Modul Biomol UIN, Resistance to Antibiotics 2010

download Modul Biomol UIN, Resistance to Antibiotics 2010

of 67

Transcript of Modul Biomol UIN, Resistance to Antibiotics 2010

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    1/67

    Mechanism of action ofAntibiotics, Antivirals

    Antifungals and

    Antimicrobial Resistance

    Budiman Bela

    T. Mirawati Sudiro

    Fera Ibrahim

    Dept. of Microbiology,

    FKUI

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    2/67

    References

    PR Murray et.al. Medical Microbiology, fourth edition,

    Mosby Inc.

    KP Talaro. Foundation in Microbiology, 6th

    ed., 2008 GE Brooks,JS Butel,SA Morse. Jawetz, Melnick and

    Adelbergs Medical Microbiology, ed 24, , Appleton and

    Lange, California. 2004

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    3/67

    Definition

    Antimicrobial resistance:

    the ability of microbes (bacteria, viruses,

    parasites, or fungi) to grow in the presence of

    a chemical (drug) that would normally kill it or

    limit its growth.

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    4/67

    exposure selection expansion

    sensitive population resistant clones outbreak, epidemic, pandemic

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    5/67

    mrsa: a pandemic

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    6/67

    http://www3.niaid.nih.gov/topics/antimicrobialResistance/Understanding/drugResistanceDefinition.htmAccessed March 23, 2009

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    7/67

    Antibacterial Agents

    Red azo dye protosil: 1935

    protection of mice against systemic streptococcal infection curative in patients suffering from the same infection

    Cleavage result in release of p-aminobenzene sulfonamide(sulfonilamide) that possess antibacterial activity 1st sulfadrug

    Compounds produced by microorganisms thatinhibit the growth of other microorganism

    (Antibiotic): Alexander fleming: the mold Penicillium prevented themultiplication of staphylococci

    1940s: Streptomycin

    1950s: Tetracyclines

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    8/67

    Antibacterial Agent

    New antibacterial agents have been

    introduced and have to be continually

    developed due to the remarkable ability of

    bacteria to develop resistance to newly

    introduced agents

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    9/67

    Mode of action and target

    molecules of antibacterial agents

    Inhibition of cell wall synthesis

    Inhibition of nucleic acid synthesis Inhibition of protein synthesis

    Antimetabolites

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    10/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    11/67

    50

    30

    50

    30

    50

    30

    Antimetabolites

    -Sulfonamides-Dapsone

    -Trimethoprim

    -Para-aminosalicylic acidProtein synthesis

    (30S ribosome)

    -Aminoglycosides

    -Tetracyclines

    -Oxazolidinone

    Protein synthesis

    (50S ribosome)

    -Chloramphenicol-Macrolides

    -Clindamycin

    -Streptogramins

    RNA Synthesis

    -Rifampin

    -Rifabutin

    DNA Replication

    -Quinolones

    -Metronidazole

    Cell Wall Synthesis

    -Beta-lactams

    -Vancomycin

    -Isoniazid

    -Ethambutol

    -Cycloserine

    -Ethionamide

    -Bacitracin

    -PolymyxinDNA

    Ribosomes

    !

    !

    !

    !

    !

