Modelamiento en PSS®E de redes con gran participación de...

58
© Siemens AG 2012. All rights reserved. Modelamiento en PSS®E de redes con gran participación de EERR Siemens AG IC SG SE PTI www.siemens.com/power-technologies

Transcript of Modelamiento en PSS®E de redes con gran participación de...

© Siemens AG 2012. All rights reserved.

Modelamiento en PSS®E de redes

con gran participación de EERR

Siemens AG

IC SG SE PTI

www.siemens.com/power-technologies

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 2

© Siemens AG 2012. All rights reserved.

Contents

PTI – Overview

Network Consulting – Overview

Software

PSS®E

PSS®SINCAL

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 3

PTI Overview

© Siemens AG 2012. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 4

Siemens Power Technologies International Complete portfolio for public/industrial/commercial power systems

Pow

er

tr

ansm

issio

n

Pow

er

genera

tion

Pow

er

dis

trib

ution

Renew

able

s

Oil

& G

as

industr

y

Meta

ls &

Min

ing

industr

y

Chem

icals

in

dustr

y

Auto

motive

industr

y

Pulp

& P

aper

industr

y

Oth

er

Cem

ent

in

dustr

y Complete scope of

T&D trainings

Products

Systems

Smart grid

Special topics

Certification

Power Academy TD

State-of-the-art

software tools for

E-Transmission

E-Distribution

Pipe networks

Network data

management

Software Solutions

Comprehensive

competences

Grid structure and

configuration

Grid performance

Disturbance

investigations

Network Consulting

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 5

Siemens PTI office

Houston

Schenectady

Manchester Erlangen (HQ)

Bogotá

Trondheim

Istanbul

The Hague

Karachi Mumbai Mexico City

São Paulo

Abu Dhabi

Toronto Vienna Minneapolis

San Jose

Buenos Aires

Shanghai

Moscow

Denver

Lagos

Madrid

Siemens PTI – Offices Worldwide presence for our customers

Siemens PTI founded in 1956

Headquarter (HQ)

in Erlangen, Germany

Global leader in transmission

planning software

2000+ customers

600+ projects p.a.

200+ trainings p.a.

Did you know?

23 Siemens PTI offices

world-wide

130+ Consultants

Renowned experts

Profound experiences

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 6

Network Consulting

Overview

© Siemens AG 2012. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 7

Siemens PTI Network Consulting teams Worldwide presence for our customers

Siemens PTI Network Consulting Teams

Houston

Schenectady

Manchester

Erlangen (HQ)

Bogotá

Trondheim

Istanbul

The Hague

Karachi Mumbai

Abu Dhabi

Toronto Minneapolis

San Jose

Buenos Aires

Madrid Denver

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 8

Siemens PTI Network Consulting portfolio Complete set of system analysis, design and optimization studies

