Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example:...

38
Contents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plastic and Creep Response Part I Basic considerations in modeling inelastic response A schematic review of laboratory test results, effects of stress level, temperature, strain rate One-dimensional stress-strain laws for elasto-plasticity, creep, and viscoplasticity Isotropic and kinematic hardening in plasticity General equations of multiaxial plasticity based on a yield condition, flow rule, and hardening rule Example of von Mises yield condition and isotropic hardening, evaluation of stress-strain law for general analysis Use of plastic work, effective stress, effective plastic strain Integration of stresses with subincrementation Example analysis: Plane strain punch problem Example analysis: Elasto-plastic response up to ultimate load of a plate with a hole Computer-plotted animation: Plate with a hole Section 6.4.2 6.20 The plasticity computations are discussed in Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, "On Some Current Procedures and Difficulties in Finite Element Analysis of Elas- tic-Plastic Response," Computers & Structures, 12, 607-624, 1980.

Transcript of Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example:...

Page 1: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Contents:

Textbook:

Example:

References:

Topic 17

Modeling ofElasta-Plastic andCreepResponse Part I

• Basic considerations in modeling inelastic response

• A schematic review of laboratory test results, effects ofstress level, temperature, strain rate

• One-dimensional stress-strain laws for elasto-plasticity,creep, and viscoplasticity

• Isotropic and kinematic hardening in plasticity

• General equations of multiaxial plasticity based on ayield condition, flow rule, and hardening rule

• Example of von Mises yield condition and isotropichardening, evaluation of stress-strain law for generalanalysis

• Use of plastic work, effective stress, effective plasticstrain

• Integration of stresses with subincrementation

• Example analysis: Plane strain punch problem

• Example analysis: Elasto-plastic response up to ultimateload of a plate with a hole

• Computer-plotted animation: Plate with a hole

Section 6.4.2

6.20

The plasticity computations are discussed in

Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, "On SomeCurrent Procedures and Difficulties in Finite Element Analysis of Elas­tic-Plastic Response," Computers & Structures, 12, 607-624, 1980.

Page 2: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-2 Elasto-Plastic and Creep Response - Part I

References:(continued)

Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elas­tic-Plastic and Creep Problems," Nuclear Engineering and Design, 64,49-80, 1981.

The plane strain punch problem is also considered in

Sussman, T., and K. J. Bathe, "Finite Elements Based on Mixed Inter­polation for Incompressible Elastic and Inelastic Analysis," Computers& Structures, to appear.

Page 3: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

. WE "D/SC.L{ SS"E D IN

THE "PRE\llO\A<; LEe­

TU'?ES THE MODELING

OF ELASTIC. MA1E'RIALS

- l'NEA'R S~E-S<;­

STRAIN LA~

Topic Seventeen 17-3

. WE Now WANT TO

.:DIS CIA':,'> TI1 E:

MO"DE LINlQ 0 F

IN ELASTIC HATER,ALS

- ELASTO-1>LASTICIT'f

ANb CREEP

- NONLINEAR S>T'RESc:,­

STRAIN LAw

THE T. L. ANt> lA.L.

FO~t-IULAT10NS.

WE T'ROc.EEtl AS

FCLLoWS :

- WE DISC\i\S, 50 TS'RIEH'i

INELASTIC HATc"RIAL

~EI-\A'J\o'RSJ AS 0\3,-

SE'R'lJE'b IN LAB,-

O'Rt\T01<.'( TES-TS,

- WE J:> \ SC \A SS ~'R\E Fl'l

MObELlNE; OF SUCH

~ES'?ONse IN 1-1> ANAl'lSIS

- WE GENE~AU2E OuR

HObEUN6 CONSlbERA.lloNS

10 2-1) ANb3.-1)

STRES,S 5\1v..A.TI\lNS

Markerboard17-1

Page 4: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-4 Elasto-Plastic and Creep Response - Part I

Transparency17-1

Transparency17-2

MODELING OF INELASTICRESPONSE:

ELASTO-PLASTICITY, CREEPAND VISCOPLASTICITY

• The total stress is not uniquelyrelated to the current total strain.Hence, to calculate the responsehistory, stress increments must beevaluated for each time (load) stepand added to the previous totalstress.