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    12/67

    Basic Mechanisms of Antibiotic Action

    Antibiotic Action

    Disruption of Cell Wall

    Penicillin

    Cephalosporin

    Cephamycin

    Carbapenem

    Monobactam

    F-lactamase inhibitor/ F-lactam

    Vancomycin Isoniazid

    Ethionamide

    Ethambutol

    Cycloserine

    Polymyxin

    Bacitracin

    Binds PBPs and enzymes responsible for peptidoglycan synthesis

    Binds PBPs and enzymes responsible for peptidoglycan synthesis

    Binds PBPs and enzymes responsible for peptidoglycan synthesis

    Binds PBPs and enzymes responsible for peptidoglycan synthesis

    Binds PBPs and enzymes responsible for peptidoglycan synthesis

    Binds F-lactamases and prevents enzymatic inactivation ofF-lactam

    Inhibits cross-linkage of peptidoglycan layersInhibits mycolic acid synthesis

    Inhibits mycolic acid synthesis

    Inhibits arabinogalactan synthesis

    Inhibits cross-linkage of peptidoglycan layers

    Inhibits bacterial membranes

    Inhibits bacterial cytoplasmic membrane and movement of peptidoglycan precursors

    Inhibition of Protein Synthesis

    Aminoglycoside

    Tetracycline

    Oxazolidinone

    Macrolide

    Clindamycin

    Streptogramins

    Produces premature release of aberrant peptide chains from 30S ribosome

    Prevents polypeptide elongation at 30S ribosome

    Prevents initiation of protein synthesis at 30S ribosome

    Prevents polypeptide elongation at 50S ribosome

    Prevents polypeptide elongation at 50S ribosome

    Prevents polypeptide elongation at 50S ribosome

    !

    !

    !

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    13/67

    Basic Mechanisms of Antibiotic Action

    Antibiotic Action

    Inhibition of Nucleic Acid Synthesis

    Quinolone

    Rifampin Rifabutin

    Metronidazole

    Binds E subunit ofDNA gyrase

    Prevents transcription by binding DNA-dependent RNA polymerasePrevents transcription by binding DNA-dependent RNA polymerase

    Disrupts bacteria DNA (is cytotoxic compound)

    Antimetabolite

    Sulfonamides

    Dapsone

    Trimethoprim

    Inhibit dihydropteroate synthase and disrupt folic acid synthesis

    Inhibits dihydropteroate synthase

    Inhibits dihydrofolate reductase and disrupts folic acid synthesis

    !!

    !

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    14/67

    Mechanisms of resistance

    Intrinsic resistance (chromosomal)

    Acquired resistance

    Gain of function properties new enzymatic activity

    phosphorylation, acetylation, pump, etc.

    Mutation to existing proteins

    alteration of ribosome subunits, cell wallpermeability, etc.

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    15/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    16/67

    Inhibition of Cell Wall Synthesis

    Interference with bacterial cell wall

    synthesis

    The most common mechanism of antibiotic F-lactam antibiotics:

    Constitute the majority of cell wall-active

    antibiotics

    Penicilins, Chepalosporins, Cephamycins,

    Carbapenems, Monobactams, F-lactamase

    inhibitors

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    17/67

    Inhibition of Cell Wall Synthesis

    Other antibiotics that interfere with

    bacterial cell wall synthesis

    Vancomycin: Bacitracin

    Antimycobacterial agents:

    Isoniazid

    Ethambutol

    Cycloserine

    Ethionamide

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    18/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    19/67

    Inhibition of Cell Wall Synthesis by

    Beta Lactam Antibiotics Peptidoglycan layer: Major structural component of bacterial cell

    walls

    Basic structure: A chain of 10 to 65 disaccharide residues

    consisting of alternating molecules of: N-acetylglucosamine and

    N-acetylmuramic acid

    Chains of disaccharide residues are cross-linked with peptide bridges rigid meshcoating for bacteria

    !

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    20/67

    http://en.wikipedia.org/wiki/File:Gram-positive_cellwall-schematic.png

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    21/67

    Inhibition of Cell Wall Synthesis by Beta Lactam Antibiotics

    Penicillin-binding proteins (PBPs): Specific enzymes that build the peptidoglycan layer of

    bacterial cell wall and can be bound by F-lactamantibiotics:

    Transpeptidases

    Carboxypeptidases

    Endopeptidases

    F-lactam antibiotics generally act as bactericidal

    agents: Exposure of growing bacteria to F-lactam antibiotics bindingwith PBPs in the growing bacterial cell wall inhibition ofsynthesis but not turnover (degradation) of peptidoglycan bacterial cell death

