Modelling RC masonry infilled frames under earthquake loading:...

10
Modelling RC masonry infilled frames under earthquake loading: from accurate micro-models to simplified macro-models. Student name: Hossameldeen Mohamed Ahmed Supervisor: Prof. Xavier Romão 2016

Transcript of Modelling RC masonry infilled frames under earthquake loading:...

  • Modelling RC masonry infilled frames under

    earthquake loading: from accurate micro-models

    to simplified macro-models.

    Student name:

    Hossameldeen Mohamed Ahmed

    Supervisor:

    Prof. Xavier Romão

    2016

  • PhD 2016 | 2

    2016 CONSTRUCT PhD Workshop

    b) Infill shear and major frame damages,

    Chania 2008 a) Infill shear and minor frame damages,

    Nepal 2015

    c) A collapsed soft storey apartment

    building in the Marina District, San

    Francisco 1989 (Loma Prieta Earthquake)

    d) Damage to an apartment building with

    a soft first storey in Bordj-Kiffan city,

    Algeria 2003

    Motivation and objectives

    • Based on the observations of several recent earthquakes, the vulnerability of the

    masonry-infilled RC frames is clear.

  • PhD 2016 | 3

    2016 CONSTRUCT PhD Workshop

    • Based on the observations of several recent earthquakes, the vulnerability of the

    masonry-infilled RC frames is clear.

    • In order to assess the structural contribution of the infill panel to the structural

    behaviour, a realistic model for the infill panel is urgently needed.

    Tasks

    • Define the best model to simulate the behaviour of masonry-infilled RC structures.

    o A comprehensive review of existing macro-models (single strut model)

    o Numerical calibration of the proposed models’ parameters (based on

    stiffness or strength characteristics)

    o Experimental calibration of the proposed models’ parameters

    o Micro-modelling approach as a proxy for the experimental data

    Motivation and objectives

  • PhD 2016 | 4

    2016 CONSTRUCT PhD Workshop

    A comprehensive review of the existing macro-models (strut model)

    • Polyakov’s experimental observation on the late 1950s

    Infill panel works as a bracing for the RC frame

    • Several attempts have been carried out to define the configuration and

    structural parameters of this equivalent element.

    Various examples of strut models

  • PhD 2016 | 5

    2016 CONSTRUCT PhD Workshop

    A comprehensive review of the existing macro-models (strut model)

    • Polyakov’s experimental observation on the late 1950s

    • Several attempts have been carried out to define the configuration and

    structural parameters of this equivalent element.

    • Using a single strut element provides a simplified and efficient way to

    represent the effect of the infill panel on the structural behaviour of the building

    o Based on the literature, the calibration of the single strut model could

    be done through main approach:

    Stiffness approach.

    Area of strut (several formulas are found)

    Constitutive model for the equivalent material.(based on the masonry compressive strength fm)

    Strength approach

    Force-displacement backbone curve.

    Calibration of the single strut model

    d

    whwh

    Lw

    L

  • PhD 2016 | 6

    2016 CONSTRUCT PhD Workshop

    Stiffness approach.

    0

    10

    20

    30

    40

    50

    60

    Yie

    ld f

    orc

    eth

    eore

    tical

    /Yie

    ld f

    orc

    eexperim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Holmes 1961

    Mainstone 1971

    Te-chang et al, 1984

    Decanini et al.1987

    Moghaddam et al. 1988

    Hendry 1990

    Paulay ,et al. 1992

    Durrani and Luo, 1994

    0

    10

    20

    30

    40

    50

    60

    Max.

    forc

    e theore

    tical

    /Max.

    forc

    e experim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Holmes 1961

    Mainstone 1971

    Te-chang et al, 1984

    Decanini et al.1987

    Moghaddam et al. 1988

    Hendry 1990

    Paulay ,et al. 1992

    Durrani and Luo, 1994

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Km

    (experim

    enta

    l)/K

    m (

    experim

    enta

    l)

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Holmes 1961

    Mainstone 1971

    Te-chang et al, 1984

    Decanini et al.1987

    Moghaddam et al. 1988

    Hendry 1990

    Paulay ,et al. 1992

    Durrani and Luo, 1994

    0

    1

    2

    3

    4

    5

    6

    7

    K1th

    eore

    tical

    /K1experim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Holmes 1961

    Mainstone 1971

    Te-chang et al, 1984

    Decanini et al.1987

    Moghaddam et al. 1988

    Hendry 1990

    Paulay ,et al. 1992

    Durrani and Luo, 1994

    • 8 different formulas were used to evaluate the width of the strut

    for 15 fully infilled specimens from 10 experimental campaigns

  • PhD 2016 | 7

    2016 CONSTRUCT PhD Workshop

    Strength approach.