• The differential stress increment isobtained as - assuming infinitesimallysmall displacement conditions-

dO'ij- = C~s (ders - de~~)

where

C~s = components of the elasticitytensor

ders = total differential strain increment

de~~ = inelastic differential strainincrement

Page 5: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

The inelastic response may occurrapidly or slowly in time, depending onthe problem of nature considered.Modeling:• In ~Iasticity, the model assumes that

de~s occurs instantaneously with theload application.

• In creep, the model assumes thatde~~ occurs as a function of time.

• The actual response in nature can bemodeled using plasticity and creeptogether, or alternatively using aviscoplastic material model.

- In the following discussion weassume small strain conditions,hence

• we have either a materially­nonlinear-only analysis

• or a large displacement/largerotation but small strainanalysis

Topic Seventeen 17-5

Transparency17-3

Transparency17-4

Page 6: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-6 Elasto-Plastic and Creep Response - Part I

Transparency17-5

Transparency17-6

• As pointed out earlier, for the largedisplacement solution we would usethe total Lagrangian formulation andin the evaluation of the stress-strainlaws simply use

- Green-Lagrange strain componentfor the engineering strain compo­nents

and

- 2nd Piola-Kirchhoff stress compo­nents for the engineering stresscomponents

Consider a brief summary of someobservations regarding materialresponse measured in the laboratory

• We only consider schematically whatapproximate response is observed; no detailsare given.

• Note that, regarding the notation, no time, t,superscript is used on the stress and strainvariables describing the material behavior.

Page 7: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

MATERIAL BEHAVIOR,"INSTANTANEOUS"

RESPONSE

Topic Seventeen 17-7

Transparency17-7

Tensile Test:

Cross­sec:tionalarea Ao-z...

Assume• small strain conditions

• behavior in compressionis the same as in tension

Hence

e - eoe = --::---=-eop

(J' = -Ao

engineeringstress, (J

assumed

II

II

II

II

~ ", ', ,.",;'

......._-----

fracture

x ultimatestrain

5'

ngineeringtest strain, e

Constant temperature

Transparency17-8

Page 8: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-8 Elasto-Plastic and Creep Response - Part I

Transparency17-9

Transparency17-10

Effect of strain rate:(J'

de. .dt Increasing

e

Effect of temperature(J'

temperature is increasing

e

Page 9: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Topic Seventeen 17-9

MATERIAL BEHAVIOR, TIME­DEPENDENT RESPONSE Transparency

17-11

• Now, at constant stress, inelasticstrains develop.

• Important effect for materials whentemperatures are high

Typical creep curveTransparency

17-12

Engineering strain, efracture

Tertiaryrange

Secondaryrange

a = constanttemperature = constant

Instantaneousstrain {(elastic and Primaryelasto-plastic) range

--:..+----=--+------'--~--+------l-

time

Page 10: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-10 Elasto-Plastic and Creep Response - Part I

Transparency17-13

Effect of stress level on creep strain

ex

temperature = constant

x ---.s---::fracture

I

time

Effect of temperature on creep strainTransparency

17-14

e-S" fracture

x ""x

u=constant

time

Page 11: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

MODELING OF RESPONSE

Consider a one-dimensional situation:tp

~tu h= A

~ jt.---tp'e ~ ~

L L

• We assume that the load is increasedmonotonically to its final value, P*.

• We assume that the time is "long" sothat inertia effects are negligible(static analysis).

Topic Seventeen 17-11

Transparency17-15

Load plasticityeffects

P*:..-....r_--,pt-redominate

.creep effects

fTransparency

17-16

time-dependent inelastic strainsare accumulated - modeled ascreep strains

'-"time inte~al t* (small)without time-dependentinelastic strains

time

Page 12: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-12 Elasto-Plastic and Creep Response - Part I

strain

tOe

trr = E teE

telN = teP

·1·

rry- - - - -

Plasticity, uniaxial, bilinearmaterial model stressTransparency

17-17

Transparency17-18

Creep, power law material model:eC = ao <T

a, ta2

dtrr = E teE

telN = teC + teP

t* t time(small)

• The elastic strain is the same as inthe plastic analysis (this follows fromequilibrium).

• The inelastic strain is time-dependentand time is now an actual variable.

