MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

14
MODELING THE EFFECT OF THE INCLINATION ANGLE ON NATURAL CONVECTION FROM A FLAT PLATE The Case of a Photovoltaic Module by Bojan D. PEROVI] a , Jelena Lj. KLIMENTA b , Dragan S. TASI] c , Joan L. G. PEUTEMAN d , Dardan O. KLIMENTA a , and Ljiljana N. ANDJELKOVI] a a Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, Kosovska Mitrovica, Serbia b Independent Consultant in the Field of Urban and Spatial Planning, Nis, Serbia c Faculty of Electronic Engineering, University of Nis, Nis, Serbia d Kulab, KU Leuven, Ostend, Belgium Original scientific paper https://doi.org/10.2298/TSCI140821059P The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless num- ber. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical correlations for vertical, inclined, and horizontal plates. Five additional correla- tions for the critical Grashof number are derived from the available data, three in- dicating the onset of transitional flow regime and two indicating the onset of flow separation. The proposed correlations cover the entire range of inclination angles and the entire range of Prandtl numbers. This paper also provides two worked ex- amples, one for natural convection combined with radiation and one for natural convection combined with forced convection and radiation. Key words: empirical correlation, flat plate, fundamental dimensionless number, inclination angle, natural convection, photovoltaic module Introduction In order to produce the maximum amount of electricity, a photovoltaic (PV) module must receive the highest possible amount of sunlight. When sunlight is at its maximum, temper- ature reaches the highest level of influence on the efficiency of a PV module [1-3]. This occurs when PV modules are perpendicular to the incoming sunrays. The amount of sunlight can be also controlled with the inclination of PV modules, which is usually set at a nearly optimal angle [4]. Hence, the inclination angle, y, affects the efficiency. It is also known that the efficiency of a PV module depends on heat losses due to natural convection, forced convection, and radiation [5]. Moreover, natural convection is significantly affected by the inclination angle, y. There- fore, modeling the effect of the inclination angle on natural convection from a PV module is of considerable interest to the researchers [5, 6]. Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ... THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 925 *Corresponding author, e-mail: [email protected]

Transcript of MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

Page 1: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

MODELING THE EFFECT OF THE INCLINATION ANGLE ON NATURAL CONVECTION FROM A FLAT PLATE

The Case of a Pho to vol taic Mod ule

by

Bojan D. PEROVI] a, Jelena Lj. KLIMENTAb, Dragan S. TASI] c,Joan L. G. PEUTEMAN d, Dardan O. KLIMENTA a,

and Ljiljana N. ANDJELKOVI] a

a Fac ulty of Tech ni cal Sci ences, Uni ver sity of Pristina in Kosovska Mitrovica, Kosovska Mitrovica, Ser bia

b In de pend ent Con sul tant in the Field of Ur ban and Spa tial Plan ning, Nis, Ser biac Fac ulty of Elec tronic En gi neer ing, Uni ver sity of Nis, Nis, Ser bia

d Kulab, KU Leuven, Ostend, Bel gium

Orig i nal sci en tific pa perhttps://doi.org/10.2298/TSCI140821059P

The main pur pose of this pa per is to show how the in cli na tion an gle af fects nat u ralcon vec tion from a flat-plate pho to vol taic mod ule which is mounted on the groundsur face. In or der to model this ef fect, novel cor re la tions for nat u ral con vec tion from iso ther mal flat plates are de vel oped by us ing the fun da men tal dimensionless num -ber. On the ba sis of the avail able ex per i men tal and nu mer i cal re sults, it is shownthat the nat u ral con vec tion cor re la tions cor re spond well with the ex ist ing em pir i cal cor re la tions for ver ti cal, in clined, and hor i zon tal plates. Five ad di tional cor re la -tions for the crit i cal Grashof num ber are de rived from the avail able data, three in -di cat ing the on set of tran si tional flow re gime and two in di cat ing the on set of flowsep a ra tion. The pro posed cor re la tions cover the en tire range of in cli na tion an glesand the en tire range of Prandtl num bers. This pa per also pro vides two worked ex -am ples, one for nat u ral con vec tion com bined with ra di a tion and one for nat u ralcon vec tion com bined with forced con vec tion and ra di a tion.

Key words: em pir i cal cor re la tion, flat plate, fun da men tal dimensionless num ber,in cli na tion an gle, nat u ral con vec tion, pho to vol taic mod ule

In tro duc tion

In or der to pro duce the max i mum amount of elec tric ity, a pho to vol taic (PV) mod ulemust re ceive the high est pos si ble amount of sun light. When sun light is at its max i mum, tem per -a ture reaches the high est level of in flu ence on the ef fi ciency of a PV mod ule [1-3]. This oc curswhen PV mod ules are per pen dic u lar to the in com ing sun rays. The amount of sun light can bealso con trolled with the in cli na tion of PV mod ules, which is usu ally set at a nearly op ti mal an gle[4]. Hence, the in cli na tion an gle, y, af fects the ef fi ciency. It is also known that the ef fi ciency ofa PV mod ule de pends on heat losses due to nat u ral con vec tion, forced con vec tion, and ra di a tion[5]. More over, nat u ral con vec tion is sig nif i cantly af fected by the in cli na tion an gle, y. There -fore, mod el ing the ef fect of the in cli na tion an gle on nat u ral con vec tion from a PV mod ule is ofcon sid er able in ter est to the re search ers [5, 6].

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 925

*Corresponding author, e-mail: [email protected]

Page 2: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

It is com mon prac tice for nat u ral con vec tion from PV mod ules to be an a lyzed by us ing the em pir i cal cor re la tions for ver ti cal, in clined, and hor i zon tal iso ther mal flat plates. Manystud ies have been de voted to nat u ral con vec tion from iso ther mal plates and sur faces at in cli na -tion an gles be tween the ver ti cal (y = 0°) and hor i zon tal (y = 90°) lim its [7-13]. Some of thesestud ies are ex per i men tal [7-10], while oth ers are nu mer i cal [11-13]. Most of the cor re la tions be -tween the av er age Nusselt num ber and the Ray leigh num ber are in the form Nu = CRan , where Cand n are the dimensionless pa ram e ter and ex po nent which de pend on the flow con di tions [14,15]. There are, how ever, some cor re la tions which are in the form Nu = CPN

n , where PN is thefun da men tal dimensionless num ber for nat u ral con vec tion [15-17]. To the best knowl edge ofthe au thors, nat u ral con vec tion cor re la tions for in clined and hor i zon tal iso ther mal plates basedon the fun da men tal dimensionless num ber were not de scribed else where in the lit er a ture. De vel -op ment of such cor re la tions and their fur ther ap pli ca tion to the flat-plate PV mod ules are the ob -jec tives of this pa per.

