Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 ·...

35
GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. P. De Gregorio “RareNoise”: L. Conti, M. Bonaldi, L. Rondoni ERC-IDEAS: www.rarenoise.lnl.infn.it Nonequilibrium Processes: The Last 40 Years and the Future Obergurgl, Tirol, Austria, 29 August - 2 September 2011 De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Transcript of Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 ·...

Page 1: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors

Modelling nonequilibrium macroscopicoscillators of interest to experimentalists.

P. De Gregorio“RareNoise”: L. Conti, M. Bonaldi, L. Rondoni

ERC-IDEAS: www.rarenoise.lnl.infn.it

Nonequilibrium Processes:The Last 40 Years and the Future

Obergurgl, Tirol, Austria, 29 August - 2 September 2011

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 2: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors

Modelling nonequilibrium macroscopicoscillators of interest to experimentalists.

P. De Gregorio“RareNoise”: L. Conti, M. Bonaldi, L. Rondoni

ERC-IDEAS: www.rarenoise.lnl.infn.it

In celebration of Prof. Denis J. Evans’ 60th birthday

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 3: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

GW detectors and fluctuations

Ground-based Detectors

Often, can ‘hear’ their own thermal fluctuations.

Expected to approach the quantum limit in the future.

Nonequilibrium stationary states and noise

Past studies had assumed the noise be Gaussian.However the experimentalists’ interest is in the tails of thedistributions. There, they may be not.

Then the question

We detect a rare burst. Is it of an external source? Or falsepositive due to rare nonequilibrium (and non-Gaussian)fluctuations? Knowledge correct statistics is indispensable.

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 4: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

The idea behind the RareNoise project

The experiment

A heated mass is appended to a high Q rod, generating acurrent. Few modes of oscillation are monitored.

Experiment performed under tunable and controllablethermodynamic conditions.

As has been described in L. Conti’s presentation and M. Bonaldi’s poster.

For a nice outline of the experiment see: Conti, Bonaldi, Rondoni, Class. Quantum Grav. 27, 084032 (2010)

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 5: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Thermal gradients are present in actual GW detectors

LCGT Project. From: T. Tomaru et al., Phys. Lett. A 301, 215 (2002)

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 6: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Another experimental context - AURIGA

The AURIGA experiment

INFN Padova - Italy

2 tons - 3 meters long -Aluminium-alloy resonatingbar cooled to an effectivetemperature of O(mK ), viafeedback currents (extradamping). The feedbackemploys a delay-line,generating effectively anonequilibrium-statecurrent.Also in M. Bonaldi’s poster A. Vinante et al., PRL 101,

033601 (2008)

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 7: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Feedback cooling - the two approaches

L I(t) + R I(t) + 1C q(t) = VT (t) ← feedback off

γ = R/L; ω2o = 1/LC; 〈VT (t)VT (t′)〉 = 2RkBTδ(t − t′)

(L− Lin) I(t) + R I(t) + 1C q(t) = VT (t)− Lin Is(t)

Is(t) = I(t) + Id (t) ← feedback on ↑

quasi harmonic appr.: R → R′ = (R + Rd )

L I(t) + R′ I(t) + 1C q(t) = VT (t)

general case:

I(t) +R t−∞ f (t − t′)I(t′)dt′ +

R t−∞ g(t − t′)q(t′)dt′ = N(t)

Effective ‘cooling’

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.99 0.995 1 1.005 1.01

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

G = 0.06, 0.15, 0.4, 0.752tdω0 = π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 8: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Work and heat distribution, from experiment toquasi-harmonic approximation

Qτ = ∆Uτ + Wτ

Pτ = Qτ + Q(→bath)τ ' Qτ

ρ(ετ ) = 1τ ln PDF(ετ )

PDF(−ετ )

ετ = PτL/(kBTR)

D2(ετ ) = ∂2

∂ε2τ

hln PDF(ετ )

τ

i

M. Bonaldi, L. Conti, PDG, L. Rondoni, G. Vedovato, A. Vinante et al (AURIGA team) PRL 103, 010601 (2009)

J. Farago J Stat Phys 107, 781 (2002)

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 9: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Feedback cooling - the two approaches

L I(t) + R I(t) + 1C q(t) = VT (t) ← feedback off

γ = R/L; ω2o = 1/LC; 〈VT (t)VT (t′)〉 = 2RkBTδ(t − t′)

(L− Lin) I(t) + R I(t) + 1C q(t) = VT (t)− Lin Is(t)