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    22/67

    Mechanisms of Bacterial Resistance

    towards Beta Lactam Antibiotics

    1. Prevention of interaction between

    antibiotic and target PBP:

    2.D

    ecreased binding of antibiotic to PBP3. Hydrolysis of antibiotic by F-lactamases

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    23/67

    1. Prevention of interaction between antibiotic and

    target PBP: Only seen in gram negative bacteria (particularly

    Pseudomonas species): Posession of outer membrane that overlies the

    peptidoglycan layer

    Penetration of F-lactam antibiotics into gram-

    negative bacilli requires transit through the outer

    membrane pores: Changes in the outer membrane pore proteins

    (porins) alteration of the size or charge of the

    porin channel exclusion of the antibiotic

    Mechanisms of Bacterial Resistance towards Beta Lactam Antibiotics

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    24/67

    Mechanisms of Bacterial Resistance towards Beta Lactam Antibiotics

    2. Decreased binding of antibiotic to PBP:

    Formation of modified PBP that fails to bind

    to F-lactam antibiotics but contributes to the

    synthesis of the peptidoglycan layer

    Origin of modified PBP:

    Mutation in the PBP gene:

    Streptococcus pneumoniae resistant to penicillins

    Acquisition of a new PBP:

    introduction ofEscherichia coliPBP into

    Staphylococcus aureus confers resistance to oxacillin

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    25/67

    Mechanisms of Bacterial Resistance towards Beta Lactam Antibiotics

    3. Hydrolysis of antibiotic by F-lactamases:

    Inactivation ofF-lactam antibiotics

    There are 200 different F-lactamases: Specific for penicilins: penicilinases

    Specific for cephalosporins: cephalosporinases

    Broad range of activity: capable of inactivating most F-lactam antibiotics

    Extended-spectrumF-lactamases (ESBLs): Commonly encoded on plasmids can be

    transferred from organism to organism : Causingmuch difficulties and severely limit the empirical useofF-lactam antibiotics in some hospitals

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    26/67

    Mechanisms of Methicillin

    Resistance The staphylococcal beta-lactamase protein, which

    cleaves the beta-lactam ring structure, confersresistance to penicillin but not to semi-syntheticpenicillins such as:

    methicillin, oxacillin, or cloxacillin. Acquisition of the mecA gene, which codes for thepenicillin binding protein PBP2a, complete resistance toall beta-lactam antibiotics including the semisyntheticpenicillins.

    PBP2a has a very low affinity for beta-lactam antibiotics,and is thought to aid cell wall assembly when the normalPBPs are inactivated.

    The mecA gene is found on a large mobile geneticelement called the staphylococcal chromosomalcassette mec (SCCmec).

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    27/67

    Glycopeptides

    A complex glycopeptide that disrupts cell wallpeptidoglycan synthesis in growing gram-positivebacteria

    Interacts with D-alanine-D-alanine termini of the

    pentapeptide side chainsinterferes sterically with theformation of the bridges between the peptidoglycan

    chains

    Used for the management of infections caused byoxacillin-resistant staphylococci and other gram-positive bacteria resistant to F-lactam antibiotics

    Inactive against gram-negative bacteria: Molecule is too large to pass through the outer membrane and

    reach the peptidoglycan target site

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    28/67

    Glycopeptides

    Intrinsic resistance to Vancomycin:

    Due to pentapeptide termination in D-

    alanine-D-lactate does not bind

    vancomycin:

    Leuconostoc, Lactobacillus, Pediococcus and

    Erysipelothrix

    D-alanine-D-serine termination of

    peptapeptide:

    Enterococcus gallinarum, Enterococcus

    casseliflavus

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    29/67

    Glycopeptides

    Acquired resistance to Vancomycin:

    Plasmid mediated

    Enterococcus faecium and Enterococcus faecalis

    A potential threat to the usefulness of vancomycinfor the treatment of enterococcal infections

    There is a concern that if these genes are

    transferred to staphylocci (proven by lab

    experiments) highly resistant and virulentorganism will emerge: Vancomycin resistant