Page 13: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

'Ibpic Seventeen 17-13

Viscoplasticity:

• Time-dependent response is modeledusing a fluidity parameter 'Y:

e = <1 + 'Y (~ - 1)E cry. . /

eVP

Transparency17-19

where

( _ ) _ { 0 I cr -< crycr cry -cr - cry I cr > cry

Transparency17·20

elasticstrain

elasticstrain

totalstrain. .

Increasing 'Y

Typical solutions (1-0 specimen):

steady~state depends onsolution increase in

total \ .strain fry as functionof eVP

time

non-hardening material

time

hardening material

Page 14: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-14 Elasto-Plastic and Creep Response - Part I

Transparency17-21 PLASTICITY

Transparency17-22

• So far we considered only loadingconditions.

• Before we discuss more generalmultiaxial plasticity relations, considerunloading and cyclic loadingassuming uniaxial stress conditions.

• Consider that the load increases intension, causes plastic deformation,reverses elastically, and again causesplastic deformation in compression.

load

elastic

plastic

time

Page 15: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Bilinear material assumption, isotropichardening (T ET

(Ty

e

plastic strain (T~

e~

plastic strainI---+-l e~

Bilinear material assumption, kinematichardening (J ET

(Ty

plastic strain e~

e

Topic Seventeen 17-15

Transparency17-23

Transparency17-24

Page 16: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-16 Elasto-Plastic and Creep Response - Part I

Transparency17-25

Transparency17-26

MULTIAXIAL PLASTICITY

To describe the plastic behavior inmultiaxial stress conditions, we use

• A yield condition

• A flow rule

• A hardening rule

In the following, we consider isothermal(constant temperature) conditions.

These conditions are expressed using astress function tF.

Two widely used stress functions are the

von Mises function

Drucker-Prager function

Page 17: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Topic Seventeen 17-17

von Mises

tF =~ ts ts.. _ tK2 I} II'

Transparency17-27

Drucker-Prager

t ~a._II ; t(j =3

1 t t- s .. s ..2 If If

We use both matrix notation and indexnotation: Transparency

17-28

dCT11dCT22dCT33dCT12dCT23dCT31

dCT =

matrix notationnote that both de~2

and de~1 are added

de~1de~2

de~3

de~2 + de~1

de~3 + de~2

de~3 + de~1

Page 18: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-18 Elasto-Plastic and Creep Response - Part I

Transparency[ de~, de~2 de~3 ]17-29

d P- de~1 de~2 de~3eij -de~1 de~2 de~3

indexnotation

[ dcrl1 d<J12 dcr'3 ]d<J~ = d<J21 d<J22 d<J23

d<J31 d<J32 d<J33

Transparency17-30

The basic equations are then (von Mises tF):1) Yield condition

tF C<Jij, tK) = 0

current str~sses~ function ofplastic strains

tF is zero throughout the plastic response

• 1-D equivalent: ~ C<J2 - t<J~) = 0(uniaxial stress) 7 ~

current stresses function ofplastic strains.

Page 19: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

2) Flow rule (associated rule):

P t atFdeii. = X. -at

I ITi}

where tx. is a positive scalar.

• 1-D equivalent:

d P 2 t\ te11 = 3 I\. IT

d P 1 t\ te22 = - 3 I\. IT

d P 1 t\ te33 = - 3 I\. IT

3) Stress-strain relationship:

dIT = CE (d~ - d~P)

• 1-D equivalent:

dIT = E (de11 - de~1)

Thpic Seventeen 17-19

Transparency17-31

Transparency17-32

Page 20: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-20 Elasto-Plastic and Creep Response - Part I

Transparency17-33

Transparency17-34

Our goal is to determine CEP such that

dO" = CEP de- ~-

\instantaneous elastic-plastic stress-strain matrix

General derivation of CEP:

Define

Page 21: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Using matrix notation,

Topic Seventeen 17-21

Transparency17-35

tgT = [tq11 : tq : tq :: 22: 33:

't. t I

i P22: P33 itIt It]P12 i P23 i P31

We now determine tx. in terms of de:

Using tF = 0 during plastic deformations,

t atF atF pd F = -t- d(Jii. + --:::t=Pat deii.a(Ji} I ei} I

= 'gT do- - 'ET~tx.tg

=0

Transparency17-36

Page 22: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-22 Elasto-Plastic and Creep RespoDse - Part I

Transparency17-37

Transparency17-38

Also

tgTdO" = tgT (QE (d~ - d!t))L . t

The flow rule assumption may bewritten as

HencetgT dO" = tgT (CE (d~ _ tA tg))= tA tQT tg-

Solving the boxed equation for tA gives

Hence we can determine the plasticstrain increment from the total strainincrement: I ..

tota strain Increment

p tgTCEd~~tde = ( ) 9~ - tQTtg + tgT CEtg

plastic strainincrement

Page 23: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Example: Von Mises yield condition,isotropic hardening

Two equivalent equations:

Topic Seventeen 17-23

Transparency17-39

Transparency17-40

t ~O"Y=T

(trr • t )2 (t t)2 (t t)2

~~\+t-t~/?~principal stresses

tF _ 1 t t t. t _ 1 t 2- 2: sij.~ K , K - 3 0"Y

~5 t

d · . t " (Tmm ~eVlatonc s resses: Sij- = (Tij- - -3- Uij

Page 24: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-24 Elasto-Plastic and Creep Response - Part I

Transparency17-41 Yield surface

for plane stressEnd view ofyield surface

Transparency17-42

We now compute the derivatives of theyield function.

First consider tpy.:

t _ atF _ a (1 t t 1 t 2py. - - atef! - - atef! 2 sy. SiJ- - 3 O'y)

II' t(J"it fixed II'

(t(J"ij- fixed implies tSij- is fixed)

Page 25: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

What is the relationship between tcryand the plastic strains?

We answer this question using theconcept of "plastic work".

• The plastic work (per unit volume) isthe amount of energy that isunrecoverable when the material isunloaded.

• This energy has been used increating the plastic deformationswithin the material.

• Pictorially: 1·0 example

'Ibpic Seventeen 17-25

Transparency17-43

stress

~et

Shaded area equalsplastic work t wp:

'----------strain

Transparency17-44

rtePIjo

• In general, 'Wp =Jo Tay.de~

Page 26: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-26 Elasto-Plastic and Creep Response - Part I

Transparency17-45

Transparency17-46

Consider 1-0 test results: the currentyield stress may be written in terms ofthe plastic work.

Shaded area =:

Wp = ~ (~T - i) (t(1~ - (1~)

'---------- strain

We can now evaluate tPij- - whichcorresponds to a generalization of the1-D test results to multiaxial conditions.

t _ 2 t (d\JY atWp)/at

(1YPij- - 3 (]'Y dtWp ater ate~

\ t /.

Page 27: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

(effective stress)

(increment iiieffective

t plastic strain)result is obtained

Alternatively, we could have used thatdtWp = tcr dtet

where

and then the sameusing

t .. _ 2 t (d\ry ateP

)Pit - 3 (J'y dteP ate~

Next consider tq~:

'Ibpic Seventeen 17-27

Transparency17-47

Transparency17-48

Page 28: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-28 Elasto·Plastic and Creep Response - Part 1

We can now evaluate gEP:

symmetric

Transparency17-49

cEP = _E_- 1+v

de11 de22 2 de12

2'

I I I1 - V (') V 'I I I Q. 1 , I-- - ~ 511 I -- - ~ 511 522 •.• - P 511 512 •.•1-2v 11-2v I I I- - - - - - - - - - - - - - - - -:2: -1- I" - - - - - - I .......

I 1 - V (') I I Q. ' , II 1 _ 2v - ~ 522 I··· I - P 522 512 I···L 1_ I" - - - - - - I -

I .•• I - ~ '533 1512 I ...I I I

-'1-----2 '­

I - -~('512) I •.•I 2 I-------1-

I •••I

Transparency17-50

3 1 ( 1 )where 13 = - f22 O"y 1 + g E ET 1 + v

3 E - ET E

Evaluation of the stresses at time t+ ~t:

The stress integrationmust be performed ateach Gauss integrationpoint.

Page 29: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

We can approximate the evaluation ofthis integral using the Euler forwardmethod.