Is(t) = I(t) + Id (t) ← feedback on ↑

quasi harmonic appr.: R → R′ = (R + Rd )

L I(t) + R′ I(t) + 1C q(t) = VT (t)

general case:

I(t) +R t−∞ f (t − t′)I(t′)dt′ +

R t−∞ g(t − t′)q(t′)dt′ = N(t)

Effective ‘cooling’

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.99 0.995 1 1.005 1.01

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

G = 0.06, 0.15, 0.4, 0.752tdω0 = π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 10: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Feedback cooling via the full equation

L I(t) + R I(t) + 1C q(t) = VT (t) ← feedback off

γ = R/L; ω2o = 1/LC; 〈VT (t)VT (t′)〉 = 2RkBTδ(t − t′)

(L− Lin) I(t) + R I(t) + 1C q(t) = VT (t)− Lin Is(t)

Is(t) = I(t) + Id (t) ← feedback on ↑

quasi harmonic appr.: R → R′ = (R + Rd )

L I(t) + R′ I(t) + 1C q(t) = VT (t)

general case:

I(t) +R t−∞ f (t − t′)I(t′)dt′ +

R t−∞ g(t − t′)q(t′)dt′ = N(t)

N(t) =R t−∞ h(t − t′)η(t′)dt′

〈q(0)N(t)〉 6= 0; 〈I(0)N(t)〉 6= 0 Kubo’s causality broken

An interesting problem in statistical mechanics in ots own right

Effective ‘cooling’

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.99 0.995 1 1.005 1.01

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

G = 0.06, 0.15, 0.4, 0.752tdω0 = π

Shift of the resonance frequency.From the full equation

PDG, Rondoni, Bonaldi, Conti, J.Stat.Mech., P10016 (2009)

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 11: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

The digital protocol

Assume Id (t) = GIs(t − td ); x = Lin/L, y = 1− x , |Gy | < 1

qs(t) + γqs(t) + ω20qs(t)−

xy

∞∑k=1

(Gy)k [γqs(t − ktd ) + ω20qs(t − ktd )] = N(t)

Generalized FDT (Kubo) would entail causality @ t > t ′ 〈N(t)q(t ′)〉 = 0

〈N(t)q(t ′)〉 = 0⇒ 〈N(t)N(t ′)〉 = 〈q2〉f (t − t ′)

But here

N(t) =∞∑

k=0

(Gy)kη(t − ktd ) =1L

∞∑k=0

(Gy)k VT (t − ktd )

⇒ ∃ k s.t. (t − ktd ) < t ′

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 12: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

The digital protocol

Assume Id (t) = GIs(t − td ); x = Lin/L, y = 1− x , |Gy | < 1

qs(t) + γqs(t) + ω20qs(t)−

xy

∞∑k=1

(Gy)k [γqs(t − ktd ) + ω20qs(t − ktd )] = N(t)

Generalized FDT (Kubo) would entail causality @ t > t ′ 〈N(t)q(t ′)〉 = 0

〈N(t)q(t ′)〉 = 0⇒ 〈N(t)N(t ′)〉 = 〈q2〉f (t − t ′)

But here

N(t) =∞∑

k=0

(Gy)kη(t − ktd ) =1L

∞∑k=0

(Gy)k VT (t − ktd )

⇒ ∃ k s.t. (t − ktd ) < t ′

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 13: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

The digital protocol

Assume Id (t) = GIs(t − td ); x = Lin/L, y = 1− x , |Gy | < 1

qs(t) + γqs(t) + ω20qs(t)−

xy

∞∑k=1

(Gy)k [γqs(t − ktd ) + ω20qs(t − ktd )] = N(t)

Generalized FDT (Kubo) would entail causality @ t > t ′ 〈N(t)q(t ′)〉 = 0

〈N(t)q(t ′)〉 = 0⇒ 〈N(t)N(t ′)〉 = 〈q2〉f (t − t ′)

But here

N(t) =∞∑

k=0

(Gy)kη(t − ktd ) =1L

∞∑k=0

(Gy)k VT (t − ktd )

⇒ ∃ k s.t. (t − ktd ) < t ′

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 14: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Solving in Fourier space → The power spectrum

Hyp. : 〈η(t)η(t ′)〉 =2kBTγ

Lδ(t − t ′)

⇒ SIs(ω) =

∫ +∞

−∞eiωt〈Is(0)Is(t)〉dt =

(2kBTγ

L

) ω2

D(ω)