    Methicillin resistant Staphylococcus aureus

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    30/67

    Polypeptides

    Bacitracin:

    Mixture of polypeptides

    Inhibits cell wall synthesis by interfering with

    dephosphorylation and the recycling of the lipidcarrier responsible for moving the peptidoglycan

    precursors through the cytoplasmic membrane to

    the cell wall

    Also damage the bacterial cytoplasmic membraneand inhibit RNA transcription

    Resistance:

    Failure of the antibiotic to penetrate into the bacterial cell

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    31/67

    Polypeptides

    Polymixins:

    Cyclic polypeptides

    Inserted into bacterial membranes by interactingwith lipopolysaccharides and the phospholipids inthe outer membrane increased cell permeability cell death

    Most active against gram-negative bacilli sincegram-positive bacteria do not have

    an outer membrane

    Example:

    Polymyxin B and E (colistin)

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    32/67

    Isoniazid, Ethionamide, Ethambutol

    and Cycloserine

    Cell wall-active antibiotics for treatment

    of mycobacterial infections

    Isoniazid (INH): Affect the synthesis of mycolic acid

    Disruption of:

    The desaturation of the long-chain fatty acids

    The elongation of fatty acids and hydroxy lipids

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    33/67

    Isoniazid, Ethionamide, Ethambutol and Cycloserine

    Ethionamide:

    Derivative of Isoniazid

    Blocks mycolic acid synthesis

    Ethambutol: Interferes with the synthesis of arabinogalactan in

    the cell wall

    Cycloserine:

    Inhibition ofD-alanine-Dalanine synthetase and

    alanine racemase that catalyze cell wall synthesis

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    34/67

    Inhibition of Protein Synthesis

    Aminoglycosides:

    Example: Streptomycin, neomycin, kanamycin, tobramycin

    Amikacin : synthetic derivatives of kanamycin Netilmicin: synthetic derivatives of sisomycin

    Able to pass through: Bacterial outer membrane (in gram-negative

    bacteria) Cell wall

    Cytoplasmic membrane

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    35/67

    Inhibition of Protein Synthesis

    Aminoglycosides:

    Active site:

    Cytoplasm

    Binds to the 30S ribosomal proteins

    Attachment to the ribosomes has two effects:

    Production of aberrant proteins as the result of

    misreading of the messenger RNA (mRNA)

    Interruption of protein synthesis by causing thepremature release of the ribosome from mRNA

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    36/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    37/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    38/67

    Inhibition of Protein Synthesis

    Aminoglycosides:

    Resistance (3 ways):

    Mutation of the ribosomal binding site:

    Relatively uncommon Occurs in the genus Enterococcus

    Decreased uptake of the antibiotic into the bacterial cell:

    Observed in Pseudomonas

    More commonly seen with anaerobic bacteria

    Enzymatic modification of the antibiotic: Modification occurs through: phosphorylation, adenylation and

    acetylation of the amino and hydroxyl groups of the antibiotic

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    39/67

    Inhibition of Protein Synthesis Tetracyclines

    Broad spectrum, bacteriostatic antibiotics

    Binding reversible to the 30S ribosomal subunits Blocking the binding of aminoacyl-transfer RNA

    (tRNA) to the 30S ribosome-mRNA complex Resistance:

    Decreased penetration of the antibiotic into the bacterial cell:

    Mutations in the chromosomal gene encoding the outermembrane porin protein OmpfF low level resistance tothe tetracyclines as well as to other antibiotics (e.g. beta-lactams, quinolones, chloramphenicol)

    Active efflux of the antibiotic out of the cell:

    A variety of genes in different bacteria control the activeefflux of the tetracyclines from the cell

    The most common cause of resistance Alteration of the ribosomal target site:

    Production of proteins similar to elongation factors thatprotect the 30S ribosome antibiotic can still bind to theribosome but protein synthesis is not disrupted