This pa per in tro duces a set of new cor re la tions for si mul ta neous nat u ral con vec tionfrom both sur faces of an iso ther mal plate with ar bi trary in cli na tion be tween 0 and 90 . This pa -per also pro poses two cor re la tions that ap ply only to lam i nar nat u ral con vec tion from up -ward-fac ing (UF) sur face of a heated plate when its down ward-fac ing (DF) sur face is ther mallyin su lated. All the cor re la tions are in the form Nu(y) y)=C

Nn( ×P , where C de pends on the in cli -

na tion an gle y, n = 1/4 for the lam i nar flow and n = 1/3 for the tur bu lent flow and the flow sep a -ra tion. For any pos i tive an gle of in cli na tion, the di men sion rep re sent ing the height of a plate inthe di rec tion of grav ity is adopted as the char ac ter is tic length, L. Ex clud ing the lim its on in cli na -tion, there are no other lim i ta tions with re gard to the cor re la tions. More over, based on [9, 10, 13, 14, 18, 19], five equa tions are con structed for the cal cu la tion of the crit i cal Grashof num bers asfunc tions of the in cli na tion an gle, y, and the Prandtl num ber. While three of these five equa tions in di cate the on set of tran si tion from lam i nar to tur bu lent flow re gime, the fourth and fifth equa -tions in di cate the on set of flow sep a ra tion (also bound ary-layer sep a ra tion, stall).

The nat u ral con vec tion cor re la tions cover the en tire ranges of in cli na tion an gles andPrandtl num bers and they are ap plied to es ti mate the as so ci ated heat trans fer co ef fi cients for two dif fer ent PV mod ules, both mounted on the ground sur face and tested un der dif fer ent am bi entcon di tions. The tran si tional flow re gime is mod eled by the cor re la tions which are the same asthose used for the tur bu lent flow re gime. The ef fects of the so lar ra di a tion and heat losses due toforced con vec tion and ra di a tion from the outer sur faces of the PV mod ules are taken into con sid -er ation. Cal cu la tion re sults of the two worked ex am ples and the cor re spond ing ex per i men taldata [4, 20, 21] have served to val i date the pro posed mod el ing con cept.

Ex per i men tal and nu mer i cal re sults used in the pres ent study

To de rive the cor re la tions for nat u ral con vec tion, the au thors use the experi- men tal re -sults of Hassan and Mohamed [8], Lim et al. [10], and Heo and Chung [22], the nu mer i cal re -sults of Corcione et al. [13] and one worked ex am ple [14]. Heo and Chung [22] re ported on thever ti cal iso ther mal cyl in ders, while the oth ers re ported on the ver ti cal, in clined, and hor i zon taliso ther mal flat plates.

Ta ble 1 pro vides the data of dif fer ent rect an gu lar flat plates and dif fer ent cir cu lar cyl -in ders which were ex per i men tally, nu mer i cally, and the o ret i cally an a lyzed. The in cli na tions ofthe plates change from the ver ti cal to the hor i zon tal ori en ta tion, while the cyl in ders only have aver ti cal po si tion. The pa ram e ters in di cated in tab. 1 have the fol low ing mean ings: L is the plateheight, W – the plate width, D – the cyl in der di am e ter, and Gr – the Grashof num ber.

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

926 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

Page 3: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

Ta ble 1. Sum mary of data rel e vant to plates and cyl in ders used in the pres ent study

y [°] Ob ject L [m] W or D [m] Pr [–] Gr [–] Anal y sis and ref er ence

0 Plate 4 10 0.7 3.744×1011 The o ret i cal, [14]

0, 15, 30, 45, 60, 75

Plate 0.504 0.2 0.71 2.394×106 Ex per i men tal, [8]

15, 30, 45, 60 Plate 0.504 0.2 0.71 2.394×106 Nu mer i cal, [13]

0, 5, 10, … , 75 Plate Un known Un known 0.71 14084.51 Nu mer i cal, [13]

0, 5, 10, … , 75 Plate Un known Un known 7 1428.571 Nu mer i cal, [13]

0, 5, 10, … , 75 Plate Un known Un known 70 142.857 Nu mer i cal, [13]

0, 10, 20, … , 90 Plate 0.1 0.03 2094 8.06×107 Ex per i men tal, [10]

0, 10, 20, … , 90 Plate 0.35 0.03 2094 3.45×109 Ex per i men tal, [10]

0 Cyl in der 0.1 0.067 2094 8.06×107 Ex per i men tal, [22]

0 Cyl in der 0.25 0.067 2094 1.26×109 Ex per i men tal, [22]

0 Cyl in der 0.45 0.067 2094 7.34×109 Ex per i men tal, [22]

The o ret i cal back ground

Nat u ral con vec tion from in clined PV mod ules

Fig ure 1 shows cross-sec tional views of a PV mod ule at in cli na tions of y = 0°, 0° < y < <.90°, and y = 90° in com bi na tion with the cor re spond ing air-flows along its sur faces. As the PVmod ule ro tates from the ver ti cal to the hor i zon tal po si tion, its one sur face faces up wards while an -other one faces down wards. In gen eral, a PV mod ule is not placed ver ti cally or hor i zon tally. Themod ule is in clined at an an gle y to op ti mize the out put power [5]. The av er age Nusselt num ber forthe DF sur face of a PV mod ule in clined at an an gle up to 75° can be es ti mated by re plac ing the ac -cel er a tion of grav ity, g, with gcos y in the cor re la tion for nat u ral con vec tion from a ver ti cal plate[5, 13]. Since the buoy ancy force is mainly into the DF sur face of a PV mod ule, a lam i nar flow pre -vails up to very high Ray leigh num bers [23]. Ac cord ing to [9, 10, 14, 19], lam i nar nat u ral con vec -tion from the UF sur face of a PV mod ule can also be af fected by the flow sep a ra tion.

The sig nif i cance of the nat u ral con vec tion heat trans fer from a PV mod ule can be de -ter mined by the ra tio of Gr/Re2, where Re is the Reynolds num ber. If Gr/Re2 o 1or Gr/Re2 n 1,the con vec tive heat trans fer is dom i nated by nat u ral or forced con vec tion, re spec tively [5]. A

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 927

Figure 1. Air-flows along a PV module for different inclination angles

Page 4: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

value of Gr/Re2 ~ 1 means both nat u ral and forced con vec tion heat trans fers have sig nif i cant ef -fects [5].

Cor re la tions for nat u ral con vec tion from iso ther mal plates

In or der to cal cu late the nat u ral con vec tion heat trans fer from ver ti cal, in clined, andhor i zon tal iso ther mal flat plates, the au thors de rived cor re la tions of the fol low ing form:

Nu( ) ( )( )y y= ÕC nN (1)

where PN is de fined as [15]

=Õ+

NRa

10 492.

