Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery...

29
Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) [email protected] www.bessler.info

Transcript of Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery...

Page 1: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) [email protected] www.bessler.info

Page 2: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 2

Research profile: Computational battery technology

LiFePO4 batteries:Electrochemistry and impedance

Li+e–

Understanding and optimization of physicochemical behavior

Thermal management and runaway risk

Understanding and optimization of thermal and safety behavior

Lithium-sulfur cells:Redox chemistry and transport

Analysis of cycling propertiesand chemical reversibility

Lithium-air cells:Multi-phase chemistry and reversibility

Improvement of porous air electrode

Multi-scale and multi-physics modeling and numerical simulation

Lithium-ion technology Post-lithium-ion cells

Page 3: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 3

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 4: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 4

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 5: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 5

Li-S and Li-O: Challenges

Complex multi-phase management Li-S: Solid reactant S8 and product Li2S, solid precipitates Li-O: Solid, liquid and gas phase involved

Complex chemistry Li-S: Polysulfide ion intermediates Li-O: Oxygen reduction as traditional problem of electrochemistry

Low cycleability, low efficiency Computational modeling for understanding and optimization

Page 6: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 6

Electrochemical cell of up to seven layers Each layer consists of arbitrary number of solid, liquid and/or gaseous bulk phases Each layer can contain an arbitrary number of interfaces (phase boundaries) Each bulk phase consists of arbitrary number of chemical species Chemistry takes place at interfaces Transport mechanisms (liquid, solid, gas) Continuum (homogenization) approach

1D/2D generic modeling framework

J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann and W. G. Bessler, J. Electrochem. Soc., submitted (2012).

Page 7: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 7

Chemical reactions at interfaces

Mass-action kinetics describes chemical source terms Rate constants described by modified Arrhenius expression. Reverse rate follows from thermodynamic consistency.

ν stoichiometric coefficient k reaction rate constant c concentration of reactants

Temperature dependence (Activation energy Eact)

Potential dependence (Half-cell potential ∆φ)

Preexponen- tial factor

Page 8: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 8

Multi-phase management

The volume fraction εi of each phase i depends on time Volume fractions sum up to one. Def. of compressible phase necessary. Microstructural effects enter via interfacial area and transport coefficients

ε volume fraction ρ density R chemical formation rate M molar mass

AV volume-specific surface area / m2/m3

D diffusion coefficient σ Conductivity

Page 9: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 9

Mass and charge transport in liquid electrolyte

Species conservation (Nernst-Planck equation) Charge neutrality Diluted solution theory (Li-S) Concentrated solution theory (Li-O)

Page 10: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 10

DENIS: Detailed Electro-chemistry and Numerical Impedance Simulation In-house C/C++

software Workhorse of the group

Multi-scale simulation framework

Interfaces

Electrode

Cell

nm

m

Coupling with CANTERA (Goodwin, Caltech) for chemistry source terms and transport coefficients

Stack

Coupling DENIS-ANSYS/COMSOL for CFD simulations

ANSYS/COMSOL

System

Coupling DENIS- SIMULINK

MATLAB

CANTERA

LIMEX Implicit DAE solver (Deuflhard, Berlin)

DENIS

Page 11: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 11

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 12: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 12

Li-S battery modeling domain

Cathode properties: Thickness: 41 µm Phases (charged state):

Sulfur ε = 0.16 Carbon ε = 0.06 Electrolyte ε = 0.78 Li2S ε = 10–7

Interfaces: Sulfur-Electrolyte Carbon-Electrolyte Li2S-Electrolyte

Anode: Lithium metal

Page 13: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 13

Li-S battery model: Thermodynamics and transport

Species Molar Gibbs

energy / kJ·mol–1

Density / Initial concentration

Diffusion coefficient / m2·s–1

Li 0 5.34·102 kg·m-3 C 0 2.26·103 kg·m-3 S8

(solid) 0 2.07·103 kg·m-3 Li2S −441.4 C4H6O3 0 9.831∙103 mol·m–3 Li+ 0 9.841∙102 mol·m–3 1∙10−10 PF6

− 0 9.830∙102 mol·m–3 4∙10−10 S2− −405.08 8.127∙10−10 mol·m–3 1∙10−10 S2

2− −422.29 5.141∙10−7 mol·m–3 1∙10−10 S4

2− −450.91 1.966∙10−2 mol·m–3 1∙10−10 S6

2− −460.23 3.185∙10−1 mol·m–3 6∙10−10 S8

2− −461.20 1.750∙10−1 mol·m–3 6∙10−10 S8

(liquid) −48 1.868 mol·m–3 1∙10−9 Parameters converted from Kumaresan et al., J. Electrochem. Soc. 155, A576 (2008)

Page 14: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 14

Li-S battery model: Reactions and kinetics

Parameters converted from Kumaresan et al., J. Electrochem. Soc. 155, A576 (2008)

