Module 06 Lecture 41: Integration of Heat Pump...

25
Integration of Heat Pump Module06 Lectrure41 Module06 Lecture41: Integration of Heat Pump Key words: Heat Pump, Heat Engine, temperature lift, COP, PER, MVR, TVR, Heat Transformer, Reverse Braytoncycle, It is known fact that heat flows naturally from a higher to a lower temperature. However, heat pumps, are able to force the heat flow in the other direction, using a relatively small amount of high quality drive energy (electricity, fuel, or hightemperature waste heat). Thus, heat pumps can transfer heat from natural heat sources, such as from the air, ground, water or from heat sources such as industrial or domestic waste, to an industrial application or building. Heat pumps can also be used for cooling purposes also. For such a situation, heat is transferred in the opposite direction i.e. from the application that needs to be cooled to surroundings at a higher temperature where heat is rejected. In short, the objective of a refrigerator is to remove heat from the cold medium whereas, the objective of a heat pump is to supply heat to a warm medium. The Fig.41.1 distinguishes the functions of heat pump and refrigerator. W = required input W = required input Fig. 41.1 Difference between (a) Refrigerator and (b) Heat Warm environment,T 1 Refrige rator Refrigerated space (cold),T 2 Q 1 Q 2 = desired out put Heat Pump Q 2 Q 1 = desired output Cold environment, T 2 (a) Refrigerator (b) Heat Pump T 1

Transcript of Module 06 Lecture 41: Integration of Heat Pump...

Page 1: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Module‐06 Lecture‐41:  Integration of Heat Pump 

Key words:  Heat Pump, Heat Engine, temperature lift, COP, PER, MVR, TVR, Heat 

Transformer, Reverse Brayton‐cycle,    It is known fact that heat flows naturally from a higher to a lower temperature. However, heat pumps, are able to force the heat flow in the other direction, using a relatively small amount  of high quality drive  energy  (electricity,  fuel, or high‐temperature waste heat). Thus,  heat  pumps  can  transfer  heat  from  natural  heat  sources,  such  as  from  the  air, ground, water or from heat sources such as industrial or domestic waste, to an industrial application or building. Heat pumps can also be used for cooling purposes also. For such a situation, heat is transferred in the opposite direction i.e. from the application that needs to be  cooled to surroundings at a higher temperature where heat is rejected. In short, the objective of a refrigerator is to remove heat from the cold medium whereas, the objective of  a  heat  pump  is  to  supply  heat  to  a  warm medium.  The  Fig.41.1  distinguishes  the functions of heat pump and refrigerator.                              

W = required input  W = required input 

Fig. 41.1 Difference between (a) Refrigerator and (b) Heat 

Warm 

environment,T1 

Refrige

‐rator 

Refrigerated 

space (cold),T2 

Q1 

Q2= desired out put

Heat Pump 

Q2

Q1 = desired output 

Cold environ‐

ment, T2 

(a) Refrigerator  (b) Heat Pump

T1

Page 2: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Heat pumps offer unique way to provide heating and cooling in an energy‐efficient way in many applications, as they can use renewable heat sources around it. By investing a little extra energy, a heat pump can  raise  the  temperature of available heat energy  from  the surroundings  to the level needed for process applications. Heat pumps can also use waste heat sources of  industrial processes, cooling equipment or ventilation air extracted  from buildings to convert  it  into useful heat. A  typical electrical heat pump will  just need 100 kWh  of  power(  for  lifting  the  heat  of  200kWh)  to  turn  200  kWh  of  freely  available environmental or waste heat into 300 kWh of useful heat. Many industrial heat pumps can achieve even higher performance, and lift 100 kWh amount of heat with only 3‐10 kWh of electricity. Because  heat  pumps  consume  less  drive  energy  than  conventional  heating systems,  it  is  an  a  key  technology  for  reducing  gas  emissions,  such  as  carbon  dioxide (CO2), sulphur dioxide (SO2) and nitrogen oxides (NOx). Industrial heat pumps are mainly used  for,  space  heating;  heating  and  cooling  of  process  streams;  water  heating  for washing,  sanitation  and  cleaning;  steam  production;  drying/dehumidification; evaporation;  distillation  and  concentration.  When  heat  pumps  are  used  in  drying, evaporation and distillation processes, heat is recycled within the process. 