Pr

(2)

These cor re la tions are sim i lar to the ones for ver ti cal plates and cyl in ders from [15]. Inac cor dance with [15-17], eq. (1) can be ap plied to any char ac ter is tic length, an gle of in cli na tionbe tween 0 and 90° from the ver ti cal, and Prandtl num ber be tween 0.001 and pos i tive in fin ity.

The cor re la tions (1) are de rived based on the ex ist ing em pir i cal cor re la tions [14, 15],ex per i men tal data [10, 22], and nu mer i cal re sults [12]. All the new cor re la tions, to gether withthe lim i ta tions, flow re gimes, ref er ences, and cor re spond ing in di ca tions, are pre sented in tab. 2.It can be shown that eqs. (6)-(12) can be re duced ex actly to cor re la tions for the ver ti cal po si tionor to cor re la tions for the hor i zon tal po si tion. It can also be seen that eqs. (11) and (18) are verysim i lar to eqs. (10) and (17), re spec tively. The cor re la tions (1) agree well with the ex ist ing ones.The pa ram e ters Grcr1, Grcr2, and Grcr3, which are given in tab. 2, rep re sent the crit i cal Grash ofnum bers in di cat ing the on set of tran si tion from lam i nar to tur bu lent flow re gime, i. e. the firstap pear ance of in sta bil ity of lam i nar flow over an in clined flat plate. In tab. 2 are also shown Grcr4

and Grcr5 in di cat ing the on set of flow sep a ra tion. The Grcr1, Grcr2, and Grcr4 cor re spond to the UFsur face, while Grcr3 and Grcr5 cor re spond to the DF sur face.

If the Grashof num ber is larger than the ap pro pri ate crit i cal Grashof num ber Grcr1,Grcr2 or Grcr3, the Nusselt num ber starts de vi at ing from lam i nar be hav ior. More over, if Grashofnum ber is larger than Grcr4 or Grcr5, Nusselt num ber is also af fected by the flow sep a ra tion [9, 10, 14]. An in crease in the in cli na tion an gle, y, de creases Grcr1, Grcr2, and Grcr4 and in creases Grcr3

and Grcr5. Also, an in crease in the Prandtl num ber has a destabilizing ef fect on the flow and de -creases the crit i cal Grashof num bers [11]. A set of ex per i men tal data con cern ing the crit i calGrashof num bers Grcr1, Grcr2, Grcr3, Grcr4, and Grcr5, which mark the first ap pear ance of in sta bil -ity or the on set of flow sep a ra tion at dif fer ent in cli na tions and Prandtl num ber, was re ported in[9, 10, 14, 18, 24-27].

Ac cord ing to [9], af ter the flow sep a ra tion takes place the Nusselt num ber for the UFsur face of a hor i zon tal plate may be con sid ered to be in agree ment with Chur chill and Chu cor re -la tion for tran si tional and tur bu lent flows along the sur faces of a ver ti cal plate. This is also inagree ment with Black and Norris [24] cor re la tion for a tur bu lent flow along the UF sur face of ahor i zon tal plate. Since the flow sep a ra tion from a DF sur face is not ex pected [8], it is as sumedthat the cor re spond ing Nusselt num ber cor re la tions agree with those for lam i nar nat u ral con vec -tion from the DF sur faces of hor i zon tal and in clined plates. This as sump tion is well ver i fied inex per i ments of Lim et al. [10]. More over, the ex per i ments of Lim et al. [10], as well as of Heoand Chung [22], have shown that the flow sep a ra tion from the sur faces of a ver ti cal plate can bemod eled by us ing the Chur chill and Chu cor re la tion for the lam i nar flow along the sur faces of aver ti cal plate. While eqs. (11) and (18) are de rived based on the ex per i men tal re sults for the flat

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

928 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

Page 5: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

plate with H/W = 11.67, all other cor re la tions are de rived from the avail able data on flat plateswith H/W £ 3.33. There fore, the ra tio H/W £ 3.33 can also be in tro duced as a lim it ing cri te rionfor eqs. (3)-(19) and the five crit i cal Grashof num bers.

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 929

Ta ble 2. Cor re la tions for nat u ral con vec tion from iso ther mal plates and sur faces

Nu(y) = C(y)×(PN)n Plate tem per a ture is con stant

Ref er ence Eqs.PN = Ra/(1+0.492/Pr) 0.001 £ Pr £ +4

Ge om e tryRange of Gr

Flowre gime

Cor re la tion

Plate Sur. C(y) n

Ver ti caly = 0

SF a

Gr £ Grcr4 Lam i nar 0.67 1/4 [15] (3)

Grcr1 ³ Gr > Grcr4 Sep a ra tion 0.057 1/3 [10, 14, 24] c (4)

Gr > Grcr1 Tur bu lent 0.1335 1/3 [14] d (5)

< 0 ,denil cnIy

°09 < UF

Gr £ Grcr4 for y < 21.42°b, Gr £ Grcr1 for 21.42° £ y <

30° or Gr £ Grcr2 for y ³ 30°Lam i nar

0.376 + 0.294 (cos y)1/4 1/4 [12, 14, 15] e (6)

0.616 + 0.054 (cos )1/4 1/4 [14, 15] f (7)

Grcr1 ³ Gr > Grcr4 fory < 21.42° Gr > Grcr4 for

y ³ 21.42°Sep a ra tion 0.057 + 0.098 (sin y)1/3 1/3 [10, 14, 24] c (8)

Gr > Grcr1 for y <21.42°,Grcr1 < Gr £ Grcr4 for

21.42° £ y < 30° orGrcr2 < Gr £ Grcr4 for y ³ 30°

Tur bu lent 0.1335 + 0.0456 (sin y)1/3 1/3 [14] d (9)

DF

Gr £ Grcr5 Lam i nar 0.308 + 0.362 (cos y)1/4 1/4 [12, 14, 15] e (10)

Grcr3 ³ Gr > Grcr5 Sep a ra tion 0.046 + 0.011 (cos y)1/3 1/3 [10, 14, 24] c (11)

Gr > Grcr3 Tur bu lent 0.036 + 0.0975 (cos y)1/3 1/3 [14] d (12)

la tno z iroH

y°09

= UF

Gr £ Grcr2 Lam i nar0.376 1/4 [12, 14, 15] e (13)

0.616 1/4 [14, 15] f (14)

Gr > Grcr4 Sep a ra tion 0.155 1/3 [10, 14, 24] c (15)

Grcr2 < Gr £ Grcr4 Tur bu lent 0.1791 1/3 [14] d (16)

DF

Gr £ Grcr5 Lam i nar 0.308 1/4 [12, 14, 15] e (17)

Grcr3 ³ Gr > Grcr5 Sep a ra tion 0.046 1/3 [10, 14, 24] c (18)