Reaction Preexponential factor, forward reaction

Preexponential factor, reverse reaction

Li ⇄ Li+ + e− 4.086∙10−9 m−5∙mol2∙s−1 1 m−2∙mol∙s−1

S8(solid) ⇄ S8

(liquid) 1.900∙10−2 m−0.5∙mol0.5∙s−1 1 s−1

1∕2 S8(solid) + e− ⇄ 1∕2 S8

2− 7.725∙1013 m−0.5∙mol0.5∙s−1 2.940∙10−27 m−0.5∙mol0.5∙s−1

3∕2 S82− + e− ⇄ 2 S6

2− 4.331∙1016 m∙mol−0.5∙s−1 1.190∙10−23 m4∙mol−1∙s−1

S62− + e− ⇄ 3∕2 S4

2− 3.193∙1014 s−1 4.191∙10−24 m∙mol−0.5∙s−1

1∕2 S42− + e− ⇄ S2

2− 2.375∙1011 m−0.5∙mol0.5∙s−1 7.505∙10−24 s−1

1∕2 S22− + e− ⇄ S2− 4.655∙1012 m−0.5∙mol0.5∙s−1 4.738∙10−22 s−1

2 Li+ + S2− ⇄ Li2S(solid) 2.750∙10−5 m6∙mol2∙s−1 8.250∙10−19 s−1

Page 15: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 15

Li-S: Simulated discharge curve and phase change

Discharge shows typical two-stage behavior Solid S8 is fully consumed before solid Li2S is formed

0 250 500 750 1000 1250 1500 17502.25

2.30

2.35

2.40

2.45

2.50

Discharge capacity / mAh/gsulfur

Cell v

olta

ge /

V

0

10

20

30

40

S8

Li2S Volu

me

fract

ion

/ %

0 10 20 30 40 50 60Time / h

Page 16: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 16

Li-S: Simulated ionic species concentrations

First stage: Sulfur polyanions are formed Second stage: Sulfur polyanions are reduced End of discharge: No more sulfur polyanions

0 250 500 750 1000 1250 1500 175010-9

10-6

10-3

100

103Li+

Discharge capacity / Ah/gsulfur

Conc

entra

tion

/ m

ol/m

3

S2-S8(l)

S2-4S2-

6

PF-6

S2-2

S2-8

0 10 20 30 40 50 60Time / h

Page 17: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 17

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 18: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 18

Li-O battery modeling domain

Cathode properties: Thickness: 750 µm Phases:

Carbon ε = 0.25 Electrolyte ε = 0.75 Li2O2 ε = 10–7

Interfaces: Carbon- Electrolyte- Li2O2

Electrolyte: LiPF6 / Stable organic solvent Anode: Metallic lithium

Page 19: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 19

Li-O battery model: Thermodynamics and kinetics Species Molar Gibbs energy /

kJ·mol–1 Density / Initial concentration

Li 0 5.34·102 kg·m−3 Li+ 0 1.0·103 mol·m−3 PF6

- − 1.0·103 mol·m−3 O2

(gas) −61 21 % O2

(dissolved) −43 1.62 mol·m−3 Li2O2 −644 2.14·103 kg·m−3 EC-EMC − 1.07·104 mol·m−3 Reaction Preexponential factor,

forward reaction Activation energy

Li ⇄ Li+ + e‾ 1.31·10-1 m·s−1 0

O2(gas) ⇄ O2

(dissolved) Assumed in equilibrium –

2 Li+ + O2(dissolved)

+ 2 e‾ ⇄ Li2O2 9.23·1031 m7·mol-2·s−1 0

Parameters converted from: P. Andrei, J. P. Zheng, M. Hendrickson and E. J. Plichta, J. Electrochem. Soc., 157, A1287 (2010); A. Nyman, M. Behm and G. Lindbergh, Electrochim. Acta, 53, 6356 (2008); R. C. Weast, Handbook of chemistry and physics, CRC Press (1982).

Page 20: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 20

Li-O: Simulated discharge behavior

Discharge curves simulated for different current densities Polarization losses increase with increasing current density Capacity strongly depends on current density

0 1000 2000 3000 40002.6

2.7

2.8

2.9

3.0

Volta

ge (V

)

Specific capacity (mAh / gc)

1 A/m20.1 A/m2

0.5 A/m2

0.01 A/m2

Page 21: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 21

Li-O: Spatial distribution

Strong gradients of dissolved O2 in organic electrolyte At high currents, reactions are confined to regions close to channel Rate-limiting O2 diffusion is origin of polarization losses