Through  this unique ability, heat pumps can  radically  improve  the energy efficiency and environmental  value  of  any  heating  system  that  is  driven  by  primary  energy  resources such as fuel or power. The following six facts should be considered when any heat supply system is designed[1]: 

1. Direct combustion to produce heat is never the most efficient use of fuel as it creates pollution 

2. Heat pumps are more efficient because they use renewable energy in the form of low‐temperature heat; 

3. If the fuel used by conventional boilers were redirected to supply power for electric heat pumps, about 35‐50% less fuel would be needed, resulting in 35‐50% less emissions; 

4. Around 50% savings are made when electric heat pumps are driven by CHP (combined heat and power or cogeneration) systems; 

5. Whether fossil fuels, nuclear energy, or renewable power is used to generate electricity, electric heat pumps make far better use of these resources than do resistance heaters; 

6. The fuel consumption, and consequently the emissions rate, of an absorption or gas‐engine heat pump is about 35‐50% less than that of a conventional boiler. 

Heat Pump  

In order to transport heat from a heat source to a heat sink, heat pumps need external energy. Theoretically, the total heat delivered by the heat pump is equal to the heat extracted from the heat source, plus the amount of drive energy supplied to it. It is simply a heat engine running in reverse direction, as shown in Fig.41.2 and the actual heat pump is shown schematically  in Fig.41.3.  It accepts heat Q2 from the sink at T2 ( at lower temperature), rejects heat Q1 into the source which is at a higher temperature , T1 in doing so it consumes work W.   

 

Page 3: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

      

        The  heat  pump  is  a  heat  lift.  Eq.41.1  can  be  written  based  on  First  Law  of Thermodynamics:  

… 41.1   As per the second law of thermodynamics, Eq.41.2 can be written:  

  

… 41.2  

           It is usual to define overall efficiencies for real heat engines and heat pumps, according to:  

                                                                                                                  … (41.3)  

with  < c for heat engines, and  > c for heat pumps.  Eq.41.3 can be rewritten for heat pumps as:  

… . 41.4  

 where COPp is the so‐called “coefficient of performance” based on heat output Q1 from a heat pump or vapour recompression system, and COPr is the coefficient for a refrigeration 

Condenser, T1

Q1

Evaporator, T2

Q2

Compressor 

Throttle Valve

Fig.41.3 Closed cycle heat pump

T1 > T2

HeatEngine 

Heat, Q1

Heat, Q2

(Source) Temperature, T1

Temperature, T2 (sink)

T1 > T2 

Work, W

Fig.41.2 Thermodynamic concept behind heat pump 

Page 4: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

system based on heat absorbed(Q2) from the process. From Equations (41.1), (41.2), (41.3) and (41.4), one can write:   

… 41.4           

 

1… 41.5  

 

1

… 41.6  

 Hence, the heat pump as a  low temperature  lift (T2 → T1 ) gives a high COPHp and a  large amount of upgraded heat per unit power. However,  lower values of T2  reduce COPR,  so refrigeration  systems  need  more  power  per  unit  for  upgraded  heat  as  the  absolute temperature  falls.  With  the  above  understanding,  one  can  start  analyzing  the  CHP  problems.    Heat pump cycles  Theoretically, heat pumping  can be achieved by many more  thermodynamic  cycles and processes. These include Stirling and Vuilleumier cycles, single‐phase cycles (e.g. with air, CO2 or noble gases), solid‐vapour sorption systems, hybrid systems (notably combining the vapour  compression and absorption  cycle) and electromagnetic and acoustic processes. Some  of  these  are  entering  the market  or  have  reached  technical maturity,  and  could become significant in the future.  Almost all heat pumps fall on two categories,  i.e. either based on a vapour compression, or  on  an  absorption  cycle.  Heat  pumps  are    used  for    two  purposes;  either  as  a refrigeration  system  to  carryout    cooling  below‐ambient  temperature,  or  as  a  heat recovery system to pump heat backwards across the pinch. However, the equipment used in both cases is similar.  Industrial heat pumps can be divided into six principal types:  1.   Closed‐cycle heat pumps (most refrigeration cycles): A great majority of heat pumps 

work according  to  this   principle.   A  volatile  liquid,  known as  the working  fluid or refrigerant, circulates  through  the components of  this cycle. The main components in such a heat pump system are the compressor, the expansion valve and two heat exchangers  referred  to  as  evaporator  and  condenser.  The  components  are connected  to  form  a  closed  circuit.  It    takes  in  heat  and  evaporates  in  the evaporator,  is  compressed  and  then  condensed  to  give  out  heat  at  a  higher temperature  at  condenser,  and  returned  to  the  evaporator  via  a  expansion  valve which cools the refrigerant to evaporator temperature.  