    • 3 different formulas were used to evaluate the force-displacement curve

    of the strut for 15 fully infilled specimens from 10 experimental campaigns

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Max.

    forc

    e theore

    tical

    /Max.

    forc

    e experim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Dolšek, et al. (2008)

    Panagiotakos, et al. (1996)

    Bertoldi, et al. (1993)

    0

    10

    20

    30

    40

    50

    Km

    (experim

    enta

    l)/K

    m (

    experim

    enta

    l)

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Dolšek, et al. (2008)

    Panagiotakos, et al. (1996)

    Bertoldi, et al. (1993)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Yie

    ld f

    orc

    eth

    eore

    tical

    /Yie

    ld f

    orc

    eexperim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Dolšek, et al. (2008)

    Panagiotakos, et al. (1996)

    Bertoldi, et al. (1993)

    0

    5

    10

    15

    20

    25

    K1th

    eore

    tical

    /K1experim

    enta

    l

    Spec

    imen

    III/2

    Spec

    imen

    S

    Spe

    cimen

    F t1

    Spec

    imen

    M2

    Spec

    imen

    DFS

    Spec

    imen

    F 1

    Spec

    imen

    6

    Spec

    imen

    7

    Spec

    imen

    5

    Spec

    imen

    11

    Spec

    imen

    12

    Spec

    imen

    4

    Spec

    imen

    SBF

    Spec

    imen

    IS

    Spec

    imen

    unit 1

    Dolšek, et al. (2008)

    Panagiotakos, et al. (1996)

    Bertoldi, et al. (1993)

  • PhD 2016 | 8

    2016 CONSTRUCT PhD Workshop

    Experimentally-based calibration

    • Force-displacement curve is defined

    • Several formulas are used to estimate the area of the strut.

    • Based on the max. force and the numerical area of the strut obtained, a fictitious strength is

    calculated. This strength defines the material of the strut instead of the real masonry material.

    Fully infilled specimens

    - specimen M2

    - specimen S

    Partially infilled specimens

    - specimen DO2

    - specimen DX1

    - specimen WO2

    - specimen WX1

    -6 -4 -2 0 2 4 6-150-75

    075

    150Holmes 1961

    -6 -4 -2 0 2 4 6-150-75

    075

    150Mainstone 1971

    -6 -4 -2 0 2 4 6-150-75

    075

    150

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -6 -4 -2 0 2 4 6-150-75

    075

    150Decanini et al.1987

    -6 -4 -2 0 2 4 6-150-75

    075

    150Mohghaddam et al. 1988

    -6 -4 -2 0 2 4 6-150-75

    075

    150Hendry 1990

    -6 -4 -2 0 2 4 6-150-75

    075

    150

    Drift (%)

    Paulay,et al. 1992

    -6 -4 -2 0 2 4 6-150-75

    075

    150Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

  • PhD 2016 | 9

    2016 CONSTRUCT PhD Workshop

    Micro-modelling approach as a proxy for the experimental data

    • The micro-modelling approach is as an effective tool to simulate the behaviour

    masonry-infilled RC structures when experimental data is not available.

    • Based on predefined and checked detailed micro-models, the structural parameters of

    the strut were calibrated again.

    Fully infilled specimens

    - specimen M2

    - specimen S

    Partially infilled specimens

    - specimen DO2

    - specimen DX1

    - specimen WO2

    - specimen WX1

    -6 -4 -2 0 2 4 6-150-75

    075

    150Holmes 1961

    -6 -4 -2 0 2 4 6-150-75

    075

    150Mainstone 1971

    -6 -4 -2 0 2 4 6-150-75

    075

    150

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -6 -4 -2 0 2 4 6-150-75

    075

    150Decanini et al.1987

    -6 -4 -2 0 2 4 6-150-75

    075

    150Mohghaddam et al. 1988

    -6 -4 -2 0 2 4 6-150-75

    075

    150Hendry 1990

    -6 -4 -2 0 2 4 6-150-75

    075

    150

    Drift (%)

    Paulay,et al. 1992

    -6 -4 -2 0 2 4 6-150-75

    075

    150Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Holmes 1961

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mainstone 1971

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Base S

    hear

    (kN

    ) Te-chang et al, 1984

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Decanini et al.1987

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Mohghaddam et al. 1988

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Hendry 1990

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120

    Drift (%)

    Paulay,et al. 1992

    -4 -3 -2 -1 0 1 2 3 4-120-60

    060

    120Durrani and Luo, 1994

    Drift (%)

    Numerical model Experimental Data

  • Conclusions

    • The structural behaviour of the infill panel in masonry-infilled RC

    structures can be presented by a single strut model.

    • Calibration of the strut model parameters based on the strength

    approach is more realistic when compared with the stiffness approach

    • The experimentally-based calibration of the strut model parameters

    minimizes the error in structural response when compared to strength or

    stiffness approaches (which may lead to very large errors).

    • The use of a micro-modelling approach as a proxy to the experimental

    data to calibrate the strut parameters is able to represent the real

    behaviour of the infill panel with a reasonable errors (the error of the

    estimated initial stiffness and maximum force is less than 20%).