Modeling the Structure of Hot Star Disks

33
Modeling the Structure of Hot Star Disks Jon E. Bjorkman Ritter Observatory

description

Modeling the Structure of Hot Star Disks. Jon E. Bjorkman Ritter Observatory. Systems with Disks. Infall + Rotation Young Stellar Objects (T Tauri, Herbig Ae/Be) Mass Transfer Binaries Active Galactic Nuclei (Black Hole Accretion Disks) Outflow + Rotation - PowerPoint PPT Presentation

Transcript of Modeling the Structure of Hot Star Disks

Page 1: Modeling the Structure  of Hot Star Disks

Modeling the Structure of Hot Star Disks

Jon E. Bjorkman

Ritter Observatory

Page 2: Modeling the Structure  of Hot Star Disks

Systems with Disks

• Infall + Rotation– Young Stellar Objects (T Tauri, Herbig Ae/Be)– Mass Transfer Binaries– Active Galactic Nuclei (Black Hole Accretion Disks)

• Outflow + Rotation– AGBs (bipolar planetary nebulae)– LBVs (e.g., Eta Carinae)– Oe/Be, B[e]

• Rapidly rotating (Vrot = 350 km s-1)• Hot stars (T = 20000K)• Ideal laboratory for studying disks

Page 3: Modeling the Structure  of Hot Star Disks

General Wind Considerations

• Radial Momentum Equation

• Radial Motion

• Be disk line profiles– Widths and symmetry =>

v

dv

dr= -

GM

r2+

vf2

r+ grad

vr ~

Vesc (radiation-driven)

= a (Keplerian)

ÏÌÔÔ

ÓÔÔ

vr £ a (Dachs, Hanuschik, …)

Disk probably is Keplerian

Page 4: Modeling the Structure  of Hot Star Disks

General Wind Considerations

• Azimuthal Motion

vf µ

r - 1 (vr ? vf ; angular momentum-conserving)

r (magnetically dominated; solid body rotation)

r - 1/ 2 (vr = vf ; Keplerian)

Ï

Ì

ÔÔÔÔÔ

Ó

ÔÔÔÔÔ

Page 5: Modeling the Structure  of Hot Star Disks

Rotating (in/out) Flows

• Fluid Equations (cylindrical coords: )

• Equation of State

ϖ,z,φ

P = a2ρ

a =kT

μmH

(isothermal sound speed)

Page 6: Modeling the Structure  of Hot Star Disks

Keplerian Disks

• Fluid Equations

• Vertical scale height

(Keplerian orbit)

(Scale height)

(Hydrostatic)

(vϖ << vφ;v z = 0)

fz

Fgrav

T = 15000K

H /ϖ = 0.04

Δθ =2.5°

Page 7: Modeling the Structure  of Hot Star Disks

Disk Variability

• Viscosity

• Viscous Diffusion Timescale

– too large, unless a ~ 0.1–1

n = aaH

tn = v 2 / n

=Vcrit

aa2v R

= 20yr 0.01

a

Ê

ËÁÁÁ

ˆ

¯˜̃˜̃

v

R

(eddy viscosity)

Page 8: Modeling the Structure  of Hot Star Disks

Viscous Decretion -Disks

vf =Vcrit R / v

vv =&M

2pv S

S =&MVcritR

1/ 2

3paa2v 3/ 2

Rmax

v- 1

È

Î

ÍÍÍ

˘

˚

˙˙˙

r =S

2pHe- 0.5(z/H )2

H = (a / vf )v

(surface density)

(scale height)

(Keplerian orbit)

(hydrostatic)

(continuity eq.)

Page 9: Modeling the Structure  of Hot Star Disks

Power Law Approximations

• Keplerian Decretion Disk

• Flaring

b = 98

a = 198

(flat passive disk; T µ r - 3/ 4)

b = 54

a = 114

(flared passive disk; T µ r - 1/ 2)

b = 32

a = 72

(isothermal disk; T = const)

r = r0(R* / v )a exp -z

H(v )

Ê

ËÁÁÁ

ˆ

¯˜̃˜̃

Î

ÍÍÍ

˘

˚

˙˙˙

H = H0(v / R*)b

Page 10: Modeling the Structure  of Hot Star Disks

Isothermal Keplerian Disk Density

= 1.5

= 3.5

ρ(ϖ ) = ρ0 (R* / ϖ )α exp −12

zH (ϖ ) ⎛ ⎝ ⎜

⎞ ⎠ ⎟2 ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

H (ϖ ) = H0 (ϖ / R* )β

Page 11: Modeling the Structure  of Hot Star Disks

Monte Carlo Radiation Transfer

• Divide stellar luminosity into equal energy packets

• Pick random starting location and direction• Transport packet to random interaction location

• Randomly scatter or absorb photon packet• When photon escapes, place in observation bin

(frequency and direction)

Eγ = L Δt / Nγ

τ =−lnξ (ξ is a random number)