Page 5: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

2.   Mechanical vapour recompression (MVR):   Categorized as open or semi‐open heat pumps.  In  a  open  systems,  vapour  from  an  industrial  process  is  compressed  by  a compressor(  driven  by  electricity  or  a  plant  turbine)  to  a  higher  pressure  (thus  a higher  temperature)   and condensed  in  the  same process giving off heat.  In  semi‐open systems, heat from the recompressed vapour is transferred to the process via a heat  exchanger.  Because  one  or  two  heat  exchangers  are  eliminated  (evaporator and/or  condenser) and  the  temperature  lift  is generally  small,  the performance of MVR  systems  is high, with  typical  coefficients of performance  (COPs) of 10  to 30. 

Current  MVR  systems  work  with  heat‐source  temperatures  from  70‐80C,  and deliver heat between 110 and 150C, in some cases up to 200C. Water is the most common  'working fluid' (i.e. recompressed process vapour), although other process vapours are also used, notably in the petro‐ chemical industry.

3.   Thermal vapour recompression (TVR): High‐pressure steam is passed into a venturi‐type thermocompressor, and mixed with lower‐pressure steam to give a  larger flow at an intermediate temperature and pressure. This also includes ejectors, mainly used for drawing a vacuum. 

4.   Absorption refrigeration cycles:   These   refrigeration cycles take   waste heat above ambient and extract some below ambient heat from the process and rejects all heat at a medium temperature close to ambient. These are not widely used  in  industrial applications. Current systems with water/lithium bromide as working pair achieve an output  temperature  of  100ºC  and  a  temperature  lift  of  65ºC.  The  COP  typically ranges  from  1.2  to  1.4.  The  new  generation  of  advanced  absorption  heat  pump systems will have higher output temperatures (up to 260ºC) and higher temperature lifts. 

5.  Heat transformers : These have the same main components and working principle as absorption heat pumps. With a heat transformer waste heat can be upgraded, virtually without  the  use  of  external  drive  energy. Waste  heat  of  a medium  temperature  (i.e. between the demand level and the environmental level) is supplied to the evaporator and generator. Useful heat of a higher  temperature  is given off  in  the absorber. All  current systems  use water  and  lithium  bromide  as working  pair.  These  heat  transformers  can 

achieve  a  delivery  temperatures  up  to  150C,  typically with  a  lift  of  50C.  COPs  under these conditions range from 0.45 to 0.48. In short, heat transformers  take in waste heat, upgrade  some  of  it  to  a  useful  temperature  and  cool  the  rest,  thus  acting  as  “heat splitters”.They  are  in  effect  a  reversed  absorption  refrigeration  cycle  working  entirely above‐ambient temperature. . 6.  Reverse Brayton‐cycle heat pumps: It  recovers solvents from gases in many 

industrial processes. Solvent loaded air is compressed, and then expanded. The air cools through the expansion, and the solvents condense and are recovered. Further, expansion  takes place in a turbine, which drives the compressor. 

 A simple closed‐cycle heat pump is illustrated in Figs.41.3 & 41.4 with T‐S diagram. In this heat pump moderate amount of electrical or mechanical power is used to upgrade a larger amount of heat.   An absorption heat pump is shown in Fig.41.5.   Absorption heat pumps are thermally driven, meaning that rather than mechanical energy, heat  is used  to drive the  cycle.  Absorption  heat  pumps  for  space  conditioning  are  often  gas‐fired,  while 

Page 6: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

industrial  installations  are  usually  driven  by  high‐pressure  steam  or  waste  heat. Absorption systems make use of the ability of liquids or salts to absorb the vapour of the working fluid. The most common working pairs for absorption systems are: 

water (working fluid) and lithium bromide (absorbent); and  ammonia (working fluid) and water (absorbent). 

In absorption systems, compression of the working fluid is achieved thermally in a solution circuit which consists of an absorber, a solution pump, a generator and then an expansion valve as shown in Fig.35.4, expands the working fluid to create low temperature to absorb heat. The    low‐pressure vapour  from  the evaporator  is absorbed  in  the absorbent  in an absorber. This process generates heat. The solution is pumped to high pressure and then enters the generator, where the working fluid is boiled off with an external heat supply at a high temperature. The working  fluid  (vapour)  is condensed  in the condenser while the absorbent is returned to the absorber via the expansion valve.  

Here,  it  is  the “work potential” of above‐ambient heat  (usually steam) which causes  the heat pumping without actually converting heat  into shaft power. These systems   are not preferred  due  to  their  high  capital  costs  (two  columns  required,  one  of  them  a  high‐pressure column) and heavy heat demand. 

