Modeles Theoriques

23
1 Journees Neutrino France – November 27, 2003 Modeles Theoriques Andrea Romanino CERN

description

Modeles Theoriques. Andrea Romanino CERN. Plan of the talk. Interpretation of ATM and SUN data Expectations for and Precise predictions for and. Experimental constraints. FC + PC + up-going m. 1489 days. 68% C.L. 90% C.L. Guidelines for model building:. 99% C.L. - PowerPoint PPT Presentation

Transcript of Modeles Theoriques

Page 1: Modeles Theoriques

1 Journees Neutrino France – November 27, 2003

Modeles Theoriques

Andrea RomaninoCERN

Page 2: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20032

Plan of the talk

• Interpretation of ATM and SUN data

• Expectations for and

• Precise predictions for and

13θ

eem

eem

13θ

Page 3: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20033

(ATM, K2K)

(SUN, KamLAND)

(CHOOZ, Palo Verde)

(Heidelberg-Moscow)

(Mainz, Troitsk)

(Cosmology)

Guidelines for model building:

1 035.0Δ/Δ

10

)5( 453530~

?)45( 45~

GeV 174«

232

221

o13

oo12

oo23

«mm

θ

σθ

θ

mi

Experimental constraints

eV7.0

eV)2.2(||)(

eV4.0)1(||

10

3530~eV107.0~Δ

45~eV102~Δ

222

2

o13

o12

24221

o23

23232

i i

ieiee

ieiee

m

mUmm

OmUm

θ

θm

θm

68% C.L.90% C.L.99% C.L.

FC + PC + up-going 1489 days

(Hayato, SK, HEP 2003) (SNO, nucl-ex/0309004)

Page 4: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20034

Smallness of neutrino masses

Natural scale of fermion masses: v = 174 GeV

Why

(must have a different origin than

?10/ 12vmν

)103.0/ 5vme

Page 5: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20035

GeV)102(

eV05.0GeV105.0~Λ

Λ

))((Λ

16GUT

15

renSM

effSM

M

mh

vhvm

LHLHh

LL

ν

ν

Rν no :SM the in masses Neutrino

Page 6: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20036

cc

cc

eedd

ννuu

Right-handed neutrinos

vλmLHvλ νc

B-LRLc xU(1)xSU(2)xSU(2)SU(3)

YLc xU(1)xSU(2)SU(3) SO(10)

heavy be therefore can and singlet SM a is cv

Page 7: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20037

DTDν

T

mM

mm

λM

λh

LHLHh

1

))((Λ

X

H

L

H

Lcν cν

M

See-saw

: out Integrate cν

Page 8: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20038

Origin of large mixings

diagD

TdD

diagU

TuU

mUm

mUm

c

c

uU

dU

diagE

TeE

diagν

Tνν

mUm

mUm

c

νU

eU

†duUUV

†νeUUU

The large angles can in principle originate from either or

(the distinction is physical in terms of the physics giving rise to the masses)

νm em

Page 9: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 20039

• (from in the case of degenerate neutrinos)

• from in the case of normal hierarchy

• from in the case of inverse hierarchy

• from

• (anarchy)

23 of Origin θ

νm

νm

νm

Em

Page 10: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200310

Large angles?

1«1«, νeq θθθ

321231

22132 1«Δ/Δ, mmmmmmm

: Dirac and Majorana mass terms trasform differently under symmetries

E.g.: . In the symmetric limit:

However, it only works with degenerate ν’s:

E.g.:

Requires a non abelian symmetry acting on the three familiesOften unstable

o0eθ o45νθ

τμ LL

0110

100 νE mam

11

1

νm

Page 11: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200311

Hierarchy Normal - from large A 23 νmθ

However A, B are not fundamental parameters

see-saw:

Natural solution:

:unnatural seems « 32 mmlarge 23νθ and

1AABmν

1«2 BA :« 32 mm

1~~BA:large 23νθ

μMμm Tν

1

2

333332

3332232

22232322

2322222

223

3

223

11,

μμμ

μμμMμμμ

μμμM

mMM

M ν

232232 ~,« μμMM [King]

det ≠ 0

det = 0

det = 0

Page 12: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200312

nscorrelatio no large 2123 mmθν

AB

θ 23tan

Hierarchy Inverse - from large A 23 νmθ

scorrection

BA

BAmν

Page 13: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200313

04.0~ε

Emθ from large A 23

3.00.1 A

1Em 'ε

A

1Dm

ε'A

not incompatible even in SU(5), where (up to GJ factors)