Dynamic system

studies

Transient system

studies

Protection and control

system studies

Power quality system

studies

Technical-economical

system studies

4178

5 kV

A

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA14

0 kV

A

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA 14

0 kV

A

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

140

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

500

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

1000

kVA

NS

33

1

99

,4 %

NS

33

0

99

,4 %

NS

32

9

99

,4 %

NS

32

8

99

,4 %

NS

32

7

99

,4 %

NS

32

6

99

,4 %

NS

32

5

99

,2 %

NS

32

4

99

,1 %

NS

32

3

99

,1 %

NS

32

2

99

,1 %

NS

32

1

99

,1 %

NS

32

0

99

,1 %

NS

31

9

99

,1 %

NS

31

8

99

,2 %

NS

31

7

99

,3 %

NS

31

6

98

,8 %

NS

31

5

98

,8 %

NS

31

4

99

,0 %

NS

31

3

99

,0 %

NS

31

2

99

,0 %

NS

31

1

98

,9 %

NS

31

0

98

,9 %

NS

30

9

98

,8 %

NS

30

8

98

,8 %

NS

30

7

98

,8 %

NS

30

6

98

,8 %

NS

30

5

98

,9 %N

S3

04

98

,8 %

NS

30

3

98

,8 %

NS

30

2

99

,6 %

NS

30

1

99

,6 %

NS

30

0

99

,6 %

NS

29

9

99

,4 %

NS

29

8

99

,4 %

NS

29

7

99

,5 %

NS

29

6

98

,9 %

NS

29

5

99

,3 %

NS

29

4

99

,2 %

NS

29

3

99

,1 % N

S2

92

99

,1 %

NS

29

1

99

,1 %

NS

29

0

99

,0 %

NS

28

9

98

,9 %

NS

28

8

99

,0 %

NS

28

7

98

,9 %

NS

28

6

98

,9 %

NS

28

5

98

,9 %

NS

28

4

99

,0 %

NS

28

3

99

,0 %

NS

28

2

99

,1 %

NS

28

1

99

,2 %

NS

28

0

99

,1 %

NS

27

9

99

,3 %

NS

27

8

99

,4 %

NS

27

7

99

,5 %

NS

27

6

99

,5 %

NS

27

5

99

,6 %

NS

27

4

99

,7 %

NS

27

3

99

,8 %

NS

27

2

99

,6 %

NS

27

1

99

,1 %

NS

27

0

99

,2 %

NS

26

9

99

,3 %

NS

26

8

99

,2 %

NS

26

7

99

,2 %

NS

26

6

99

,3 %

NS

26

5

99

,3 %

NS

26

4

99

,2 %

NS

26

3

99

,5 %

NS

26

2

99

,4 %

NS

26

1

99

,4 %

NS

26

0

99

,4 %

NS

25

9

99

,2 %

NS

25

8

99

,3 %

NS

25

7

99

,7 %

NS

25

6

99

,5 %

NS

25

5

99

,3 %

NS

25

4

99

,3 %

NS

25

3

98

,9 %

NS

25

2

99

,4 %

NS

25

1

99

,4 %

NS

25

0

99

,5 %

NS

24

9

99

,8 %

NS

24

8

99

,7 %

NS

24

7

99

,6 %

NS

24

6

99

,6 %

NS

24

5

99

,5 %

NS

24

4

99

,5 %

NS

24

3

99

,8 %

NS

24

2

99

,8 %

NS

24

1

99

,8 %

NS

24

0

99

,9 %

NS

23

9

99

,9 %

NS

23

8

99

,8 %

NS

23

7

99

,8 %

NS

23

6

99

,6 %

NS

23

5

99

,7 %

NS

23

4

99

,7 %

NS

23

2

99

,8 %

NS

23

1

99

,9 %

NS

23

0

99

,9 %

NS

22

8

99

,6 %

NS

22

7

99

,6 %

NS

22

6

99

,2 %

NS

22

5

99

,4 %

NS

22

4

99

,3 %

NS

22

3

99

,1 %

NS

22

2

99

,1 %

NS

22

1

99

,0 %

NS

22

0

99

,0 %

NS

21

9

98

,9 %

NS

21

8

99

,0 %

NS

21

7

99

,5 %

NS

21

6

99

,4 %

NS

21

5

99

,1 %

NS

21

4

99

,1 %

NS

21

3

99

,1 %

NS

21

2

99

,2 %

NS

21

1

99

,4 %

NS

21

0

99

,3 %

NS

20

9

99

,2 %

NS

20

8

99

,0 %

NS

20

7

99

,0 %

NS

20

6

99

,0 %

NS

20

5

99

,0 %

NS

20

4

99

,0 %

NS

20

3

99

,0 %

NS

20

2

99

,0 %

NS

20

1

99

,0 %

NS

20

0

99

,0 %

NS

19

9

99

,0 %

NS

19

8

99

,0 %

NS

19

7

99

,0 %

NS

19

6

99

,3 %

NS

19

5

99

,1 %

NS

19

4

99

,1 %

NS

19

3

99

,2 %

NS

19

2

99

,2 %

NS

19

1

99

,1 %

NS

19

0

99

,1 %

NS

18

9

99

,0 %

NS

18

8

99

,0 %

NS

18

7

99

,0 %

NS

18

6

99

,0 %

NS

18

5

99

,0 %

NS

18

4

99

,0 %

NS

18

3

99

,0 %

NS

18

2

99

,0 %

NS

18

1

99

,1 %

NS

18

0

99

,3 %

NS

17

9

99

,5 %

NS

17

8

99

,4 %

NS

17

7

99

,4 %

NS

17

6

99

,3 %

NS

17

5

99

,1 %

NS

17

4

99

,1 %

NS

17

3

99

,1 %

NS

17

2

99

,2 %

NS

17

1

99

,3 %

NS

17

0

99

,4 %

NS

16

9

99

,4 %

NS

16

8

99

,5 %

NS

16

7

99

,5 %

NS

16

6

99

,6 %

NS

16

5

99

,7 %

NS

16

4

99

,2 %

NS

16

3

99

,7 %

NS

16

2

99

,2 %

NS

16

1

99

,3 %

NS

16

0

99

,4 %

NS

15

9

99

,5 %

NS

15

8

99

,6 %

NS

15

7

99

,7 %

NS

15

6

99

,9 %

NS

15

5

99

,8 %

NS

15

4

99

,8 %

NS

15

3

99

,8 %

NS

15

2

99

,9 %

Su

bS

tati

on

10

0,0

%

K3

1

98

,9 %

K3

0

98

,9 %

K2

9

99

,0 %

K2

8

99

,0 %