Liquid+Vapor 1 

3

4

5

Superheated vapor 

Saturated liquid

Saturated Vapor 

Isobars

LiquidVapor Liquid + Vapor

Specific entropy, S 

Temperature, T

 

Evap

orator 

Conden

ser 

SuperheatedVapor 

Valve 

Compressor 

Liquid+Vapor  Liquid 

 Hot air 

Vapor(Cold) 

Expansion 

Hotterair 

Cold air 

Fig.41.4 Single stage (a)vapor compression refrigeration cycle(b) T‐S diagram 

2 1 

3

4 5 

1‐2 Compression of vapor2‐3 Vapor superheat removed in condenser 3‐4 Vapor converted to liquid in condenser 4‐5 Liquid flashed into Liquid+Vapor across expansion valve 5‐1 Liquid+vapor converted to all vapor in evaporator 

Page 7: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Performance of Heat pump 

The heat delivered by a heat pump is theoretically the sum of the heat extracted from the heat source and the energy needed to drive the cycle. The steady-state performance of an electric compression heat pump at a given set of temperature conditions is referred to as the coefficient of performance (COP). It is defined as the ratio of heat delivered by the heat pump and the electricity supplied to the compressor.

For engine and thermally driven heat pumps the performance is indicated by the primary energy ratio (PER). The energy supplied is then the higher heating value (HHV) of the fuel supplied. For electrically driven heat pumps a PER can also be defined, by multiplying the COP with the power generation efficiency.

The COP or PER of a heat pump is closely related to the temperature lift, i.e. the difference between the temperature of the heat source and the output temperature of the heat pump. The COP of an ideal heat pump is determined solely by the condensation temperature and the temperature lift (condensation - evaporation temperature). Fig.41.6 shows the COP for an ideal heat pump as a function of temperature lift, where the temperature of the heat source is 0°C. Also shown is the range of actual COPs for various types and sizes of real heat pumps at different temperature lifts.

.

 

Page 8: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

The ratio of the actual COP of a heat pump and the ideal COP is defined as the Carnot-efficiency. The Carnot-efficiency varies from 0.30 to 0.5 for small electric heat pumps and 0.5 to 0.7 for large, very efficient electric heat pump systems. An indication of achievable COP/PERs for different heat pump types at evaporation 0°C and condensing temperature 50°C is shown in Table 41.1

 Table 41.1 COP/PER range for heat  pumps with different drive engines  

Heat Pump types(s)  COP PER

Electric ( compression)  2.5-5.0

Engine(compression)  0.8-2.0

Thermal(Absorption)  1.0-1.8

Table 41.2 Technical Characteristics of heat pumps[3] 

System  Delivery 

Temp.,C Heat  acceptance 

temp.,C Temperature 

Lift,C Typical COP 

Electric Compression 

R22  20‐80 ‐20‐40 < 60 3‐5 

R12, R500  30‐95  ‐20‐ 65  <60  3‐5 

Fig.41.6 Coefficient of performance as a function of condensation    temperature for different heat pumps 

Page 9: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

R114  40‐130 10‐96 < 60 2‐4 

Mechanical Vapor comp.  >100  >80  < 50  5‐20 

Thermal vapor comp.  60‐150  45‐120  < 40  1.1 

Absorption  30‐92  5‐42  < 45  1.3 

Heat Transformer  80‐150 58‐110 < 50 0.45‐0.5

The choice between heat pump systems also depends on the working temperatures and on the relative heat loads below and above the pinch.  Absorbed and released heat loads for different heat pumps  When matching heat pumps against the process ( Process GCC), it should be  remembered that the amount of  load   on either the process source side   or the process sink side   can limit the total energy saving, since placement across the pinch is the correct placement of Heat Pump.   For closed‐cycle heat pumps and MVR,  the heat  loads below  the pinch are similar but the heat released above the pinch is slightly greater, due to the energy put in by  the  power  drive.  However,  for  TVR,  the  driver  steam  flow  is much more  than  the vapour sucked  in, and   thus,   the waste heat recovered  is far  less than the heat released above the pinch. The opposite applies for heat transformers, where less than 50% of the waste heat  is usually upgraded. The  shape of  the GCC  therefore  suggests which  system will be most suitable. Fig.41.7 shows the different types of heat pumps fitted to their ideal GCCs. 