    Enzymatic modification of the antibiotic

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    40/67

    Inhibition of Protein Synthesis

    Oxazolidones

    Representative: Linezolid

    Narrow-spectrum class of an antibiotics that block

    initiation of protein synthesis by interfering with theformation of the initiation complex at the 30S

    ribosomal subunit cross-resistance with other

    protein inhibitors does not occur can be used for

    treatment of bacterial strains (Staphylococci,

    streptococci and enterococci) that are resistant to

    penicillins, vancomycin and the aminoglycosides

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    41/67

    Inhibition of Protein Synthesis

    Chloramphenicol Also disrupts protein synthesis in the human bone

    marrow cells and can produce blood dyscrasias

    Binding reversibly to the peptidyl transferasecomponent of the 50S ribosomal subunit blockingpeptide elongation

    Resistance: Plasmid-encoded chloramphenicol acetyltransferase

    catalyze the acetylation of the 3-hydroxy group ofchloramphenicol incapable of binding to the 50S subunit

    Chromosomal mutations (less common) alter the outermembrane porin proteins gram-negative bacilli becomeless permeable

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    42/67

    Inhibition of Protein Synthesis

    Macrolides

    Bacteriostatic

    Basic structure:

    Macrocyclic lactone ring bound to two sugars

    Reversible binding to the 50S ribosome blockage of

    polypeptide elongation

    Resistance:

    Methylation of the 23S ribosomal RNA prevents binding bythe antibiotic

    Destruction of the lactone ring by erythromycin esterase

    Active efflux of the antibiotic from the bacterial cell

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    43/67

    Inhibition of Protein Synthesis

    Clindamycin:

    Blocks protein elongation by binding to the

    50S ribosome

    Inhibits peptidyl transferase by interfering with

    the binding of the amino acid-acyl-tRNA

    complex

    Resistance: Methylation of the 23S ribosomal RNA

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    44/67

    Inhibition of Nucleic Acid Synthesis

    Quinolones

    Synthetic chemotherapeutic agents

    Inhibition of enzymes required forDNA

    replication, recombination and repair: DNA gyrases or topoisomerases:

    Resistance (chromosomally mediated), 2mechanisms:

    Alteration of alfa subunit ofDNA gyrase Decreased drug uptake:

    Changes in porin proteins on the bacterial surface

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    45/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    46/67

    Some bacteria Interact of with each other to form a stickyweb of bacteria and polysaccharides called a biofilm, whichadheres to a surface within a host (example: dental plaque,on catether, pacemakers, intravenous devices, etc)

    Bacteria in infectious biofilm tend to be 100x more drugresistant to free bacteria caused by:

    -Microbes are protected by the thick impenetrable nature of

    extracellular matrix

    - bacteria slow their growth and less active

    - microbes communicate in mass regulation of certainresistance mechanisme, e.g. drug pump.

    Biofilm

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    47/67

    Budiman Bela, T. Mirawati Sudiro, Fera Ibrahim

    INHIBITION OF VIRAL REPLICATION

    BY ANTIVIRAL AGENTS

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    48/67

    The progress in development of antiviral chemotherapyThe progress in development of antiviral chemotherapy

    is much slower than that of antibacterial drugsis much slower than that of antibacterial drugs

    Viruses are obligate intracelluler parasitesViruses are obligate intracelluler parasites VirusesViruses

    use the host cells biosynthetic machinery and enzymesuse the host cells biosynthetic machinery and enzymes

    -------- it is more difficult to inhibit viral replicationit is more difficult to inhibit viral replication

    without any toxicity to the host cellswithout any toxicity to the host cells

    INTRODUCTIONINTRODUCTION

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    49/67

    INTRODUCTIONINTRODUCTION

    Early antiviral drugs: targeted cells with extensiveEarly antiviral drugs: targeted cells with extensiveDNA and RNA synthesisDNA and RNA synthesis

    Newer antiviral drugs are targeted toward :Newer antiviral drugs are targeted toward :