TDE mm

[e.g. Altarelli Feruglio and refs]

Page 14: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200314

• Inverse Hierarchy: barring tunings or cancellations, must be close to the experimental limit

In fact: – an inverse hierarchy requires, barring tunings, a

correction to from– a correction to from contributes to

13 for nsExpectatio θ

13θ

12θ

12θEm

Em 13θ

Page 15: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200315

Correction from :

Correction from :2

45~ 12

o

12θ

θ e

o12

rotation 45 11

23

θm

BA

BAm ν

θν

– an inverse hierarchy requires, barring tunings, a correction to from

νm

em

oo12 35-30~νθ 1~~ if ba

21 mm baba or 1«, if

b

amν 1

1

12θ Em

Page 16: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200316

limit exp ~2

45~

245

~ 12o

23121312

o

12θ

sssθ

θ ee

– a correction to from contributes to12θ Em 13θ

1

2/12/12/12/11

1 232323231212

1212

cssccs

sc

U ee

ee

Page 17: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200317

• In all cases, contributes to

is also model-dependent, but involves the charged fermions

Implementing the same pattern in (e.g. SU(5))

Central value observable with suberbeams (but > O(1) uncertainty)

(precise):successful is1

''0

s

dcD m

mθεε

εm

331

12c

s

d

μ

ee θm

m

mm

θ

o2313 3~limit exp

31

~ μ

emm

eθ12

eθ12 13θ

[Gatto Sartori]

Em

Page 18: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200318

(Genius)eV 01.0)1(Moscow)-g(HeidelbereV 4.0)1(||

(Katrin)eV) 3.0(Troitsk) (Mainz,eV) 2.2()( 22†

OOm

mm

ee

ee

Feruglio Strumia Vissani

||Δ 2212

212

223

αiee escmm

ee for nsExpectatio m

Page 19: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200319

Minimal models

• Use the minimal number of “effective” parameters needed to account for the data: 4+1

• Produce 2 correlations among

i.e. a prediction for

eemmmδθθθ 221

232131223 ΔΔ

eemθ ,13

Page 20: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200320

• Simplest possibility: assume the presence of (2) zeros in the neutrino mass matrix written in the flavor basis,

• However, the parameters in are only combinations of the parameters in the basic lagrangian

• Our approach:– assume the relative smallness (vanishing) of some

parameters in the basic lagrangian – assume there are no correlations among those

parameters (non-abelian symmetries could give rise to further possibilities)

• We find only 5 possible predictions

[Barbieri, Hambye, AR]

Reducing the number of parameters

[Frampton, Glashow, Marfatia]

[e.g. Ibarra, Ross]

jieeνm )(

jieeνm )(

),,( MμmE

Page 21: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200321

Barb

ieri

, H

am

bye,

AR

eemθ , for sPrediction 13

Page 22: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200322

E is the only case which corresponds to IH and in which the predictions depend on δ (hence the lower limit and the constraint cos δ > 0.8)

In case D, (hence the upper limit)

Cases A, B, E are within the sensitivity of superbeams; case C requires SB + BB; case D has chances with a nu-factory.

Cases A, B, C, D assume no “12” rotation in the charged lepton sector

There are good prospects for 0ν2β decay only in the IH case (E), but as long as δ is not known, there is no special prediction.

Case A has been first studied by Frampton, Glashow, Yanagida.

23o

13 45 θθ

Page 23: Modeles Theoriques

Andrea Romanino, CERN Journees Neutrino France – November 27, 200323

Summary

• The present data can be comfortably accommodated in the standard framework for the origin of neutrino masses and provides valuable information on the structure of the basic lagrangian

• Based on the interpretation of present data, on our understanding of the charged fermion sector, and on naturalness considerations, there are good prospects of measuring with superbeams

• Despite the large number of model building possibilities, there is a relatively small number of possible predictions for compatible with not having correlations among the parameters in the basic lagrangian

13θ

13θ