0.00 0.25 0.50 0.750

2

4

6

8

10

i Fara

day/<

i Fara

day>

Distance [mm]

i=0.01 A/m2

i=0.1 A/m2

i=0.5 A/m2

i=1 A/m2

i=10 A/m2

2

0.0

0.4

0.8

1.2

1.6

i=0.5 A/m2

i=0.01 A/m2

i=10 A/m2

i=0.1 A/m2

c(O

2) [m

ol /

m3 ]

i=1 A/m2 SOC = 50%

O2

SOC = 50%

Page 22: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 22

Li-O: Pore clogging

Free porosity decreases upon discharge Pore clogging by product Li2O2

Clogging stronger close to channel Strong gradients for high currents Pore clogging is origin of current-dependent capacity loss

0.00

0.25

0.50

0.75

ε [m

3 / m

3 ]

SOC 100% SOC 75% SOC 50% SOC 25% SOC 0%

i = 0.5 A/m2

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

ε [m

3 / m

3 ]

Distance [mm]

i=0.1 A/m2

i=0.01 A/m2

i=1 A/m2i=0.5 A/m2i=10 A/m2

SOC = 50%

O2

Page 23: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 23

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 24: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 24

Aqueous Li-O: LiOH as soluble intermediate

Oxygen reduction: O2 + 4 e− + 2 H2O ⇄ 4 OH−(aq) Precipitation: Li+ + OH− + H2O ⇄ LiOH·H2O(s)

Page 25: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 26

Aqueous Li-O modeling domain

Cathode properties: Thickness: 500 µm Phases (start composition):

Carbon ε = 0.25 Water ε = 0.75 LiOH·H2O ε = 10–7

Interfaces: Carbon-Electrolyte-LiOH·H2O

Separator properties: Porous thickness: 100 µm Ideal separation from anode assumed (e.g., Li+-conducting glass)

Page 26: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 27

Results: Aqueous Li-O battery

Two-stage discharge I: Dissolved LiOH Small voltage variation II: Precipitation of LiOH·H2O Constant voltage End of discharge: Capacity limited by LiOH precipitation

2.5

2.7

2.9

3.1

3.3

3.5

Cell V

olta

ge /

V

0 1x105 2x105 3x105 4x105 5x10501234567

Time / s

Mea

n M

olal

ity L

i+ / m

olLi

+/ kg

H2O

0.00.10.20.30.40.50.60.70.80.9

Mea

n Vo

lum

e Fr

actio

n Li

OH

/ -

I II

LiOH·H2O(s)

Li+(aq), OH-(aq) U

Page 27: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 28

Concentration distribution

A Li+/OH– concen-tration gradient, peak at anode

B Increasing Li+/OH– concentration

C Beginning LiOH precipitation within separator close to anode

D LiOH precipitation at oxygen inlet and anode surface

End of discharge due to LiOH film on anode surface

0 100 200 300 400 500 6000.00.10.20.30.40.50.60.70.80.9

Volu

me

fract

ion

LiO

H H 2O

/ -

3.528

3.529

3.530

3.531

3.532

3.533

3.534

Sepa

rato

rCa

thod

e

0 100 200 300 400 500 6000.00.10.20.30.40.50.60.70.80.9

5.390

5.391

5.392

5.393

5.394

5.395

5.396

Mol

ality

Li+ /

mol

Li+/

kgH2

O

Cath

ode

Sepa

rato

r

0.00.10.20.30.40.50.60.70.80.9

Distance from channel / µm

Volu

me

fract

ion

LiO

H H 2O

/ -

Cath

ode

Sepa

rato

r

0 100 200 300 400 500 6005.307

5.308

5.309

5.310

0.00.10.20.30.40.50.60.70.80.9

0 100 200 300 400 500 600

5.3075.3085.3095.3105.3115.3125.3135.3145.315

Distance from channel / µm

Mol

ality

Li+ /

mol

Li+/

kgH2

O

Cath

ode

Sep.

A B

C D

2.5

2.7

2.9

3.1

3.3

3.5

Cell V

oltag

e / V

0 1x105 2x105 3x105 4x105 5x10501234567

Time / s

Mea

n M

olality

Li+ /

mol Li+/ k

g H2O

0.00.10.20.30.40.50.60.70.80.9

Mea

n Vo

lume

Frac

tion

LiOH

/ -

A B C D

Page 28: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 29

Motivation and approach Lithium-sulfur Lithium-air (organic) Lithium-air (aqueous) Conclusions

Page 29: Modeling the next battery generation: Lithium-sulfur and ... · Modeling the next battery generation: Lithium-sulfur and lithium -air cells D. N. Fronczek, T. Danner, B. Horstmann,

Sliede 30

Summary: Next-generation battery modeling

Li-S and Li-O batteries: High energy density, low cycleability Challenges: Complex chemistry and complex multi-phase behavior Chemistry, phases and transport included into modeling framework Li-S: Two-stage behavior: Dissolution, charge transfer, precipitation mechanism Li-O organic: Low oxygen diffusivity and pore clogging at channel Li-O aqueous: Low oxygen diffusivity and pore clogging at anode

Thank you for your attention! [email protected] · www.bessler.info