K2

7

99

,5 %

K2

6

99

,5 %

K2

5

99

,5 %

K2

4

99

,5 %

K2

3

99

,6 %

K2

2

99

,6 %

K2

1

99

,7 %

K2

0

99

,7 %

K1

9

99

,7 %

K1

8

99

,7 %

K1

7

99

,8 %

K1

6

99

,8 %

K1

5

99

,9 %

K1

4

99

,8 %

K1

3

99

,7 %

K1

2

99

,7 %

K1

1

99

,7 %

K1

0

99

,7 %

K9

99

,7 %

K8

99

,7 %

Steady-state system

studies

0%

20%

40%

60%

80%

100%

120%

GIS HIS AIS

Replacement of Equipm.

Outage Cost System

Unscheduled Maint.System

Scheduled Maint.System

Scheduled Maint. BoP

Ground acquisition costs

Balance of Plant

System Cost

Co

st

of

Ow

ne

rsh

ipC

os

t o

f A

cq

uis

itio

n

0

100

200

300

400

500

600

700

800

900

1000

1100

switchgearcabletransformer

kV

10 µs 20 µs 30 µs

BIL

0

100

200

300

400

500

600

700

800

900

1000

1100

switchgearcabletransformer

kV

10 µs 20 µs 30 µs

BIL

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 9

Network Consulting portfolio – Portfolio elements Comprehensive consulting offerings built from 18 portfolio elements

Business case

studies

Energy market

studies

Asset management

and due diligence

Controller a. machine

measurements,

modeling a. analysis

Power electronics

modeling and

analysis

System control and

automation concepts

Instrument

transformer analysis

Power quality meas-

urements, analysis

and filter design

Interference and

EM field analysis

Earthing system

measurements and

design

Insulation

coordination

studies

Transient studies Dynamic system

analysis

Energy efficiency

audits

Neutral grounding

studies

Network structure

development Network analysis

Protection system

design and

coordination

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 10

Network Consulting

Case studies

© Siemens AG 2012. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 11

Characteristics of island and off-grid

power supply systems

high costs for electricity

low supply reliability

Small networks rely on diesel generation

for back-up and stability reasons

Targets of island network operators

Reduction of generation costs

Independency of fuel imports

Adequate level of security of supply

Ecological considerations – becoming

“green”

Initial situation

Microgrid and off-grid solutions Design of specialized network concepts with innovative technologies

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 12

Feasibility evaluation

Selection and sizing of generation and

storage requirements

Steady-state calculations

Load-flow calculations

Short-circuit calculations

(n-1) contingency analysis

Reliability analysis

Dynamic modeling and analysis

Development of protection and automation

concepts

Techno-economic evaluation of solutions

Methodology

Microgrid and off-grid solutions Comprehensive investigation and documentation of relevant aspects

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 13

Technically and economically feasible

design of microgrid network

Optimal generation mix including

requirements for energy storage

Comprehensive concepts including

Electrical network design

Suitable protection concept

Automation and smart grid concepts

Definition of scenarios for deployment of

renewable energy sources

Verification of good network performance

Minimum CAPEX and OPEX

Results

Microgrid and off-grid solutions Solution covering all relevant technical and economic aspects

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 14

Customer request for intelligent network

design

Integration of various sub-systems, e.g.

Renewable energy sources

Intelligent loads and building automation

Various management systems

Electromobility

Energy storage

Development of future-oriented, innovative

network concepts ensuring

Reliability of supply

Sustainability

Flexibility

Economical efficiency

Initial situation

Design of smart grid network concepts Definition of functional requirements and design of innovative concepts

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 15

Design and validation of network concept

and performance requirements

Comprehensive set of studies, e.g.

Equipment sizing and losses

Reactive power and voltage control

Short-circuit currents

Harmonics

Reliability and security of supply

Development of integrated solutions

considering e.g.