Gr > Grcr3 Tur bu lent 0.036 1/3 [14] d (19)

a An ab bre vi a tion of sideward-fac ing.b The in cli na tion an gle of 21.42° co mes from Grcr1= Grcr4.c Cor re la tions de rived based on ex per i ments with in clined plates con ducted by Lim et al. [10], ex per i ments with in clined..cyl in ders con ducted by Heo and Chung [22], and cor re la tions pro vided by Chur chill and Chu (for a lam i nar flow along the..sur faces of a ver ti cal plate) [14], Black and Norris (for a tur bu lent flow along the UF sur face of a hor i zon tal plate) [24] and..McAdams (for a lam i nar flow along the DF sur face of a hor i zon tal plate) [14].d Cor re la tions de rived based on cor re la tions pro vided by Chur chill and Chu (for tran si tional and tur bu lent flows along the..sur faces of a ver ti cal plate) [14], Fujii and Imura (for a tur bu lent flow along the UF sur face of a hor i zon tal plate) [9, 14] and..McAdams (for a lam i nar flow along the DF sur face of a hor i zon tal plate) [14].e Cor re la tions de rived based on cor re la tions pro vided by Arpaci et al. (for a lam i nar flow along the sur faces of a ver ti cal plate)..[15] and McAdams (for a lam i nar flow along the sur faces of a hor i zon tal plate) [14], and nu mer i cal study con ducted by Wei..et al. (for a lam i nar flow along the sur faces of a hor i zon tal plate) [12].f Cor re la tions de rived based on cor re la tions pro vided by Arpaci et al. (for a lam i nar flow along the sur faces of a ver ti cal plate)..[15] and McAdams (for a lam i nar flow along the sur faces of a hor i zon tal plate) [14]. These two cor re la tions ap ply only to..lam i nar nat u ral con vec tion from the UF sur face of a heated plate when its DF sur face is ther mally in su lated.

Page 6: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

In ac cor dance with [9, 10, 13, 14, 18, 19], the fol low ing equa tions are de rived to cal cu -late the crit i cal Grashof num bers Grcr1, Grcr2, Grcr3, Grcr4, and Grcr5 as func tions of the in cli na tion an gle y and the Prandtl num ber:

Grcr1 = -110 24 258 13 028

Pr( . cos . )y for UF sur face and 0° < y < 30° (20)

Grcr2 = +110 5 3 65

Pr( cos . )y for UF sur face and 30° £ y £ 90° (21)

Gr ecr3 =×17 1011

2 90.

Pr( ln )/y for UF sur face and 0° £ y £ 90° (22)

Grcr4 = +110 5 4 9

Pr( cos . )y for UF sur face and 0° < y £ 90° (23)

Gr ecr5 =109 9

2 90.

( ln )/

Pry for UF sur face and 0° £ y < 90° (24)

as well as for H/W £ 3.33 and 0.001 £ Pr £ +4, as shown in fig. 2.

Fur ther more, the Grashof num ber for a ver ti cal cyl in der is de fined us ing its height, L,as a char ac ter is tic length. If the ther mal bound ary layer thick ness is not large com pared to thecyl in der di am e ter, D, the nat u ral con vec tion heat trans fer may be cal cu lated with the same cor -re la tions used for ver ti cal flat plates. Ac cord ing to [22], a ver ti cal iso ther mal cyl in der may betreated as a ver ti cal iso ther mal flat plate when the fol low ing cri te rion for transversal cur va tureef fect is valid in the range of Prandtl num ber from 0.01 to 4173:

GrD

LL

41 2 2

114744892 0006085

£ + -..

Pr

.

Pr/(25)

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

930 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

Fig ure 2. A com par i son be tween the crit i cal Grashof num bers Grcr1, Grcr2, Grcr3, Grcr4, and Grcr5 and theas so ci ated ex per i men tal data for dif fer ent an gles of in cli na tion and Prandtl num bers

Page 7: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

This im plies that the ex per i men tal data on ver ti cal cyl in ders, which are dis played intab. 2, can be used in the pres ent study.

Heat trans fer model

This sec tion pro vides guid ance for themod el ing of the heat trans fer along the sur faces ofthe PV mod ule, as shown in fig. 3. The av er ageval ues of the heat trans fer co ef fi cients are cal cu -lated us ing the law of con ser va tion of en ergy, cor -re la tions for nat u ral con vec tion given in tab. 2 anda num ber of the ex ist ing cor re la tions for forcedcon vec tion and ra di a tion. All the pa ram e ters dis -played in this sec tion and their mean ings are in -cluded in the No men cla ture. Fig ure 3 shows thesky and the ground are mod eled as two un bounded par al lel flat plates. The four sides of the PV mod -ule are as sumed to be adi a batic and the two sur -faces of the PV mod ule are as sumed to be at a con -stant tem per a ture TPV = (TUF + TDF)/2. The groundtem per a ture Tg is as sumed to equal the sky tem per -a ture Tsky, which is mod eled by the cor re la tion ofSwinbank [28].

The heat trans fer co ef fi cients cor re spond ing to the pro cesses Qth,s,UF®a (y), Q'th,s,UF®a, Qtr,s,UF®a, Qth,s,DF®a, Q'th,s,DF®a, and Qtr,s,DF®a are hUF = hUF (y), h'UF, hr,UF, hDF = hDF (y), h'DF,and hr,DF, re spec tively.

As sum ing a num ber of the afore men tioned pa ram e ters are known, heat losses due tonat u ral con vec tion need to be es ti mated for dif fer ent in cli na tions y.

The it er a tive pro ce dure for com put ing hUF and hDF re quires knowl edge of TPV, h'UF,hr,UF, h'DF, and hr,DF, which are ini tially un known. To ob tain an ini tial es ti mate of TPV, the samenu mer i cal value should be taken for all un known co ef fi cients (for ex am ple 12 Wm–2K–1). There -fore, an ini tial es ti mate of TPV can be ob tained from [29]:

aS E,s,S th,s,UF a th,s,UF a tr,s,UF a th,s,DQ Q Q Q Q= + + +® ® ®' F a th,s,DF a tr,s,DF a el® ® ®+ + +Q Q Q S' / (26)

More pre cisely:

TQ Q S h h h h T h T

PVS E,s,S el UF UF DF DF a r,UF

=× - + + + + × + ×a / ( ' ' ) sky r,DF g

UF UF r,UF DF DF r,DF

+ ×

+ + + + +

h T

h h h h h h' '(27)

where

sQ h T T Q h T T Qth,s,UF a UF PV a th,s,UF a UF PV a t® ®= - = -( ), ' ' ( ), r,s,UF a r,UF PV sky

r,UF UF SB PV sky2

® = -

= +

h T T

h T T

( ),

( )(e s 2 T T Q h T T Q hPV sky th,s,DF a DF PV a th,s,DF a DF+ = - =® ®), ( ), ' ' (T T

Q h T T h T

PV a

tr,s,DF a r,DF PV g r,DF DF SB PV2

-

= - =®

),

( ), (e s + + =

= ×

T T T Q Q S

Q Q

g2

PV g el el S E,s,S

E,s,S E,s,S

)( ), ,

' cos

h a

d, . .and sky g a1.5T T T= = 00552

For forced con vec tion from the UF and DF sur faces of the PV mod ule and any di rec -tion of the wind, the fol low ing cor re la tions can be used [30]:

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 931

Figure 3. Heat transfer along the surfaces ofthe PV module

Page 8: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

Nu for= = £ ×0664 5 101 2 1 3 5. Re Pr Re // / n nw L (28)

Nu for= - = > ×( . Re ) Pr Re // /0037 871 5 104 5 1 3 5n nw L (29)

where Nu is the cor re spond ing Nusselt num ber, Re – the Reynolds num ber, vw – the wind ve loc -ity, and n – the ki ne matic vis cos ity of the air. For the case of ra di a tion, the cor re spond ing heattrans fer co ef fi cients are non-lin ear and cal cu lated as sum ing the op ti cally thin limit. More de tails on this heat trans fer model can be found in [29], where a sim i lar model was pre sented.

