Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales...

71
Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos 10 de Marzo de 2011

Transcript of Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales...

Page 1: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Modelado Molecular de Nanomateriales para

Fotovoltaica Molecular

Dr. Daniel Glossman-MitnikTemixco, Morelos – 10 de Marzo de 2011

Page 2: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 3: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

CIMAV

Page 4: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

PRINATEC

Page 5: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

UAM

BUAP

CIATEC

CIMAV

CIQAUANL

UNISON

UNAM

IMP

IPN

CINVESTAV-DF

CINVESTAV-QRO

IPICYT

UASLP

Main research centers in México with activities in Nanoscience

and/or Nanotechnology

Page 6: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

• Computational Simulation of the

Molecular Structure and Properties of

Nanomaterials

• Computational Nanotechnology

• Synthesis of Nanostructured Materials

• Chemical and Physical

Characterization of Nanomaterials

• Industrial Applications of

Nanotechnology

Page 7: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Tools of the Nanosciences

• Tools to make nanostructures

• Tools for measuring nanostructures

• Tools for modeling nanostructures

Page 8: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational Nanotechnology

• Modelling and Design of Nanomaterials using Computers

• Computational Characterization of the Molecular Structure of Nanomaterials

• Prediction of the IR, Raman, UV-Vis and NMR Spectra of the Nanostructures

• Determination of the Electric and Magnetic Properties of the Nanomaterials

• Computational Simulation of the Thermochemical Properties of the Nanomaterials in Gas Phase, Solid Phase and in Solution

• Analysis of the Chemical Reactivity of the Nanomaterials

• Simulation of Chemical and Physical Processes of the Nanostructures

Page 9: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 10: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational ChemistryIs that part of Chemistry where the solution to chemical

problems is obtained through calculations performed with

a computer.

Page 11: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 12: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 13: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational chemistry and molecular modeling have

reached a high level of predictability that makes them

useful tools for the design of new materials

Page 14: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Using Computational Chemistry it is posible to model a

molecular system once and once again without the need of

chemicals, thus avoiding the generation of waste. This

translates into resources, energy and money savings.

Page 15: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
metodos.ppt
Page 16: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

It is based on the

laws of classical

mechanics

It is based on the laws of quantum

mechanics

Computational

Chemistry

Molecular Mechanics

Electronic Structure Theory

Page 17: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Electronic Structure

Methods

Semiempirical

methods

Ab initio methods

DFT methods

Page 18: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

“For the development of Density

Functional Theory - DFT"

Walter Kohn

Born in Vienna, Austria

University of California Santa Barbara, CA, USA

Nobel Prize in Chemistry 1998

Page 19: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

“For the development of

computational methods in quantum

chemistry"

John A. Pople

Born in Burnham, Inglaterra

Northwestern University Evanston, IL, USA

Nobel Prize in Chemistry 1998

Page 20: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

OBJECTIVES

Computational Modeling of the Molecular Structure and Properties, Spectroscopy, Thermochemistry and Chemical Reactivity of Molecules and (Bio)Nanomaterials, and of the Synthesis and Characterization Processes that Could be of Academic Interest and for the Solution of Industrial Problems

Page 21: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 22: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Nanomaterials for

Solar Energy Storage

and Conversion

In the NANOCOSMOS Group, we are engaged in

theoretical and computational approaches for solving

problems of interest in nanoscience and nanotechnology.

Page 23: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational Chemistry

of the Molecular

Structure and Properties of NANOMELFOS

********

Organic Light-Emitting

and Photovoltaic

Nanomaterials

Page 24: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational

simulation of the

molecular structure

and properties of

nanomaterials

potentially useful

for the fabrication

of solar cells and

photovoltaic devices

Page 25: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Nanomaterials for

Solar Energy Storage

and Conversion

Organic Photovoltaics

PEM Fuel Cells

OrganicElectroluminiscence

OLEDS

Lithium-Ion PolymerBatteries

Page 26: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 27: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

N

C12H25O

C12H25O

Me

C60-3PV

ITO Al

Photocurrent

h

e-

e-

e-

e-

Page 28: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

The electron transfer is one of the fundamentalprocesses that play an important role in physical,chemical, and biological systems.