Distribution automation concepts

Communication requirements

Functional specification of integrated

smart grid operation center

Analysis of network operation strategies

Methodology

Design of smart grid network concepts

Detailed investigations and development of possible solutions

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 16

Integrated smart grid concept

Performance analysis ensuring

Adequate network performance

Sustainability and minimum losses

Intelligent control and automation concepts

Application of most innovative technologies

using

Primary components

Communication technologies

Smart grid applications and functionality

Efficient network operation

Optimal overall concept for innovative

developments

Results

Design of smart grid network concepts Integrated overall solution with validated performance

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 17

Customer Arup Consult

Country US

Completed 2012

Analysis of technical, economical and environmental

feasibility

Improved energy efficiency and maximized energy savings

Proven network performance

Apple Campus 2, New Headquarter (US) Designing Microgrid solution for new Apple Campus

Design of campus microgrid

Determination of energy storage requirements

Verification of performance in island and grid connected

operation mode

Sizing of conventional and renewable generation

Determination of storage requirements

Minimizing load shedding incidents

Calculation of investment and operation costs while

considering environmental aspects in power generation

Requirements

Scope

Customer Benefits

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 18

Early wind farm concepts provide e.g.

Geographic positions of wind turbines

Proposed network structures

Proposed equipment ratings

Grid code requirements by utilities

Requirements

Quantitative evaluation of operational

performance, covering e.g.

Equipment parameters

Reliable network design

Safety of personnel and material

Secure operation

Financial feasibility

Initial situation

Design of the internal wind farm network Design of professional and efficient collection and export networks

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 19

Design and/or validation of network

concept and performance requirements

Network studies covering e.g.

Short-circuit currents

Cable/transformer sizing and losses

Reactive power and voltage control

Insulation coordination

Lightning protection

Earthing design

Neutral grounding

Protection settings

Reliability / availability

Solving technical problems during or after

project realization

Optimization measures

Methodology

Design of the internal wind farm network Comprehensive investigation and documentation of relevant aspects