REPEAT 106-109 times

Page 12: Modeling the Structure  of Hot Star Disks

MC Radiative Equilibrium• Sum energy absorbed by each cell• Radiative equilibrium gives temperature

• When photon is absorbed, reemit at new frequency, depending on T

• Problem: Don’t know T a priori• Solution: Change T each time a photon is

absorbed and correct previous frequency distribution

avoids iteration

Eabs = Eemit

nabsEγ = 4πmiκ PB(Ti )

Page 13: Modeling the Structure  of Hot Star Disks

Temperature Correction

Bjorkman & Wood 2001

Frequency Distribution:

dP

dν= jν (T + ΔT ) − jν (T )

=κ ν ΔTdBν

dT

Page 14: Modeling the Structure  of Hot Star Disks

Model of B[e] Star

Bjorkman 1998

Page 15: Modeling the Structure  of Hot Star Disks

Disk Temperature

Bjorkman 1998

Page 16: Modeling the Structure  of Hot Star Disks

B[e] SED

Bjorkman 1998

Page 17: Modeling the Structure  of Hot Star Disks

T Tauri Envelope Absorption

Page 18: Modeling the Structure  of Hot Star Disks

Disk Temperature

Snow LineWater Ice

Methane Ice

Page 19: Modeling the Structure  of Hot Star Disks

Effect of Disk on Temperature• Inner edge of disk

– heats up to optically thin radiative equilibrium temperature

• At large radii– outer disk is shielded by inner disk– temperatures lowered at disk mid-plane

• Permits dust formation in outer disk

• Requires a different opacity source at smaller radii

Page 20: Modeling the Structure  of Hot Star Disks

NLTE Monte Carlo RT• Gas opacity depends on:

– temperature– degree of ionization – level populations

• During Monte Carlo simulation:– sample radiative rates

• Radiative Equilibrium– Whenever photon is absorbed, re-emit it

• After Monte Carlo simulation:– solve rate equations– update level populations and gas temperature– update disk density (solve hydrostatic equilibrium)

determined by radiation field

Page 21: Modeling the Structure  of Hot Star Disks

Disk Temperature

Carciofi & Bjorkman 2004

Page 22: Modeling the Structure  of Hot Star Disks

Disk Density

Carciofi & Bjorkman 2004

Page 23: Modeling the Structure  of Hot Star Disks

NLTE Level Populations

Carciofi & Bjorkman 2004

Page 24: Modeling the Structure  of Hot Star Disks

SED and Polarization

Carciofi & Bjorkman 2004

Page 25: Modeling the Structure  of Hot Star Disks

IR Excess

Carciofi & Bjorkman 2004

Page 26: Modeling the Structure  of Hot Star Disks

LTE Line-Blanketed Polarization

Observed Observed

MC Simulation MC Simulation

Page 27: Modeling the Structure  of Hot Star Disks

Flux Polarization

Bjorkman & Carciofi 2003

Inner Disk:• NLTE Hydrogen • Flared Keplerian• h0 = 0.07, = 1.5

• R* < r < Rdust

Outer Disk:• Dust • Flared Keplerian• h0 = 0.017, = 1.25

• Rdust < r < 10000 R*

HAeBe Model

Page 28: Modeling the Structure  of Hot Star Disks

Summary• Viscous Timescale:

– 20 years ( = 0.01)– probably a bit too long (but may be larger)

• NLTE Modeling of Keplerian Disk– Fully self-consistent 3-D model

• determines radiative equilibrium temperature• vertical hydrostatic equilibrium• steady state disk surface density• Single parameter: (and inclination angle i)

– Reproduces Polarization and SED– Temperature

• Inner disk: falls as r -3/4 (like thin blackbody)• Outer disk: isothermal

&M

&M = (a / 0.01)¥ 10- 11Me yr- 1

Page 29: Modeling the Structure  of Hot Star Disks

Acknowledgments

• Rotating winds and bipolar nebulae– NASA NAGW-3248

• Ionization and temperature structure– NSF AST-9819928– NSF AST-0307686

• Geometry and evolution of low mass star formation– NASA NAG5-8794

• Collaborators: A. Carciofi, K.Wood, B.Whitney, K. Bjorkman, J.Cassinelli, A.Frank, M.Wolff

• UT Students: B. Abbott, I. Mihaylov, J. Thomas• REU Students: A. Moorhead, A. Gault

Page 30: Modeling the Structure  of Hot Star Disks

Be Star H Profile

Carciofi and Bjorkman 2003

i = 82º

Page 31: Modeling the Structure  of Hot Star Disks

Polarization vs IR Excess

Coté & Waters 1987

P ~ sin2i

Edge-on

Pole-on

Page 32: Modeling the Structure  of Hot Star Disks

Gault, Bjorkman & Bjorkman 2002

MC Polarization vs IR Excess

Page 33: Modeling the Structure  of Hot Star Disks

Disk Orientation: Inclination

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Quirrenbach et al. 1996

Interferometric sin2i

Pol

arim

etri

c s

in2 i