• Without subincrementation:

J:t+~le I+~I I- e e

Ie CEPd~ . CEP

,d~"/ - - -- t

• With n subincrements:

den ~t

t+~--s-­n

+ ...

Topic Seventeen 17-29

Transparency17-51

Transparency17-52

den

t+(n-1)Lh

Page 30: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-30 Elasto-Plastic and Creep Response - Part I

Transparency17-53

Pictorially:

tsubincrements

t+8t

Transparency17-54

Summary of the procedure used tocalculate the total stresses at timet+dt.Given:

STRAIN = Total strains at time t+dtSIG = Total stresses at time tEPS = Total strains at time t

(a) Calculate the strain incrementDELEPS:

DELEPS = STRAIN - EPS

Page 31: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

(b) Calculate the stress incrementDELSIG, assuming elastic behavior:

DELSIG = CE * DELEPS

(c) Calculate TAU, assuming elasticbehavior:

TAU = SIG + DELSIG

(d) With TAU as the state of stress,calculate the value of the yieldfunction F.

(e) If F(TAU) < 0, the strain incrementis elastic. In this case, TAU iscorrect; we return.

(f) If the previous state of stress wasplastic, set RATIO to zero and goto (g). Otherwise, there is atransition from elastic to plastic andRATIO (the portion of incrementalstrain taken elastically) has to bedetermined. RATIO is determinedfrom

F (SIG + RATIO * DELSIG) = 0

since F = 0 signals the initiation ofyielding.

Topic Seventeen 17-31

Transparency17-55

Transparency17-56

Page 32: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-32 Elasto·Plastic and Creep Response - Part I

Transparency17-57 (9) Redefine TAU as the stress at start

of yieldTAU = SIG + RATIO * DELSIG

and calculate the elastic-plasticstrain increment

DEPS = (1 - RATIO) * DELEPS

(h) Divide DEPS into subincrementsDDEPS and calculate

TAU ~ TAU + CEP * DDEPSfor all elastic-plastic strainsubincrements.

Page 33: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

Topic Seventeen 17-33

1........--- 2b ---I.~I

p

Slide17-1

PLASTIC ZONE

Plane strain punch problem

Slide17-2

P/l Ii.I

z 10- .....I

lOl- A ,,"~.

Finite element model of punch problem

Page 34: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-34 Elasto-Plastic and Creep Response - Part I

Slide17-3

STRESS, 0' lplll

'00

"200 Ib.'CW.. h••

\. "... "".. T,.- - - THEOR£TICAL

-- - -----0I 0 2.0 30DISTANCE FROM CENTERLINE, b (inl

Solution of Boussinesq problem-2 pt. integration

Slide17-4

STRESS, 0' lpoi)

200

'00

• VIZ

• er".. T,Z

- - - TH(ORETlCAl

-----------10 2.0 30DISTANCE FROM CENTERLINE, b (in)

Solution of Boussinesq, problem-3 pt. Integration

Page 35: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

APPLIEDLOAD,P/2kb

p

~• 2 pi In,a S"pI inl

Topic Seventeen 17-35

Slide17-5

0.05 QIQ 0.'5DISPLACEMENT, ,,/b

0.20

Load-displacement curves for punch problem

Page 36: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

17-36 Elasto-Plastic and Creep Response - Part I

Transparency17-58

Transparency17-59

Limit load calculations:

p

rTTTTl

o

• Plate is elasto-plastic.

Elasto-plastic analysis:

Material properties (steel)a

740 -I--

a(MPa)

~Er = 2070 MPa, isotropic hardening

'-E=207000 MPa, v=0.3

e• This is an idealization, probably

inaccurate for large strain conditions(e > 2%).

Page 37: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

TIME = 0LOAD = 0.0 MPA

TIME - 41LOAD - 512.5 MPA

TIME - 62LOAD - 660.0 MPA

=====..:=r~--.,.,......~"-----....----....~-----,.._-...-.~....,....,••••1••••1...,!!!!....~....

\

Topic Seventeen 17-37

ComputerAnimationPlate with hole

Page 38: Modeling of Elasta-Plasticand Creep Response Part I · PDF fileContents: Textbook: Example: References: Topic 17 Modeling of Elasta-Plasticand Creep Response Part I • Basic considerations

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.