101,7 %

101,5 %

101,6 %

101,4 %

101,5 %

101,3 %

101,4 %

101,2 %

101,7 %

101,9 %

101,7 %

101,9 %

101,6 %

101,8 %

101,5 %

101,7 %

101,4 %

101,5 %

101,0 %

101,0 %

101,0 %

103,7 %

100,0 %

0,0 °

100,2 %

101,7 %

101,6 %

101,7 %

101,5 %

101,6 %

101,4 %

101,5 %

101,3 %

101,4 %

101,2 %

101,7 %

101,9 %

101,7 %

101,9 %

101,6 %

101,8 %

101,5 %

101,7 %

101,4 %

101,5 %

101,7 %

101,5 %

101,6 %

101,4 %

101,5 %

101,3 %

101,4 %

101,2 %

101,7 %

101,9 %

101,7 %

101,9 %

101,6 %

101,8 %

101,5 %

101,7 %

101,4 %

101,5 %

101,7 %

101,6 %

101,7 %

101,5 %

101,6 %

101,4 %

101,5 %

101,3 %

101,4 %

101,2 %

101,7 %

101,9 %

101,7 %

101,9 %

101,6 %

101,8 %

101,5 %

101,7 %

101,4 %

101,5 %

101,7 %

101,7 %

101,6 %

101,7 %

101,6 %

G

G

GG

-242,97 MW

-6,65 MVAr

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-6,69 MW

-0,12 MVAr

0,115 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

-10,04 MW

-0,21 MVAr

0,173 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,579 kA

3,35 MW

0,04 MVAr

0,058 kA

-13,38 MW

-0,28 MVAr

0,231 kA

-3,35 MW

-0,04 MVAr

0,058 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-6,69 MW

-0,12 MVAr

0,115 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-10,04 MW

-0,21 MVAr

0,173 kA

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-13,38 MW

-0,29 MVAr

0,231 kA

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

16,67 MW

0,39 MVAr

0,288 kA

-33,38 MW

-0,74 MVAr

0,577 kA

-253,47 MW

67,62 MVAr

0,973 kA

244,07 MW

46,15 MVAr

0,954 kA

242,97 MW

6,65 MVAr

0,369 kA

-244,06 MW

-46,15 MVAr

0,954 kA

-37,66 MVAr

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-3,35 MW

-0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-6,69 MW

-0,12 MVAr

0,115 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

-10,04 MW

-0,21 MVAr

0,173 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,579 kA

3,35 MW

0,04 MVAr

0,058 kA

-13,38 MW

-0,28 MVAr

0,231 kA

-3,35 MW

-0,04 MVAr

0,058 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-6,69 MW

-0,12 MVAr

0,115 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-10,04 MW

-0,21 MVAr

0,173 kA

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-13,38 MW

-0,29 MVAr

0,231 kA

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

16,67 MW

0,39 MVAr

0,288 kA

-33,38 MW

-0,74 MVAr

0,577 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-6,69 MW

-0,12 MVAr

0,115 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

-10,04 MW

-0,21 MVAr

0,173 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,579 kA

3,35 MW

0,04 MVAr

0,058 kA

-13,38 MW

-0,28 MVAr

0,231 kA

-3,35 MW

-0,04 MVAr

0,058 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-6,69 MW

-0,12 MVAr

0,115 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-10,04 MW

-0,21 MVAr

0,173 kA

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-13,38 MW

-0,29 MVAr

0,231 kA

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

16,67 MW

0,39 MVAr

0,288 kA

-33,38 MW

-0,74 MVAr

0,577 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-3,35 MW

-0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-6,69 MW

-0,12 MVAr

0,115 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

-10,04 MW

-0,21 MVAr

0,173 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,579 kA

3,35 MW

0,04 MVAr

0,058 kA

-13,38 MW

-0,28 MVAr

0,231 kA

-3,35 MW

-0,04 MVAr

0,058 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-6,69 MW

-0,12 MVAr

0,115 kA

-3,35 MW

-0,20 MVAr

0,576 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-10,04 MW

-0,21 MVAr

0,173 kA

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-13,38 MW

-0,29 MVAr

0,231 kA

-3,35 MW

-0,20 MVAr

0,578 kA

3,35 MW

0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

16,67 MW

0,39 MVAr

0,288 kA

-33,38 MW

-0,74 MVAr

0,577 kA

G

127,00 MW

9,00 MVAr

-127,00 MW

-9,01 MVAr

21,900 kA

126,44 MW

2,32 MVAr

2,190 kA

-2,80 MW

-1,30 MVAr

-3,40 MW

-1,30 MVAr

253,46 MW

-29,96 MVAr

0,947 kA

-123,04 MW

-1,02 MVAr

2,131 kA

-130,43 MW

-1,68 MVAr

2,260 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-3,35 MW

-0,04 MVAr

0,058 kA

G

3,35 MW

0,20 MVAr

-3,35 MW

-0,20 MVAr

0,577 kA

3,35 MW

0,04 MVAr

0,058 kA

-3,35 MW

-0,04 MVAr

0,058 kA

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 20

Comprehensive analysis of technical

performance

Optimized system configuration

Validated technical system performance

Voltage profile

Equipment loading

Short-circuit currents

Selective fault clearing

Personnel safety

Reliability

Basis for reliable and efficient operation

Results

Design of the internal wind farm network Sound solution with validated technical and economical performance

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 21

Grid code compliance investigation Validation of operational performance at the point of common coupling

Existing power system

“Background noise” in operational

parameters

Grid code regulations

Network concept for wind farm

Impact on operational parameters

Requirements

Assessment and verification of grid code

compliance

Enhancement of wind farm preliminary

design where necessary

Consideration of specific project

limitations and boundary conditions

Basis for grid connection approval

Initial situation Dynamic requirement for generation output

in fault conditions

Reactive power output requirement

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 22

Simulation and calculation of wind farm

performance at the point of common

coupling

Investigation of compliance with

respective technical criteria in grid code

and/or bilateral agreements

Network analyses covering e.g.

Load flow and reactive power balance

Harmonics

Voltage fluctuation / flicker

Transient and dynamic stability

(incl. fault-ride-through performance)

Mitigation or enhancement measures

where necessary

Methodology

Grid code compliance investigation Comprehensive investigation covering all relevant aspects

Impedance scan over frequency

Harmonic voltage spectrum

Background contribution

Wind farm contribution

Admissible planning levels

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 23

Simulation results proving compliance with

respective technical criteria defined in the

Grid Code and/or bilateral agreements

Technical partner for the customer during

discussions with system operator

Basis for the grid connection approval

Results

Grid code compliance investigation System design ensuring compliance at common point of coupling

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 24

Comprehensive modeling of wind turbines

in a specific simulation software

Basis for detailed wind farm investigations

Requirements

Software model of the wind turbine

generator for simulation purposes

Implementation of specific wind turbine

generator performance requirements

Development and management of

models

Necessary sales asset for the

manufacturers

Initial situation

Wind turbine modeling Models for wind turbine generators and wind farms as basis for studies

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 25

Modeling of wind turbine generators in the

PSS® Product Suite

(also other software tools, e.g.