D(ω) = α2 + G2β2 + (1 + G2)γ2ω2 Def. : α = ω2 − ω20

+2xGγω3 sin (ωtd )− 2G(αβ + γ2ω2) cos (ωtd ) β = y ω2 − ω20

For very high quality factors

ω0

γ≡ Q 1

xG 1 ⇒ SIs(ω) ∼=

2 z ω2

(ω2 − ω2r )2 + µ2ω2

and if 2tdω0 = π, then : ω4r =

1 + G2

1 + y2G2ω

40 ; z =

kBTγ

L (1 + y2G2)

µ2 = 2

„ p1 + G2q

1 + y2G2−

1 + yG2

1 + y2G2

«ω

20 −→

G→0x2G2

ω20

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 15: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Solving in Fourier space → The power spectrum

Hyp. : 〈η(t)η(t ′)〉 =2kBTγ

Lδ(t − t ′)

⇒ SIs(ω) =

∫ +∞

−∞eiωt〈Is(0)Is(t)〉dt =

(2kBTγ

L

) ω2

D(ω)

D(ω) = α2 + G2β2 + (1 + G2)γ2ω2 Def. : α = ω2 − ω20

+2xGγω3 sin (ωtd )− 2G(αβ + γ2ω2) cos (ωtd ) β = y ω2 − ω20

For very high quality factors

ω0

γ≡ Q 1

xG 1 ⇒ SIs(ω) ∼=

2 z ω2

(ω2 − ω2r )2 + µ2ω2

and if 2tdω0 = π, then : ω4r =

1 + G2

1 + y2G2ω

40 ; z =

kBTγ

L (1 + y2G2)

µ2 = 2

„ p1 + G2q

1 + y2G2−

1 + yG2

1 + y2G2

«ω

20 −→

G→0x2G2

ω20

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 16: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 105 - shift of the resonance frequency

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.99 0.995 1 1.005 1.01

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

G = 0.06, 0.15, 0.4, 0.752tdω0 = π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 17: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

G = 0 (Equil.)

G = 0.5

2tdω0 = π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 18: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - changing td

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

2tdω0 = π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 19: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as td ↑

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

2tdω0 = 1.15 π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 20: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as td ↑

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

2tdω0 = 1.4 π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 21: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as td ↑

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

2tdω0 = 1.5 π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 22: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as td ↑

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω0S

Is/〈I

2〉 e

q

ω/ω0

2tdω0 = 1.7 π

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 23: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

The analog protocol

The feedback is implemented via a low-pass filter

Id(ω) =AΩ

Ω− iωIs(ω)

SIs(ω) =(2kBTγ

L

) ω2 (ω2 + Ω2)

B(ω)

B(ω) = ω2(ω2 − F 2)2 + (aω2 − b3)2

F 2 = ω20+γΩ(1−A); a = (1−yA)Ω+γ; b3 = Ωω2

0(1−A)

For consistency with digital protocol we set AΩ = Gω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 24: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Analog vs digital @ Q = 105

-1

-0.5

0

0.5

1

1.5

2

0.995 0.9975 1 1.0025 1.005

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

Ω = 0.2 ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 25: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Analog vs digital decreasing Ω/ω0

-1

-0.5

0

0.5

1

1.5

2

0.995 0.9975 1 1.0025 1.005

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

Ω = 0.1 ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 26: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Analog vs digital decreasing Ω/ω0

-1

-0.5

0

0.5

1

1.5

2

0.995 0.9975 1 1.0025 1.005

Log[ω

0S

Is/〈I

2〉 e

q]

ω/ω0

Ω = 0.001 ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 27: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Modeling the rod with one-dimensional chains

L as the observable

The idea is to define a variation of the celebrated FPU chain:

Vt(x) = h[(x − 1)2−λ(x − 1)3 + µ(x − 1)4]

to then compare it to a more ‘phenomelogical’ interaction potential, toovercome certain inconsistencies

VLJ(x) = ε(

x−12 − 2 x−6 )x = r/r0

-1

-0.6

-0.2

0.2

0.6

0.8 1 1.2 1.4

V/ǫ

x

VLJ

Vt2

Vt1

λ = µ = 1 → Vt1λ = 7, µ = 53 λ/12 → Vt2(as if we expanded LJ)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

log

(L/L

0)

kbT [ ǫ ]

VLJ

Vt1

Vt2

♦♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 28: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Comparing thermo-elastic properties

E , the elastic modulus: F ' E (∆L/L), if ∆L L. PDG, L.Rondoni, M.Bonaldi, L.Conti, to be published

40

60

80

100

120

140

160

180

200

220

0 0.02 0.04 0.06 0.08 0.1 0.12

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

(b)

(c)

♦♦ ♦ ♦ ♦

-0.1

0

0.1

-1 0 1

F[

ǫ

r0

]

(∆ L/L) × 103

⋆⋆

⋆⋆

⋆⋆

⋆⋆

⋆⋆

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 29: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Comparing thermo-elastic properties

E , the elastic modulus: F ' E (∆L/L), if ∆L L.