Re sults and dis cus sion

Val i da tion of the pro posed cor re la tions

Fig ure 4 shows the re sults ob tained by fit ting eqs. (3), (4), (6), (8), (10), and (11) to thenu mer i cal and ex per i men tal re sults in [8, 10, 13, 22]. Ac cord ing to this fig ure, in al most allcases, the Nusselt num ber reaches its max i mum for the in cli na tion of y = 0°. The Nusseltnum ber grad u ally de creases as the in cli na tion an gle y in creases and reaches its min i mum fory = 90°. An ex cep tion oc curs in cases of the lam i nar and tur bu lent flows with the flow sep a ra -tion from the UF sur faces when the Nusselt num ber has its min i mum for y = 0° and its max i -mum for y = 90°, as shown in figs. 4(b) and 4(c). The cor re la tions for lam i nar nat u ral con vec -tion with out the flow sep a ra tion from the UF and DF sur faces re veal sim i lar trends with verysmall dif fer ences. The rel a tive er rors be tween the nu mer i cal or ex per i men tal data and the dataob tained by the pro posed cor re la tions for in clined plates are lower than 19.31% for a lam i nar re -

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

932 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

Figure 4. A comparison between the Nusselt number calculated using the equations from tab. 2 andrelevant data from the literature: (a) in case when the flows are laminar; (b) in case when the flows arelaminar and affected by the flow separation; and (c) in case when the flows are turbulent and affected bythe flow separation

Page 9: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

gime with out and with the flow sep a ra tion, figs. 4(a) and 4(b), and lower than 28.24% for a tur -bu lent re gime with the flow sep a ra tion, fig. 4(c). Max i mum rel a tive er rors are ob tained for theex per i men tal re sults of Lim et al. [10], i. e. for the plates with di men sions of 0.1 ´ 0.03 m2 and0.35 ´ 0.03 m2. For other plates, the er rors are def i nitely smaller, i. e. from 0 to about 15%.

The in flu ence of the in cli na tion an gle on the lam i nar nat u ral con vec tion from an iso -ther mal plate for Pr = 0.71 and Gr = 2.394×106 is shown in fig. 5(a). Fig ure 5(a) il lus trates thecom par i sons be tween eqs. (6), (7), and (10) on one side and the cor re la tions of Chur chill andChu in [14], Raithby and Hollands [23], Al-Araby and Sakr [31], and Corcione et al. [13] on theother.

There are a large num ber of cor re la tions for lam i nar nat u ral con vec tion avail able in the lit er a ture since the in clined plate sur rounded by air is fre quently en coun tered in prac tice. In or -der to pro vide a com par i son, the pres ent pa per se lects some of the most com monly used em pir i -cal cor re la tions for the av er age Nusselt num ber. Equa tions (6), (7), and (10) fol low the trends ofse lected cor re la tions, al though giv ing dif fer ent rel a tive er rors. The small est er rors are be tweenthese three equa tions and the cor re la tion of Raithby and Hollands [23]. For in stance, eqs. (6),(7), and (10) for y = 75° give er rors with re spect to the cor re la tion of Raithby and Hollands [23]which equal 29.91, 45.36, and 25.7%, re spec tively. These er rors orig i nate from the fact that thecor re la tion of Raithby and Hollands [23] rep re sents the arith me tic mean of the av er age Nusseltnum ber for the UF sur face of the plate and the av er age Nusselt num ber for the DF sur face of theplate, of course, com par ing to the eqs. (6), (7), and (10). More over, these equa tions give the ex -pected trends but over es ti mate the Nusselt num bers cal cu lated us ing the cor re la tion of Raithbyand Hollands [23].

The ef fect of the in cli na tion an gle on the tur bu lent nat u ral con vec tion from an iso ther -mal plate of di men sions 4 m by 10 m for Pr = 0.7 and Gr = 3.744×1011 is shown in fig. 5(b). Fig -ure 5(b) com pares the eqs. (9) and (12) with the cor re la tions of Fujii and Imura [9, 14], Chur chill and Chu in [14], McAdams in [14], and Black and Norris [24]. In some of these cor re la tions, theRayleigh num ber is mod i fied with sin y or cos y.

In ac cor dance with fig. 5(b), eq. (9) fol lows the trend of the cor re la tion of Fujii andImura [9, 14] be tween the in cli na tions of 20-90°, as well as the trend of the cor re la tion of Blackand Norris [24] be tween the in cli na tions of 45-90°. A max i mum rel a tive er ror of 5.59% is ob -tained for the UF sur face. Fig ure 5(b) also shows that eq. (12) fol lows the trend of a mod i fied

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 933

Fig ure 5. A com par i son be tween the equa tions from tab. 2 and the ex ist ing cor re la tions: (a) for lam i narnat u ral con vec tion and (b) tur bu lent nat u ral con vec tion

Page 10: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

cor re la tion of Chur chill and Chu in [14]. The stan dard cor re la tion of Chur chill and Chu [14] fortran si tional and tur bu lent flows along the sur faces of a ver ti cal plate is mod i fied with cos y. Therel a tive er rors be tween the eq. (12) and the mod i fied cor re la tion of Chur chill and Chu in [14] are lower than 18.8% for 0° £ y £ 80° (i. e. be tween 0-18.8%).