Matching GCC  for 

thermo vapor 

compression(TVR) 

Heat in Q2 

Heat out  Q1 

Driver steam,H 

H, kW 

Shifted Temp., TC 

pinch

Matching GCC for 

closed cycle heat 

pump and MVR 

Heat in Q2 

Heat out  Q1 

Drive power, W 

H, kW 

Shifted Temp., TC 

pinch 

(a) (b)

(c)

Fig.41.7 Matching GCC for (a) closed cycle heat pump and MVR (b) TVR  and    (c) Heat transformer 

Matching GCC for 

Heat Transformer 

Heat in Q2 

Heat out  Q1 

H, kW 

Shifted Temp., TC 

pinch

Heat out  W

Page 10: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

     Economics of Heat Pump  Whether  a  heat  pump  is  feasible,    as  far  as  thermodynamics  and  cost  is  concerned, depends on the temperature lift for which it has to be designed as well as cost of heat and power which changes very often.   The power  requirement  is determined by  the Carnot efficiency, as given in Eq.41.7. 

W=Q1

COPP=Q1  

… 41.7  

 Typically, ηmech is 0.5 and so, for a temperature lift of 30°C (from ambient temperature (300 K)), W is about one‐fifth of Q1. Since power typically costs 3–4 times as much as heat energy, the cost savings from upgrading 20 kW of heat are only equivalent to the supply cost of about 4 kW, without even adjusting fixed cost of the equipment to handle 20 kW. At  higher  temperature  lifts,  the  economic  advantage  of  heat  pumping  can  vanish  altogether.    In  some  countries  only MVR  systems  have  regularly  yielded  cost‐effective projects;  the  temperature  lift  is  usually  low,  there  is  no  separate  evaporator  with  its associated pressure drop, and the equipment is simpler and cheaper. TVR has sometimes been economic due  to  its  low capital cost even    for    the  low  ratio of  recovered heat  to steam supplied has been acceptable.  Integration of two GCCs  Two GCCs can be combined  graphically, by taking the GCC of the first process(process‐1) and a mirror  image  ( around vertical axis) of  the GCC of  the  second process(process‐2). The mirror image of the second GCC is then placed to the GCC of first process  and sliding the  first  GCC  it  horizontally  till  it  touches  the  mirror  image  of  the  second  GCC.  The horizontal distance between the two GCCs ( GCC of first and mirror image GCC of second) is  the GCC of  the combined set, and  the pinch  temperature  is  the point where  the  two curves just touch.  This should be noted that this point need not be the pinch of either of the two processes. The   Fig 41.8   shows the above process of creation of combined GCC from two GCCs.  This method can be used to fit any set of processes together and is particularly powerful.           

(a) Combined GCC

Fig.41.8  Mirror image method

H(b) Two GCC 

T

H(c) Mirror image method

T

H

GCC process‐1 

GCC process‐2 

GCC process‐1

Mirror image 

GCC process‐2 

Combined GCC 

of process 1+2 

Page 11: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

       Grand composite curve of a Heat Pump  Fig.41.3  shows  a  closed  cycle  heat  pump.  The  GCC  of  the  heat  pump  is  shown  in  Fig.41.8(a) and its mirror image is shown in Fig.41.8(b). The shape of the curve is governed by  the  laws of  thermodynamics, which  show  that  for a  reversible heat pump operating between  evaporating  and  condensing  temperatures  T2  K  and  T1  K  the  following relationships hold: 

… . 41.8  

 

The COPHP(actual)  = Q1/W = T1/(T1‐T2) as reported in Eq.41.4. Where  lies between 0.5 to 0.7.  The area, ”A” of the triangle formed by the condenser heat line and the temperature lift( T1‐T2) can be given as: 

A = Q1(T1‐T2) = WT1            ….(41.9) This provides an alternative method to find work from graph.                    Using  the mirror  image  technique as discussed above,  the matching of  the GCC of heat pump  to  that  of    process  is  relatively  simple  and  it  illustrated  in  Fig.41.10.  Here  it  is assumed that the temperature difference between the stream and the heat pump fluid is the  same  as  the  temperature  adjustment  of  the  stream.  The mirror  image  heat  pump curve  is  shown  being  fitted  to  the  process GCC,  and  the  combined GCC  (  Fig.41.10(b)) 

T

T1

T2Q2

Q1

(a) Mirror Image

Fig.41.9  Grand composite curve  of heat pump

H

T1 

T2 

Q2(evaporator)

Q1(condenser) 

(b) Heat Pump GCC

Page 12: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

which  is  referred  to as  the  remaining problem grand composite  curve,  is also  shown  in figure.                         It  is  interesting  to note  that  the process GCC has been bracketed by  two pinches at  the condensing  and  evaporating  temperatures  of  the mirrir  image  of  the Heat  Pump GCC. However,  the  shape of  the GCC curve  remains  same above and below  the  temperature range involving the heat pump.  The areas created between the pinch and the evaporating and  condensing  temperatures  theoretically  offers    a  chance  to  generate  work  by transferring  heat from the higher temperature hot stream to the lower temperature cold stream through a heat engine. Though, such a heat engine appears to be    impractical,  it nevertheless  shows that the heat pump has consumed more work than it is necessary in doing  its task. This quantity of work can be reduced by the use of multiple heat pumps in horizontal cascade, as  illustrated in Fig 41.11             