    -- viralviral--encoded enzymesencoded enzymes-- Structures of the virus that are important forStructures of the virus that are important for

    replicationreplication

    The activity of antiviral drugs is generally limited toThe activity of antiviral drugs is generally limited to

    specific families of viruses:specific families of viruses:

    Example:Example:

    anti reverse transcriptase for therapy of HIVanti reverse transcriptase for therapy of HIV

    infectioninfection

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    50/67

    INTRODUCTIONINTRODUCTION

    Resistance to antiviral drugs:Resistance to antiviral drugs:

    is becoming more problematic due to theis becoming more problematic due to the

    higher rate of longhigher rate of long--term treatment of someterm treatment of some

    patientspatientsExample:Example:

    resistance toward antiretroviral drugs inresistance toward antiretroviral drugs in

    people with AIDSpeople with AIDS

    injudicious use of oseltamivir (Tamiflu)injudicious use of oseltamivir (Tamiflu)may induce resistance of H5N1 influenzamay induce resistance of H5N1 influenza

    virus towards the drugvirus towards the drug

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    51/67

    Viral protein synthesis as antiviral target ???Viral protein synthesis as antiviral target ???

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    52/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    53/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    54/67

    SintesisSintesis protein virusprotein virus sebagaisebagai target antiviral ?target antiviral ?

    SasaranSasaran antivirus yangantivirus yang kurangkurang baikbaikSEBABSEBABtidaktidak memungkinkanmemungkinkan inhibisiinhibisi selektifselektif terhadapterhadap

    sintesissintesis protein virus (protein virus (replikasireplikasi virusvirus memanfaatkanmemanfaatkan

    ribosomribosom dandan mekanismemekanisme sintesissintesis selsel pejamupejamu))

    !

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    55/67

    e.g.

    - Inactivation of protein that activates antiviral

    drugs in the cells. E.g. thymidine kinase

    - Change in drug target

    e.g. : reverse transcriptase, protease, GP41

    Mechanism of antiviral resistance

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    56/67

    Nucleoside analog can do selective inhibition, because:Nucleoside analog can do selective inhibition, because:1. It binds vial DNA polymerase better than cellular1. It binds vial DNA polymerase better than cellular

    DNA polymeraseDNA polymerase

    2. DNA synthesis in infected cells is faster than non2. DNA synthesis in infected cells is faster than non--

    infected cellsinfected cells

    NucleosideAnalogNucleosideAnalog

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    57/67

    Analog nukleosidaAnalog nukleosida

    Acyclovir, Valacyclovir, Penciclovir dan Famciclovir:Acyclovir, Valacyclovir, Penciclovir dan Famciclovir:-- Memiliki rantai samping asiklik (bukan gula ribosa atau deoksiribosa)Memiliki rantai samping asiklik (bukan gula ribosa atau deoksiribosa)

    -- Bersifat selektif terhadapBersifat selektif terhadap HSVHSV (virus herpes simpleks) atau(virus herpes simpleks) atau VZVVZV (virus(virusvaricella zoster),varicella zoster), karenakarena kedua virus herpes tersebut menyandikedua virus herpes tersebut menyandi kinasekinase

    timidintimidin-- Kinase timidin virus mengaktivasi obat melalui fosforilasi (inisiasiKinase timidin virus mengaktivasi obat melalui fosforilasi (inisiasi

    fosforilasi)fosforilasi)

    enzimenzim--enzimenzim sel pejamu melanjutkan proses pembentukan menjadisel pejamu melanjutkan proses pembentukan menjadibentuk difosfat kemudian ke bentuk trifosfatbentuk difosfat kemudian ke bentuk trifosfat

    -- Pada sel tidak terinfeksi obat ini terdapat dalam bentuk tidak aktif karenaPada sel tidak terinfeksi obat ini terdapat dalam bentuk tidak aktif karena

    tidak terjadi inisiasi fosforilasitidak terjadi inisiasi fosforilasi

    -- Bentuk trifosfat berkompetisi dengan guanosin trifosfat:Bentuk trifosfat berkompetisi dengan guanosin trifosfat:

    -- menghambat polimerasamenghambat polimerasa-- terminasi perpanjangan rantai DNA virusterminasi perpanjangan rantai DNA virus

    -- Digunakan 100x lebih banyak oleh DNA polimerasa virus dibanding olehDigunakan 100x lebih banyak oleh DNA polimerasa virus dibanding oleh

    DNA polimerasa selDNA polimerasa sel

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    58/67

    Analog nukleosidaAnalog nukleosida

    Ganciclovir:Ganciclovir:

    -- Aktif terhadapAktif terhadap CMVCMV

    -- CMV tidak menyandi kinase timidin, tetapi dapat melakukanCMV tidak menyandi kinase timidin, tetapi dapat melakukan

    fosforilasifosforilasi GCV olehGCV oleh suatu kinase protein yang disandisuatu kinase protein yang disandi

    oleh virus inioleh virus ini-- Digunakan 30x lebih banyak oleh DNA polimerasa virusDigunakan 30x lebih banyak oleh DNA polimerasa virus

    dibanding oleh DNA polimerasa seldibanding oleh DNA polimerasa sel

    -- Digunakan dalamDigunakan dalam terapi antitumor dengan terapi genterapi antitumor dengan terapi gen

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    59/67

    NONNUCLEOSIDE

    REVERSETRANCRIPTASEINHIBITORS

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    60/67

    Targets of anti-HIVdrugs

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    61/67

    ANTI VIRAL THERAPYANTI VIRAL THERAPY

    NUCLEOSIDEANALOGNUCLEOSIDEANALOGAcyclovir (Acycloguanosine)Acyclovir (Acycloguanosine)

    Lamivudine (3TC)Lamivudine (3TC)

    RibavirinRibavirin

    Vidarabine (Adenine arabinoside)Vidarabine (Adenine arabinoside)

    Zidovudine (Azidothymidine =AZT)Zidovudine (Azidothymidine =AZT)

    NUCLEOTIDEANALOGNUCLEOTIDEANALOG

    Cidofovir (HPMPC)Cidofovir (HPMPC)

    NONNUCLEOSIDEREVERSETRANSCRIPTASEINHIBITORSNONNUCLEOSIDEREVERSETRANSCRIPTASEINHIBITORS

    NevirapineNevirapine

    PROTEASEINHIBITORSPROTEASEINHIBITORS

    SaquinavirSaquinavir

    IndinavirIndinavir

    RitonavirRitonavir

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    62/67

    AMANTADINE & RIMANTADINEAMANTADINE & RIMANTADINE

    inhibit viral uncoatinginhibit viral uncoating InfluenzaA virus, profilaksisInfluenzaA virus, profilaksis

    FOSCARNET (Phosphonoformic acid = PFA)FOSCARNET (Phosphonoformic acid = PFA)

    inhibits viral DNA polymerase and reverse transcriptaseinhibits viral DNA polymerase and reverse transcriptase

    METHISA

    ZONEMETHISA

    ZONE

    inhibits final step in viral replicationinhibits final step in viral replication immature viralimmature viral

    particleparticle, non infectious (poxvirus), non infectious (poxvirus)

    OSELTAMIFIR (Tamiflu)OSELTAMIFIR (Tamiflu)

    inhibits neuraminidase of influenza virusinhibits neuraminidase of influenza virus inhibitsinhibits

    buddingbuddingFUZEONFUZEON

    inhibits attachment ofGP41 HIV to cellular receptorinhibits attachment ofGP41 HIV to cellular receptor

    OTHER TYPES OF ANTIVIRAL DRUGSOTHER TYPES OF ANTIVIRAL DRUGS

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    63/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    64/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    65/67

    INTERFERONINTERFERON

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    66/67

  • 8/8/2019 Modul Biomol UIN, Resistance to Antibiotics 2010

    67/67