Worked ex am ples

In this pa per, the pro posed cor re la tions are ap plied to study two dif fer ent PV mod ules.Heat trans fer pro cesses as so ci ated with these two PV mod ules are pre sented in fig. 3. Each PVmod ule has a width, W = WPV, and a height, L = LPV – char ac ter is tic length. The PV mod ules aremounted on the ground sur face at dif fer ent in cli na tions from the ver ti cal, y. Each PV mod ulehas a so lar-to-elec tric power con ver sion ef fi ciency, hel, a so lar ab sorp tion co ef fi cient of the UFsur face, aS, a ther mal emis sion co ef fi cient of the UF sur face, eUF, and a ther mal emis sion co ef fi -cient of the DF sur face, eDF. The PV mod ules are sit u ated in en vi ron ments hav ing dif fer ent tem -per a tures, Ta, and a pres sure of 1 at mo sphere. The PV mod ules are ex posed to the ef fects of di -rect so lar irradiance, Q'E,s,S, and wind ve loc ity, vw. Heat ex change be tween the first PV mod uleand its en vi ron ment oc curs through nat u ral con vec tion and ra di a tion. In the case of the sec ondPV mod ule, heat ex change oc curs through mixed con vec tion and ra di a tion. The PV mod ules are also as sumed to be solid, iso tro pic, and ho mo ge neous ma te ri als. The heat trans fer co ef fi cientsdue to con vec tion and ra di a tion (hUF, h'UF, hr,UF, hDF, h'DF, and hr,DF) need to be cal cu lated forvar i ous in cli na tion an gles.

Ex am ple 1. W = WPV = 0.5442 m, L = LPV = 0.43 m, hel = 0.14, aS = 0.97, eUF = 0.91, eDF = 0.85, Ta = 22 °C, y = 53°, Q'E,s,S = 920 Wm–2, and vw = 0 ms–1 [20].

Ex am ple 2. W = WPV = 0.468 m, L = LPV = 0.624 m, hel = 0.113, aS = 0.97, eUF = 0.91, eDF = 0.85, Ta = 36 °C, y = 42°, Q'E,s,S = 997cos (48°) Wm–2, and vw = 2.3 ms–1 [4, 21].

Ta bles 3 and 4 sum ma rize the an a lyt i cal re sults ob tained for these two ex am ples. Ta -ble 3 cor re sponds to the first PV mod ule, while tab. 4 cor re sponds to the sec ond one. For eachin cli na tion an gle y a set of 12 to 14 it er a tions was needed. The heat trans fer co ef fi cients are cal -cu lated us ing a MATLAB pro gram.

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

934 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

Ta ble 3. Heat trans fer co ef fi cients for the first PV mod ule at dif fer ent in cli na tion an gles

y [°] d [°] TPV [°C] hUF and h’UF

[Wm–2K–1]hr,UF

[Wm–2K–1]hDF and h’DF

[Wm–2K–1]hr,DF

[Wm–2K–1]

0 –53 38.907 3.787 and 0 5.367 3.787 and 0 5.014

10 –43 43.424 4.003 and 0 5.496 4.001 and 0 5.133

20 –33 47.057 4.134 and 0 5.601 4.128 and 0 5.232

30 –23 48.878 4.991 and 0 5.654 4.152 and 0 5.282

40 –13 50.490 5.174 and 0 5.702 4.142 and 0 5.326

50 –3 51.247 5.287 and 0 5.724 4.074 and 0 5.347

53 0 52.312 4.512 and 0 5.756 4.074 and 0 5.376

60 7 52.101 4.578 and 0 5.750 3.974 and 0 5.371

70 17 51.084 4.609 and 0 5.719 3.765 and 0 5.342

80 27 49.261 4.564 and 0 5.665 3.434 and 0 5.292

90 37 47.830 4.504 and 0 5.623 1.928 and 0 5.253

Page 11: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

It can be no ticed from tabs. 3 and 4 that the heat losses due to nat u ral con vec tion fromthe sur faces of the PV mod ules change be tween: (1) 13.863-20.175% for the UF sur face of thefirst PV mod ule; (2) 8.126-16.092% for the DF sur face of the first PV mod ule; (3)6.775-9.451% for the UF sur face of the sec ond PV mod ule; and (4) 3.082-7.504% for the DFsur face of the sec ond PV mod ule. The heat losses due to nat u ral con vec tion are ex pressed as aper cent age of the to tal heat loss. Trends of the heat trans fer co ef fi cients hUF and hDF are sim i larto those ob tained by Lim et al. [10] for in clined flat plates. More over, the re sults ob tained fory = 53° and y = 42° cor re spond well with the ex per i ments per formed by Date et al. [20] and Ali et al. [21], re spec tively.

Con clu sions

The main con clu sions aris ing from the pres ent pa per are as fol lows.· A set of new cor re la tions for nat u ral con vec tion with out and with the flow sep a ra tion, based

on the fun da men tal dimensionless num ber, is de rived and suc cess fully val i dated. Thecor re la tions ap ply to ver ti cal, in clined, and hor i zon tal flat plates as well as sur faces.

· In or der to cal cu late the crit i cal Grashof num bers, the fol low ing five cor re la tions are used:(1) a new cor re la tion in di cat ing the on set of tran si tional/tur bu lent flow along the UF sur faceof a flat plate for 0° < y < 30°, (2) a known cor re la tion of Corcione et al. [13] in di cat ing theon set of tran si tional/tur bu lent flow along the UF sur face of a flat plate for 30° £ y £ 90°, (3) a mod i fied cor re la tion of Warneford [18] in di cat ing the on set of tran si tional/tur bu lent flowalong the DF sur face of a flat plate for 0° £ y £ 90°, (4) a new cor re la tion in di cat ing the on set of flow sep a ra tion along the UF sur face of a flat plate for 0° < y £ 90°, and (5) a newcor re la tion in di cat ing the on set of flow sep a ra tion along the DF sur face of a flat plate for0° £ y £ 90°.

· All the pro posed cor re la tions for nat u ral con vec tion and the crit i cal Grashof num bers arelim ited by the ra tio of H/W £ 3.33 and gen er al ized to the en tire range of Prandtl num bers(0.001£ Pr £ +4) with a sat is fac tory ac cu racy.

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 935

Ta ble 4. Heat trans fer co ef fi cients for the sec ond PV mod ule at dif fer ent in cli na tion an gles

y [°] d [°] TPV [°C] hUF and h’UF

[Wm–2K–1]hr,UF

[Wm–2K–1]hDF and h’DF

[Wm–2K–1]hr,DF

[Wm–2K–1]

0 –42 45.711 2.976 and 7.519 6.122 2.976 and 7.519 5.719

10 –32 47.404 3.090 and 7.519 6.174 3.089 and 7.519 5.767

20 –22 48.676 3.155 and 7.518 6.212 3.150 and 7.518 5.803

30 –12 49.242 3.883 and 7.518 6.230 3.150 and 7.518 5.819

40 –2 49.560 3.985 and 7.518 6.240 3.117 and 7.518 5.828

42 0 49.569 3.998 and 7.518 6.240 3.105 and 7.518 5.828

50 8 49.666 3.390 and 7.518 6.243 3.053 and 7.518 5.831

60 18 49.055 3.426 and 7.518 6.224 2.925 and 7.518 5.814

70 28 48.004 3.392 and 7.519 6.192 2.736 and 7.519 5.784

80 38 46.534 3.285 and 7.519 6.147 2.455 and 7.519 5.742

90 48 44.848 3.115 and 7.518 6.096 1.338 and 7.518 5.694

Page 12: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

· In tro duc ing the pro posed cor re la tions into the heat trans fer model, a sim ple al go rithm toes ti mate the av er age heat trans fer co ef fi cients due to nat u ral con vec tion, forced con vec tion,and ra di a tion is de vel oped. The heat trans fer co ef fi cients due to nat u ral con vec tion areavail able for dif fer ent in cli na tion an gles.