Fig.41.11 Multi stage heat pump and its deployment on GCC 

Condensers

Evaporators

Cold streams 

Hot streams

(a) Multi Stage Heat Pumps(MSHP)

321 Heat Pumps  3

2 1 

1

T

H (b) MSHP on process GCC 

Fig.41.10 Addition of a heat pump to process GCC 

(a) Mirror image method (b) Combined GCC 

T T

H H 

Mirror image GCC of heat pump 

Process GCC 

Page 13: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

                       The  restrictions  on  the  size  of  heat  pump  take  place  when  either  the  maximum temperature  lift  is reached or when the heat pump's mirror  image GCC re‐intersects the process  GCC  as  shown  in  Fig.41.12.  If  this  intersection  is with  the  end  of  the  curve  ( Fig.41.12(a))    then  no  further  heat  pumping  is  possible,  as  any  further  heating  by  the condenser prevents cooling of the high temperature streams, and any further cooling by the evaporator prevents heating of the low temperature streams.  If  the  intersection of  the heat pump GCC  line  is with  some  intermediate portion of  the process GCC as  in Fig41.12(b), then this point, D, becomes a new secondary pinch  in the remaining problem.  For  further heat pumping a heat pump  is  required across both  the primary and secondary pinch, Fig.41.13. For this to be economic the total temperature lift across both heat pumps must be less than 50 K. It is sometimes possible in such  cases, if a unit operation is creating  the secondary pinch, then operating parameters of the process can be so adjusted that the secondary pinch   coincides with the primary pinch and thus one heat pump can be used for both pinches.  

Maximum Economic Lift for a given Heat pump can be given as[ 7]: 

  

. .  

/ … 41.10   

T  T T

H H H

D

Fig.41.12 Re‐intersection of heat pump  Fig.41.13 Two pinch heat pumping(a)  (b)

Primary pinch

Secondary pinch

Page 14: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Where:

TA - temperature at which heat is accepted (K)

TD – temperature at which heat is delivered (K)

CHPE- cost of heat pump evaporator ($ energy-1)

CHPC – cost of heat pump condenser ($ energy-1)

CC – compressor cost ($ energy-1)

C1 – capital cost of the remaining process ($ energy-1)

CHI – heater cost ($ energy-1)

CCOI- cooler cost ($ energy-1)

HI - fraction of heater area that can be reused

COI - fraction of cooler area that can be reused

NT – thermodynamic efficiency

NM – mechanical efficiency

H – hours of operation per year (h yr-1)

P – payback period (yr-1)

QD – heat delivered by the heat pump (thermal energy time-1)

(MV)H – marginal value of the level of thermal energy saved by heat pumping ($ energy-1)

(MV)I – marginal value of the waste thermal energy used by the heat pump ($ energy-1)

(MC)D – marginal cost of the electricity or shaft power ($ energy-1)

The derivation of Eq.41.40 is hown in Appendix-“A”

Page 15: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Appendix-A

Derivation of Eq.41.10

HEAT TRANSFER AREA PENELTY DUE TO HEAT PUMPING

Fig.41.14 shows hot and cold composite curves for the process without placement of any heat pump. However,. Fig.41.15 shows the same process integrated with heat pump.

ACO

A1

A2

AH

Fig.41.14 Hot and cold composite curve before heat pump integration 

Cold composite Hot composite

tem

per

atu

re

Heat duty

∆Tmin

Page 16: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

When the heat pump is placed across the pinch, the hot and cold utility requirement decreases as it clearly seen from the Fig.41.15, but the total heat transfer area of the process consists of the heat exchange area that exchange heat from process to process, utility heater and utility cooler areas.