PowerFactory of DIgSILENT)

Comprising different aspects, e.g.

Mathematical representation of energy

conversion processes in equivalent

block diagrams

Implementation of control concepts

Aggregation of turbine models together

with park controller into the complete wind

farm model

Methodology

Wind turbine modeling Development and verification of detailed turbine and controller models

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 26

Comprehensive wind turbine generator

models in PSS® Product Suite

(also other software tools)

User documentation of the models

Validation of model performance to

measurements, as required for

certification in some markets

Valuable sales asset for the turbine

manufacturers

Necessary basis for any design or

interconnection studies

Results

Wind turbine modeling Delivering the basis for comprehensive wind power studies

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 27

Network Consulting

Portfolio Elements

© Siemens AG 2012. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 28

Siemens PTI – Network Consulting Network analysis

Network Analysis covers the analysis of electrical power systems

based on power system calculations including the dimensioning of

primary equipment.

Typical network analysis studies include

Data collection and digital network model for steady state

calculation

Analysis of load flow, short circuit and reliability calculations

Dimensioning of electrical equipment, e.g. cable, overhead lines,

busbars, switchgears

Analysis of technical power system parameters (e.g. voltage drop,

short circuit levels)

Definition of system operation modes

Verification of system design

Analysis of planning criteria, e.g. voltage profile, equipment

loading, (n-1)-compliance, reliability thresholds

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 29

Siemens PTI – Network Consulting Dynamic system analysis

Dynamics in transmission and industry networks

Determination and analysis of relevant stability aspects

Modeling and simulation of system dynamic behavior

Inter- and intra-area oscillation investigations

Analysis of power angle and voltage stability aspects

Definition of appropriate location and settings for stabilizing devices

(e.g. FACTS)

Definition of decoupling schemes in industrial networks and power

plants

Investigation of frequency stability in island networks

Motor start-up investigations

Dynamics of rotating machines

Voltage and power/frequency control

Verification of controller settings

Investigation of turbine-generator shaft stresses (SSR, SSTI)

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 30

Siemens PTI – Network Consulting System control and automation concepts

System Control and Automation Concepts

Development of wide area protection and control schemes

Special protection schemes based on PMUs and relays for critical

local system states

Distribution automation and islanding

Development of load shedding schemes

Dynamic simulation and analysis of power grids and interacting

protection and communication systems

System Security Assessment and Enhancement

SIGUARD – Intelligent, dynamic power system measurement,

analysis, protection and control solutions

Combined power system measurement and model based analysis

Observing dynamics with time-synchronized PMUs

Predicting critical dynamic system states and proposal of measures

Protection system audits for speed and selectivity

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 31

Siemens PTI – Network Consulting Power electronics modeling and analysis

Modeling and analysis of controllers of active grid equipment like

generators, FACTS, HVDC equipment, large electronic consumers

Development, adaption, parameterization, identification, verification,

testing of

Classical generator control (e.g. AVR, PSS, speed governor)

FACTS elements (e.g. SVC, Statcom, TCSC, UPFC)

HVDC equipment (e.g. HVDC classic, HVDC plus)

Realtime simulator grid models

Large electronic consumers (e.g. VSDs like Robicon or

SIMOVERT)

Large dynamic load groups (e.g. LNG, cement, paper, chemical

plants)

Renewable energy generators (e.g. wind, PV)

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 32

Siemens PTI – Network Consulting Controller and machine measurements, modeling and analysis

Measurements, modeling and analysis of

Controllers,

e.g. automatic voltage regulator (AVR), power system stabilizer

(PSS), governors, or control systems for turbines, power plant

performance, FACTS, HVDC, HVDC Plus

Machine parameters of synchronous generators and induction

machines

Objectives

Control of system voltage and frequency, damping of oscillations

Development, coding and validation of standard or user defined

models for controllers, parameter identification

Design, optimization and location of PSS and power oscillation

damping (POD) devices

Assessment of grid code compliance

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 33

Siemens PTI – Network Consulting Asset management and due diligence

Key process modules

Systematic consideration of technical and economic performance

indicators

Assessment of component importance by use of probabilistic

reliability analyses

Increasing efficiency of network operation by:

Prioritization of network equipment according to importance and

condition

Adaptation of preventive maintenance strategies

Adaptation of preventive replacement strategies

Solutions

RCAM Reliability Centered Asset Management

ARMA Asset Risk Mitigation Analysis

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 34

Siemens PTI – Network Consulting Business case studies

Business cases studies support customers in their business

decisions by providing dynamic business case calculations

Typical business case study support utilities, grid operators, industrial

enterprises regarding:

Grid concession (evaluation of assets, technical-economical

analysis, investment plan)

Economical evaluation of variants for network development

CAPEX and OPEX analysis and review

Due diligence analysis

Analysis and review of tariff structures

Legal boundary condition (e.g. incentive regulation)

Scope

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 35

PSS Software Suite

PSS®E

© Siemens AG 2012. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 36

Concerns of a Power System Planner

We have many new regulatory requirements covering system planning.

How can we be sure we can continue to meet regulations?

We are adding significant quantities of green energy as distributed

resources.

How can we be assured we can study many advanced technologies?

We have many alternatives to investigate and we require accurate analyses

to assure we are within system capabilities.

How can we quickly and accurately assess alternatives?

The Siemens PTI Solution PSS®E Expands Rapidly to Meet Grid Code Compliance

The Siemens PTI Solution PSS®E Generic and Advanced Custom Modeling

The Siemens PTI Solution PSS®E Automation and Flexible Steady-State and Dynamics Modeling

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 37

PSS®E

World-Class Advanced Modularity

Backed by over 50 Siemens PTI consulting engineers

Steady State Analysis

Dynamics Simulation Small

Signal Analysis Graphical

Model Builder

Optimum Power Flow

Short Circuit Analysis

Results Analysis

Visualization Tools

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 38

Co

mm

on

In

form

ati

on

Mo

de

l (C

IM)

IEC

61

97

0 &

61

96

8

PSS®

ODMS

PSS®MUST and MOD®

Steady-State Analysis

• Power flow calculation and reporting

• Graphic displays – contouring and animation

• Extensive automation capability

• Comprehensive contingency, PV/QV analysis, and reliability indices calculation

• Balanced and unbalanced faults

• Automatic fault generation

• IEC and ANSI standards

• Transient analysis and graphical presentation

• Investigation of angular and voltage stability and protection response

• Standard and user-created models

PSS®E

The Fully Integrated Solution

Fault Analysis Dynamics Analysis

• Optimize control settings to maximize/minimize objectives

• User-defined objectives

OPF Analysis

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 39

PSS®E

Highlights

Comprehensive model library for modeling all types of equipment, including

models of emerging technologies such as FACTS devices and wind powered

generation.

Capability to create user-written models – If you cannot find dynamic models

that suit your equipment, you can create your own user-written models in a

high-level language like FORTRAN.

Variety of manufacturer-specific and generic models of wind turbines and

their controls.

Powerful and easy to use plot facility for plotting results of dynamic

simulation.

Graphical method to create user models, Eigen-value analysis.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 40

PSS®E

Integrated Program

One entry point …

Network data

One-line diagrams

OPF data

Dynamics data

Model data

Plot page

From a single

application!

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 41

Understand Your Network

Various One-Click Reports

Network Condition

Voltage profile

Transmission lines and transformer

loading

Automatic contingency violation

Machine loadings

Total generation

Total load

Write a program

Interface Condition

Tie line flow/loading

Total area interchange

Network Reduction

Outside of your control area

Reduce level of details when necessary

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 42

Siemens PTI

Exports Geospatial Data to Google Earth®

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 43

PSS®E

Summary

Description

Transmission system simulation software offering

advanced modules for analysis of electrical

networks

Scope

Used by power system engineers worldwide for

planning and operations activities in the off-line

and on-line simulation environments

Customer Benefits

Designed for improved reliability while saving

infrastructure costs

Comprehensive modeling capabilities enable

sophisticated analyses and accuracies while

saving man-hours

Contingency Solution

Corrective Action Solution

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 44

PSS®E –

Overview

Description

Transmission system simulation software offering

advanced modules for analysis of electrical

networks.

Scope

Used by power system engineers worldwide for

both the planning and operations activities in the

off-line and on-line simulation environments.

Customer benefits

Designs for improved reliability while saving

infrastructure costs

Comprehensive modeling capabilities enable

sophisticated analyses and accuracies while

saving man hours

Frequency of overloads Frequency of overloads

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 45

Wind Power Plant Studies

Wind power plant (basic) design studies

Focus is on the wind power plant itself, detailed representation of the power plant

internals.