· The pro posed heat trans fer model that is based on the Swinbank cor re la tion [28] gives betterre sults than the mod els de vel oped us ing the ra di a tion shape fac tors.

· The heat trans fer co ef fi cients due to nat u ral con vec tion from the in clined PV mod ules havetrends which are in the line with the ex pec ta tions.

· The heat losses due to nat u ral con vec tion from the UF and DF sur faces of the PV mod ules are be tween 6.775-20.175% and 3.082-16.092% of the to tal heat loss, re spec tively. Lowerval ues of the heat losses due to nat u ral con vec tion cor re spond to the case when the trans fer of heat is af fected by the wind.

· The pre sented an a lyt i cal re sults cor re spond well with ex ist ing ex per i men tal data.

Ac knowl edge ment

This pa per was based on re search con ducted within the pro ject TR33046 funded by the Min is try of Ed u ca tion, Sci ence, and Tech no log i cal De vel op ment of the Re pub lic of Serbia.

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

936 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938

No men cla ture

C – pa ram e ter in eq. (1), [–]D – cyl in der di am e ter, [–]g – ac cel er a tion of grav ity, [ms–2]Gr – Grashof num ber, [–]Grcr – crit i cal Grashof num ber, [–]hDF, hUF – co ef fi cients due to nat u ral con vec tion

...from the DF and UF sur faces,

...re spec tively, [Wm–2K–1]h‘DF, h‘UF – co ef fi cients due to forced con vec tion

. from the DF and UF sur faces,

...re spec tively, [Wm–2K–1]hr,DF, hr,UF – co ef fi cients due to ra di a tion from the

....DF and UF sur faces, re spec tively,

....[Wm–2K–1]L – plate height, cyl in der height or

....char ac ter is tic length, [m]LPV – height of a PV mod ule, [m]n – ex po nent in eq. (1), [–]rnDF – a nor mal to the DF sur face, [–]rnUF – a nor mal to the UF sur face, [–]Nu – Nusselt num ber, [–]Pr – Prandtl num ber, [–]QE,s,S – so lar irradiance com po nent which is

....nor mal to the UF sur face, [Wm–2]Q‘E,s,S – di rect so lar irradiance, [Wm–2]Qel – to tal elec tric power gen er ated by a

.....PV mod ule, [W]Qth,s,DF®a – nat u ral con vec tion from the DF

.....sur face to the air, [Wm–2]Q‘th,s,DF®a – forced con vec tion from the DF

.....sur face to the air, [Wm–2]Qth,s,UF®a – nat u ral con vec tion from the UF

.....sur face to the air, [Wm–2]

Q‘th,s,UF®a – forced con vec tion from the UF.....sur face to the air, [Wm–2]

Qtr,s,DF®a – net ra di a tion trans fer from the DF.....sur face to the am bi ent, [Wm–2]

Qtr,s,UF®a – net ra di a tion trans fer from the UF.....sur face to the am bi ent, [Wm–2]

Ra – Ray leigh num ber, [–]Re – Reynolds num ber, [–]S – ac tive area of a PV mod ule, [m2]Ta – air tem per a ture, [K] or [°C]TDF – tem per a ture of the DF sur face, [K]Tg – ground tem per a ture, [K]TPV – av er age tem per a ture of a PV mod ule,

....[K] or [°C]Tsky – sky tem per a ture, [K]TUF – tem per a ture of the UF sur face, [K]vw – wind ve loc ity, [ms–1]W – plate width, [m]WPV – width of a PV mod ule, [m]

Greek sym bols

aS – so lar ab sorp tion co ef fi cient of the UF...sur face of a PV mod ule, [–]

d – an gle be tween the sun rays and the nor mal nUF, [°]

eDF – ther mal emis sion co ef fi cient of the...DF sur face of a PV mod ule, [–]

eUF – ther mal emis sion co ef fi cient of the UF sur face of a PV mod ule, [–]

g – an gle be tween the ver ti cal and the....nor mal nUF or nDF, [°]

hel – so lar-to-elec tric power con ver sion ef fi ciency, [–]

Page 13: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

Ref er ences

[1] Ali, M., et al., Per for mance En hance ment of PV Cells through Mi cro-Chan nel Cool ing, AIMS En ergy, 3(2015), 4, pp. 699-710

[2] Bashir, M. A., et al., Com par i son of Per for mance Mea sure ments of Pho to vol taic Mod ules dur ing Win terMonths in Taxila, Pa ki stan, In ter na tional Jour nal of Photoenergy, 2014 (2014), ID 898414

[3] Ali, H. M., et al., Ef fect of Dust De po si tion on the Per for mance of Pho to vol taic Mod ules in Taxila, Pa ki -stan, Ther mal Sci ence, On-line first, https://doi.org/10.2298/TSCI140515046A

[4] Bashir, M. A., et al., An Ex per i men tal In ves ti ga tion of Per for mance of Pho to vol taic Mod ules in Pa ki stan,Ther mal Sci ence, 19 (2015), Suppl. 2, pp. S525-S534

[5] Armstrong, S., Hurley, W. G., A Ther mal Model for Pho to vol taic Pan els un der Vary ing At mo sphericCon di tions, Ap plied Ther mal En gi neer ing, 30 (2010), 11-12, pp. 1488-1495

[6] Hussein, H. M. S., et al., Per for mance Eval u a tion of Pho to vol taic Mod ules at Dif fer ent Tilt An gles andOri en ta tions, En ergy Con ver sion and Man age ment, 45 (2004), 15-16, pp. 2441-2452

[7] Warner, C. Y., Arpaci, V. S., An Ex per i men tal In ves ti ga tion of Tur bu lent Nat u ral Con vec tion in Air atLow Pres sure along a Ver ti cal Heated Flat Plate, In ter na tional Jour nal of Heat and Mass Trans fer, 11(1968), 3, pp. 397-406

[8] Hassan, K.-E., Mohamed, S. A., Nat u ral Con vec tion from Iso ther mal Flat Sur faces, In ter na tional Jour nalof Heat and Mass Trans fer, 13 (1970), 12, pp. 1873-1886

[9] Fujii, T., Imura, H., Nat u ral Con vec tion from a Plate with Ar bi trary In cli na tion, In ter na tional Jour nal ofHeat and Mass Trans fer, 15 (1972), 4, pp. 755-764