ACO’

A11 A12

A13

A21

A22

A23

AH’

tem

per

atur

e

heat duty

condenser of heat pump

evaporator of heat pump

Fig.41.15 ‐Hot and cold composite curve after heat pump 

integration 

W

Q1 

Q2 

Condenser temp.(T1)

Evaporator temp.(T2)

Page 17: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

From Fig.41.15 it is clear that after the heat pump placement the hot and cold utility requirement decrease as:

ACO > ACO’

AH > AH’

For simple system with identical heat transfer coefficient, the minimum heat transfer area for ∆Tmin between the hot and cold composite curves is given by :

n

JJT AA

1

Where, n is total number of enthalpy intervals

from Fig.41.14 (before heat pump placement)

target heat exchange area – A1+A2

target heater area - AH

target cooler area - ACO

from Fig.41.15 i.e. after heat pump placement

target heat exchange area – A11+A12+A13+A21+A22+A23

target heater area – AH’

target cooler area – ACO’

from the above figures it is clear that –

AH’ < AH

ACO’ < ACO

And, due to the reduction in the temperature driving force

A11+A12+A13+A21+A22+A23 ≥ A1+A2

So the total increase in the heat exchange area is –

∆A = (A11+A12+A13+A21+A22+A23)-( A1+A2)

∆A can also be written as –

AHPE+AHPC+A1

Where-

Page 18: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

AHPE – heat pump evaporator area

AHPC – heat pump condenser area

A1- change in the interchange area of the remainder of the process

Decrease in the heater area – AH-AH’

Decrease in cooler area – ACO – ACO’

If –

HI - fraction of heater area that can be reused

COI - fraction of cooler area that can be reused

So the net increase in the heat transfer area –

''1 COICOICOIHIHIHIHPCHPE AAAAAAA

So the net increase in the heat transfer area after the heat pump placement is basically the combination of heat pump evaporator area, heat pump condenser area, change in the interchange area of the remainder of the process and the decrease in the amount of hot and cold utility base on the fraction of heater and cooler area.

Page 19: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

DERIVATION OF A GENERAL EQUATION FOR MAXIMUM ECONOMIC LIFT

Equation for the maximum economic lift is:

. .  

/ … 41.10  

PROOF - consider a heat pump operating in a temperature region bounded by the

temperature of a low and a high level utility (i.e. UHDAUI TTTT )with marginal values

(MV)I and (MV)H respectively.

Assuming the mechanical and thermodynamic efficiencies to be NM and NT , respectively, so –

D

A

MT

Da T

TNN

QW 1

(1)

TUH (MV)H

TD

QA

QD

(MV)I

WP

(MC)D

TUI

TA

Fig.41.16 Heat pump in a region bounded by two utility levels

Page 20: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

D

A

T

DP T

TN

QW 1

Where;

Wa – actual work including the mechanical losses

WP – work that does not include the mechanical losses

QD – heat delivered by the heat pump

TA - temperature at which heat is accepted

TD – temperature at which heat is delivered

On rearranging the equation (2) -

D

ADPT T

TQWN 1

T

D

A

D

DT N

T

T

WQ

QN 1

D

DADPT T

TTQWN

D

DA

D

D

D

DT T

TT

WQ

QWQ

QN 1

T

D

A

A

DT N

T

T

Q

QN 1

Expression for AQ -

T

D

A

T

DA N

T

T

N

QQ 1

QA – heat accepted by the heat pump

(3)

(2)

Page 21: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Annual saving at H hours of operation per year for QD units of energy delivered per hour at TD (K) can be expressed as :

Annual saving = value of Uh saved – cost of driver power – value of UI saved

Where –

Uh – high level utility

UI – low level utility

Annual saving = HMCWMVQMVQ DaIAHD

(MV)H –it is the marginal value of the level of thermal energy saved by heat pumping and can be defined as the total cost avoided in reducing by one unit the amount of that level of thermal energy being provided under the operating conditions existing at a given point in time.

(MV)I – it is the marginal value of the waste thermal energy used by the heat pump, and it is positive if there is the demand of thermal energy outside the system

(MC)D –it is the marginal cost of the electricity or shaft power and can be defined as the total additional cost actually incurred in providing the next additional unit of electricity or shaft power under the operating conditions existing at a given point in time.

H – hours of operation per year

Put the value of QA and Wa-

HMT

D NMVNN

HQ

IMDIHMTIMDD

A

MT

D MVNMCMVMVNNMVNMCT

T

NN

HQ

DT

T

NN

HQN

T

T

N

HQMVHQ A

MT

DT

D

A

T

DHD 11

(4)

……(4) 

Page 22: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

If P is the payback period in years. So based on the total increase in the area, the annual capital expenditure can be given as –

PCCCCCC COICOIHIHICHPCHPE /][ 1

Where –

CHPE- cost of heat pump evaporator

CHPC – cost of heat pump condenser

CC – compressor cost

CHI – heater cost

CCOI- cooler cost

On equating equations of annual saving and annual capital expenditure, we can obtain the maximum economic lift –

PCCCCCC COICOIHIHICHPCHPE /][ 1

On rearranging the equation we get the equation for maximum economic lift –

. .  