Wind power plant interconnection studies

Focus is on the transmission system interconnection of the wind power plant.

Only the terminal behavior is important, limited aggregation may be performed.

Transmission studies containing wind generators

Only approximate behavior is required, aggregation usually performed.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 46

Typical Wind Power Studies With PSS®E

Steady-State Studies

Power flow (network design, reactive control range, losses)

Short circuit

Transmission network planning in presence of large-scale wind power

Transient Stability

Fault ride-through

Voltage/reactive power control performance

Voltage stability

Frequency control performance

Transmission network interconnection studies in presence of large-scale wind

power

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 47

Power Flow Study Example

Reactive power capability at the connection

point, taking into account:

Non-linear, voltage dependent Q-limits

Transformer on-load tap changer

Wind plant controller

For a detailed analysis usually hundreds or

thousands of single power flow calculations

are necessary.

Heavily based on automation functions:

Easy changing of design parameters

Re-use of automation in similar projects

0

20

40

60

80

100

120

140

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

Q CP (MW)

PC

P (

Mva

r)

U=90% U=100% U=110% Grid Code

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 48

The Dynamic Simulation Process in PSS®E

construct

LF case

convert

LF case

add

Dynamic

models

add

output

channels

initialize run apply

dist. plot

Active elements

represented as Norton

equivalents

Models from standard libraries

and user-written models

Models added through GUI or

DYR-file

Disturbances can be applied and

removed during the course of

simulation

Automation possible through

advanced scripting (IDEV, IPLAN)

saved case file (.sav) dynamics snapshot file

(.snp) channel output file (.out)

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 49

Dynamic Model Structure for Wind Machines –

Model Slots

The ‘wind machine’ equipment category allows a hierarchy of models to be

added:

Generator/Converter – This is be the current injection model

Electrical Control

Mechanical System/Control

Pitch Control

Aerodynamics

Wind Gust/Ramp

Auxiliary Control

These model ‘slots’ offer a flexible hierarchy and enable a modular approach of

wind models

Usage not enforced, e.g. coding complete model into the generator

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 50

Use a similar existing model with data adjusted to represent the new equipment

Use the traditional way to build a user-written model in PSS®E

Create your own user-drawn model using the GMB

What if there is no suitable PSS®E model for my

equipment ?

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 51

Introduction of GMB

What is GMB (1)?

Graphic Model Builder (GMB) is available as a separate PSS®E add-on that allows

PSS®E users to graphically build user models for dynamic simulation without having

the need to write and compile high level language programs (e.g. FORTRAN).

GMB works with PSS®E, Rev. 30.3.2 and newer.

“User-drawn” models are in addition to the known PSS®E standard and “User-written”

models.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 52

Introduction of GMB

What is GMB (2)?

GMB uses the Microsoft Visio®

graphical interface to draw and

simulate dynamic models of exciters

and turbine governors, with other

model categories to be added in

future releases.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 53

Introduction of GMB

What is GMB (3)?

GMB provides in its library predefined

graphic elements and their associated

control model to represent fundamental

control blocks, such as time-delay,

limits, sum, product, math and non-

linear functions, output, and many

other control functions.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 54

Introduction of GMB

What is GMB (4)?

You are free to add FORTRAN statements to your model, which are then interpreted

by GMB without the need of an additional compiler.

The total number of user-defined models (traditional FORTRAN based user-defined

models plus user-defined models created using GMB) that can be handled in

PSS®E is defined in Table P-1 of the PSS®E Program Operation Manual Volume I.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 55

Introduction of GMB

How does the GMB work ?

After having designed a model, the user

must enter the necessary parameters for the

different blocks via masks and add event

signals and monitor plots for validating the

model.

After standalone tests, the new model can be used directly in PSS®E (only if the

BOSL.dll is available) as a GMB-Macro without the need of compilation.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 56

Type 1 Generic Model –

Validation

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 57

Thank you for your attention!

© Siemens AG 2011. All rights reserved.

IC SG SE PTI

© Siemens AG 2012. All rights reserved.

2012-09 Page 58

© Siemens AG 2012. All rights reserved.

Diego Murcia

Consultant

Siemens AG, IC SG SE PTI NC TRS

Freyeslebenstrasse 1

91058 Erlangen

Germany

Phone: +49 9131 – 7 33878

Fax: +49 9131 – 7 325159

E-mail: [email protected]

www.siemens.com/power-technologies