integral

    )()(' xfxF where

    If is continuous on the interval from a to b)(xf

    limits of integration

  • 8/12/2019 Module 2 Examples

    65/73

    )()()()( aFbFxFdxxf b

    a

    b

    a

    fundamental theorem of calculus

    )()(' xfxF where

    If is continuous on the interval from a to b)(xf

    limits of integration

    recipe for performing

  • 8/12/2019 Module 2 Examples

    66/73

    1.Integrate the function

    2.Evaluate the antiderivative at the upper limit

    3.Evaluate the antiderivative at the lower limit

    4.Subtract the value found in step 3 from the value found in

    step 2.

    recipe for performingdefinite integration

  • 8/12/2019 Module 2 Examples

    67/73

    example

    dxx2

    02 c

    x

    22

    2

    2

    0 cx 2

    2

    0c 22 c 20

    4

  • 8/12/2019 Module 2 Examples

    68/73

    example

    dxx2

    1

    3

    4

    4x 2

    1 4

    24

    4

    14

    4

    14

    4

    33

  • 8/12/2019 Module 2 Examples

    69/73

    example

    422

    0

    dxx

    2

    4

    Area hb 2

    1

    422

    1

    4

  • 8/12/2019 Module 2 Examples

    70/73

    example

    440)2(02 220

    2

    20

    2

    xdxx

    2

    4

    Area hb 2

    1

    422

    1

    4

    l

  • 8/12/2019 Module 2 Examples

    71/73

    example

    dxx

    2

    1

    3

    4

    3

    3

  • 8/12/2019 Module 2 Examples

    72/73

    properties of definite integrals

    l

  • 8/12/2019 Module 2 Examples

    73/73

    dxx

    1

    1

    3

    example

    041

    41

    1

    1

    4

    4x