/  

=

IMDIHMTIMDD

A

MT

D MVNMCMVMVNNMVNMCT

T

NN

HQ

(5)

Page 23: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Illustrative Example ( From Ref.7)

Fig.41.17 illustrates a heat pump operating on a site with two steam levels. It is desired to

find out the minimum economic temperature of heat reception, Tmin for the heat pump

under the following condition :

(a) LP steam can be exported from the process, i.e steam has a positive marginal value.

(b) LP steam cannot be exported from the process, i.e the waste heat from the process

has no demand outside the system and has to be rejected to cooling water.

The data can be given as –

Table 41.3 – data for maximum economic lift calculation Electricity price $51.0 MWh-1

IP steam marginal value $17.0 MWh-1 heat absorbed LP steam marginal value $5.0 MWh-1 heat absorbed Cooling water cost $4.0 MWh-1 heat rejected Capital cost of compressor $400 kW-1 absorbed heat(installed) Capital cost of heat pump exchanger $60 kW-1 absorbed heat(installed) Capital cost of LP raising heat exchanger $30 kW-1 absorbed heat(installed) Capital cost of cooling water cooler $12 kW-1 rejected heat (installed) Hours of operation 8000 h yr-1

Simple payback period 2 yr-1

COP(practical) 0.6 COP(based on working medium temperature)

HP

LP STEAM

HP STEAM 473˚K

PROCESS SINK 463˚K

PROCESS SOURCE

10˚K

QD-WP

QD

WP

393˚K

Figure 41.17 – Maximum economic lift

Page 24: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

Case(a) – data from the table 41.3

(MC)d = 51.0$MWh-1

(MV)h = 17.0$MWh-1

(MV)I = 5.0$MWh-1

NT = 0.6

NM = 1.0

H = 8000h yr-1

TD = 473K

C1 = 0

P = 2 yr

CHPE = CHPC = 60*103(QD/NT)[(TA/TD)-(1-NT)]

CCO = 30*103(QD/NT)[(TA/TD)-(1-NT)]

CC = 400*103(QD/NT)[1-(TA/TD)]

For a heat pump operating in a temperature region bounded by the temperatures of a low and a high level utility with marginal values (MV)I and (MV)h, the general equation for the maximum economic lift can be given as -

. .  

/  

By putting all the values in the above equation and taking = 1, we get –

TA = TMIN = 445.32K

Case(b) – cooling water cost = $4.0 MWh-1 heat rejected (MV)I = -4.0$MWh-1

capital cost of cooling water cooler = $12kW-1 rejected heat (installed), so-

CCO = 12*103(QD/NT)[(TA/TD)-(1-NT)]

So, by putting these values in the above equation we get

TA = TMIN = 417.68K

  

Page 25: Module 06 Lecture 41: Integration of Heat Pump Keynptel.ac.in/courses/103107094/module6/lecture3/lecture3.pdf · Integration of Heat Pump Module ... in such a heat pump system are

Integration of Heat Pump  Module‐06  Lectrure‐41 

References 1. http://www.heatpumpcentre.org/en/aboutheatpumps/howheatpumpsachieveene

rgysavings/Sidor/default.aspx 2. Pongsid Srikhirin , Satha Aphornratana and Supachart Chungpaibulpatana, A 

review of absorption refrigeration technologies, Renewable and Sustainable Energy Reviews, 5 (2001) 343–372   

3. Xiao Feng and Thore Berntssont, Critical Cop For An Economically Feasible Industrial Heat‐Pump Application, Applied Thermal Engineering Vol. 17, No. I. pp. 93‐101, 1997 

4. Robin Smith, “Chemical Process Design”, McGraw Hill, 1995. 5. B. Lynhoff et al., “Process Integration for the Efficient Use of Energy”, Institution of 

Chemical Engineers, 1983. 6. R. BENSTEAD and F.W. SHARMAN, (1990), “HEAT PUMPS AND PINCH 

TECHNOLOGY”, Heat Recovery Systems & CliP, 10, 4, 387‐398. 7. Saidas M. Ranade, (1988), “New insights on optimal integration of heat pumps in 

industrial sites”, Heat Recovery Systems & ClIP Vol. 8, No. 3, 255‐263. 8. Chi‐I  Tuan,  Yi‐Lung  Yeh,  Chi‐Jen  Chen,  Ting‐Chien  Chen, (2011) “Performance   

assessment  with  Pinch  technology  and   integrated   heat  pumps  for vaporized  concentration  processing”,  Journal  of   the   Taiwan  Institute   of   Chemical  Engineers. 

9. K.J. Chua *, S.K. Chou, W.M. Yang, “Advances in heat pump systems: A review”, Applied Energy 87 (2010) 3611–3624