[10] Lim, C.-K., et al., Nat u ral Con vec tion Heat Trans fer on In clined Plates, Trans ac tions of the KSME B, 35(2011), 7, pp. 701-708

[11] Lin, M.-H., Chen, C.-T., Nu mer i cal Study of Ther mal In sta bil ity in Mixed Con vec tion Flow over Hor i -zon tal and In clined Sur faces, In ter na tional Jour nal of Heat and Mass Trans fer, 45 (2002), 8, pp.1595-1603

[12] Wei, J. J., et al., Si mul ta neous Nat u ral-Con vec tion Heat Trans fer above and be low an Iso ther mal Hor i zon -tal Thin Plate, Nu mer i cal Heat Trans fer, Part A, 44 (2003), 1, pp. 39-58

[13] Corcione, M., et al., Nat u ral Con vec tion from In clined Plates to Gases and Liq uids when Both Sides areUni formly Heated at the same Tem per a ture, In ter na tional Jour nal of Ther mal Sci ences, 50 (2011), 8, pp.1405-1416

[14] Holman, J. P., Heat Trans fer, 8th ed., McGraw-Hill, Inc., Sin ga pore, 1999[15] Arpaci, V. S., et al., In tro duc tion to Heat Trans fer, Prentice Hall Inc., Up per Sad dle, River, N. J., USA,

2000[16] Larsen, P. S., Arpaci, V. S., On the Sim i lar ity So lu tions to Lam i nar Nat u ral Con vec tion Bound ary Lay ers,

In ter na tional Jour nal of Heat and Mass Trans fer, 29 (1986), 2, pp. 342-344

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 937

n – ki ne matic vis cos ity of the air, [m2s-1]PN – fun da men tal dimensionless num ber

....for nat u ral con vec tion, [–]sSB – Stefan-Boltzmann con stant,

//[Wm–2K–4]y – angle of inclination from the vertical,

...[°]

Sub scripts

a – air or am bi entcr – crit i calDF®a – from the down ward-fac ing sur face

...to wards the air or the am bi entE – ir ra di a tionel – elec tri calg – groundL –.cyl in der height as a char ac ter is tic

...lengthN – nat u ral con vec tion

r – ra di a tionS – so lars – per square me tersky – skyth – convection or nat u ral con vec tiontr – ther mal ra di a tionUF®a – from the up ward-fac ing sur face

...to wards the air or the am bi entw – wind

Su per script

' – forced con vec tion

Acronyms

DF – down ward-fac ingPV – pho to vol taicSB – Stefan-BoltzmannSF – sideward-fac ingUF – up ward-fac ing

Page 14: MODELING THE EFFECT OF THE INCLINATION ANGLE ON …

[17] Arpaci, V. S., Microscales of Tur bu lence and Heat Trans fer Cor re la tions, In ter na tional Jour nal of Heatand Mass Trans fer, 29 (1986), 8, pp. 1071-1078

[18] Warneford, I. P., Nat u ral Con vec tion from an In clined Flat Plate, Ph. D. the sis, Uni ver sity of Nottingham,Nottingham, UK, 1975

[19] Chang, K. S., et al., Lam i nar Nat u ral Con vec tion Heat Trans fer from Sharp-Edged Hor i zon tal Bars withFlow Sep a ra tion, In ter na tional Jour nal of Heat and Mass Trans fer, 31 (1988), 6, pp. 1177-1187

[20] Date, A., et al., Cool ing of So lar Cells by Chim ney-In duced Nat u ral Draft of Air, Pro ceed ings, 48th

AuSES An nual Con fer ence (So lar 2010), Can berra, Aus tra lia, 2010[21] Ali, H. M., et al., Out door Test ing of Pho to vol taic Mod ules dur ing Sum mer in Taxila, Pa ki stan, Ther mal

Sci ence, 20 (2016), 1, pp. 165-173[22] Heo, J.-H., Chung, B.-J., Nat u ral Con vec tion Heat Trans fer on the Outer Sur face of In clined Cyl in ders,

Chem i cal En gi neer ing Sci ence, 73 (2012), May, pp. 366-372[23] Raithby, G. D., Hollands, K. G. T., Nat u ral Con vec tion, in: Hand book of Heat Trans fer, (Eds. W. M.

Rohsenaw, J. P. Hartnett, Y. I. Cho), McGraw-Hill Book Com pany, New York, USA, 1998, pp. 4.1-4.99[24] Black, W. Z., Norris, J. K., The Ther mal Struc ture of Free Con vec tion Tur bu lence from In clined Iso ther -

mal Sur faces and its In flu ence on Heat Trans fer, In ter na tional Jour nal of Heat and Mass Trans fer, 18(1975), 1, pp. 43-50

[25] Lock, G. S. H., et al., A Study of In sta bil ity in Free Con vec tion from an In clined Plate, Ap plied Sci en tificRe search, 18 (1968), 1, pp. 171-182

[26] Lloyd, J. R., Spar row, E. M., On the In sta bil ity of Nat u ral Con vec tion Flow on In clined and Ver ti cal Sur -faces, Jour nal of Fluid Me chan ics, 42 (1970), 3, pp. 465-470

[27] Lloyd, J. R., et al., Lam i nar, Tran si tion and Tur bu lent Nat u ral Con vec tion Ad ja cent to In clined and Ver ti -cal Sur faces, In ter na tional Jour nal of Heat and Mass Trans fer, 15 (1972), 3, pp. 457-473

[28] Swinbank, W. C., Long-Wave Ra di a tion from Clear Skies, Quar terly Jour nal of the Royal Me te o ro log i cal So ci ety, 89 (1963), 381, pp. 339-348

[29] Klimenta, D., et al., An a lyt i cal and Nu mer i cal Mod el ing of the Ef fect of the Tilt An gle on Nat u ral Con vec -tion from ETCs and PV Pan els, Hu man i ties and Sci ence Uni ver sity Jour nal - Technics, ISSN: 2222-5064(2014), 10, pp. 148-161

[30] Incropera, F. P., et al., Fun da men tals of Heat and Mass Trans fer, 6th ed., John Wiley and Sons Inc., NewYork, USA, 2007

[31] Al-Arabi, M., Sakr, B., Nat u ral Con vec tion Heat Trans fer from In clined Iso ther mal Plates, In ter na tionalJour nal of Heat and Mass Trans fer, 31 (1988), 3, pp. 559-566

Paper submitted: August 21, 2014 © 2017 So ci ety of Ther mal En gi neers of Ser bia

Paper revised: November 26, 2015 Pub lished by the Vin~a In sti tute of Nu clear Sci ences, Bel grade, Ser bia.

Paper accepted: March 14, 2016 This is an open ac cess ar ti cle dis trib uted un der the CC BY-NC-ND 4.0 terms and con di tions

Perovi}, B. D., et al.: Modeling the Effect of the Inclination Angle ...

938 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938