40

60

80

100

120

140

160

180

200

220

0 0.02 0.04 0.06 0.08 0.1 0.12

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

(b)

(c)

♦♦ ♦ ♦ ♦

-0.1

0

0.1

-1 0 1

F[

ǫ

r0

]

(∆ L/L) × 103

⋆⋆

⋆⋆

⋆⋆

⋆⋆

⋆⋆

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

♦♦♦♦ ♦ ♦ ♦♦

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 30: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Comparing thermo-elastic properties

E , the elastic modulus: F ' E (∆L/L), if ∆L L. ω0 resonance frequency of 1st mode.

40

60

80

100

120

140

160

180

200

220

0 0.02 0.04 0.06 0.08 0.1 0.12

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

(b)

(c)

♦♦ ♦ ♦ ♦

-0.1

0

0.1

-1 0 1

F[

ǫ

r0

]

(∆ L/L) × 103

⋆⋆

⋆⋆

⋆⋆

⋆⋆

⋆⋆

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

0 0.002 0.004 0.006 0.008 0.01 0.012

(

ωr

ω0

)

2 LJ

E [ ǫ ]

0.01

1

100

0.85 0.95 1.05

S(ω

)(a.u.)

ω/ω0

(a)(b) (c)

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

♦♦♦♦ ♦ ♦ ♦♦

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 31: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Comparing thermo-elastic properties

E , the elastic modulus: F ' E (∆L/L), if ∆L L. ω0 resonance frequency of 1st mode. Q = ω0/∆ω1/2

40

60

80

100

120

140

160

180

200

220

0 0.02 0.04 0.06 0.08 0.1 0.12

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

(b)

(c)

♦♦ ♦ ♦ ♦

-0.1

0

0.1

-1 0 1

F[

ǫ

r0

]

(∆ L/L) × 103

⋆⋆

⋆⋆

⋆⋆

⋆⋆

⋆⋆

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

0 0.002 0.004 0.006 0.008 0.01 0.012

(

ωr

ω0

)

2 LJ

E [ ǫ ]

0.01

1

100

0.85 0.95 1.05

S(ω

)(a.u.)

ω/ω0

(a)(b) (c)

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

E[

ǫ

r0

]

kBT [ ǫ ]

(a)

♦♦♦ ♦ ♦ ♦♦

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

Q

E [ ǫ ]

500

1000

1500

2000

0.972 0.976 0.98

S(ω

)(a.u.)

ω/ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 32: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Effects of gradients (under investigation) - ∇T ≡ 0

T T

1

10

100

1000

10000

100000

0.5 1 1.5 2 2.5 3 3.5

S(ω

)[a

u]

ω/ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 33: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Effects of gradients on Q: ∇T 6= 0 -vs- ∇T ≡ 0

T− T +

1

10

100

1000

10000

100000

0.5 1 1.5 2 2.5 3 3.5

S(ω

)[a

u]

ω/ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 34: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Effects of gradients on Q: ∇T 6= 0 -vs- ∇T ≡ 0

T− T +

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.94 0.96 0.98 1 1.02 1.04 1.06

S(ω

)[a

u]

ω/ω0

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.

Page 35: Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. · 2016-06-02 · GW detectors Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

GW detectors And nonequilibrium considerations

Acknowledgments

FP7 - IDEAS - ERC grant agreement n. 202680INFN Padova - INFN Torino

The whole RareNoise team:L. Conti, L. Rondoni, M. Bonaldi andP. Adamo, R. Hajj, G. Karapetyan, R.-K. Takhur, C. LazzaroFormer: C. Poli, A.B. Gounda, S. Longo, M. Saraceni

Thanks to the AURIGA collaboration - INFN.G. Vedovato, A. Vinante, M. Cerdonio, G.A. Prodi, J.-P- Zendri,. . .

De Gregorio, Conti, Bonaldi, Rondoni Modelling nonequilibrium macroscopic oscillators.