Page 29: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 30: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 31: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 32: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 33: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 34: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 35: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 36: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Photochemical Solar Cells based on Molecular Assemblies

(Mimicking photosynthesis using porphyrins and chlorophyll)

Molecular clusters formed in mixed solvents exhibit broader absorption bands

HN

NNH

N

H H

H2P300 400 500 600 700 800

1.0

0.5

1.5

2.0

0

Wavelength, nm

Absorb

ance

0.75 mM (H2P)n in MeCN : toluene = 9 : 1

18M H2P in MeCN

Example 3.

Page 37: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Organic Semiconductors for

Nanolectronics and NANOMELFOS

Page 38: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de
Page 39: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Voc ≈ HOMO donor – LUMO acceptor

Isc ≈ LUMO donor – LUMO acceptor

Page 40: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

ββ-carotene

Page 41: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Carotenoids

norbixin

crocetin

retinoic acid

Page 42: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Computational strategy

Validation the theoreticalmodel chemistry

Computationalcharacterization of five

carotenoids (sensitizers)

Dye-ZnO interactionanalysis

Page 43: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Validation of the theoretical model

chemistry for ββ-carotene• Four different density functionals and two

basis set were used in the calibration

• PBE01, B3LYP2 ,TPSSh3, M05-2X4

• 3-21G(d), 6-31G(d) • Molecular structure and infrared (IR) spectrum

• Excited states – UV-Vis and fluorescence spectra

• Dipole moment – Isotropic polarizability

• Free energies of solvation ΔG(solv)

• Chemical reactivity (Fukui indices)

Page 44: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

*(Hideki Hashimoto, et al., Journal of Molecular

Structure 604 (2002) 125-146

Molecular structure of ββ-carotene

MODELO QUIMICO

PBE1PBE/

3-21G*

(Å)

B3LYP/6-

31G*

(Å)

B3LYP/ 3-21G*

(Å)

TPSSH/ 3-21G*

(Å)

MO52X/ 3-21G*

(Å)

REFERENCIA*

TEOR - DRX

Parámetro

R(1,2) 1.537 1.554 1.549 1.544 1.534 1.51 1.51

R(2,13) 1.472 1.475 1.478 1.474 1.479 1.46 1.48

R(2,45) 1.351 1.363 1.353 1.357 1.342 1.34 1.31

R(13,14) 1.349 1.358 1.351 1.358 1.341 1.34 1.34

A1(2,1,5) 110.860 110.906 110.931 111.001 110.728 112 116

A16 (3,4,5) 108.91 109.729 109.179 108.683 108.754 113 126

D36(45,2,13,15) 50.624 45.565 51.256 47.841 55.512 48.5º 48º

D164(63,62,42,41) 50.429 45.025 50.975 46.536 57.245 N.D N.D

Page 45: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

δ=C-H . I.S. Krasnokutskaya, E.I. Finkelshtein, J. Mol. Struct. 349 (1995)

SDBS 3436,2952,2926,2863,1448,1369,955cm-1

Page 46: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Electronic transitions for ββ-carotene,

wavelength (nm) - energy (eV) – oscilator strength (f)

Abs Λ (nm) E (eV) f (S)

1 471.4 2.75 4.4086 S H-0->L+0(+78%) H-1->L+1(6%)

2 336.9 3.68 0.0009 S H-1->L+0(+74%)

3 313.4 3.96 0.0004 S H-0->L+1(+79%) H-1->L+0(+9%) H-1->L+2(+7%)

4 282.9 4.38 0.0889 S H-2->L+0(+73%) H-1->L+1(+8%)

5 268.3 4.62 0.3263 S H-0->L+2(+50%) H-1->L+1(+26%)

6 247.5 0.0028 0.0028 S H-3->L+0(+63%) H-2->L+1(+14%)

Calculated with M05-2X/6-31+G(d)

Page 47: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Solubility of the ββ-carotene molecule

Solvent

Water Ethanol Methanol Acetone CH3Cl THF C6H12

(ΔG)

Kcal/mol0.27 -11.21 -11.47 -2.46 2.92 1.97 -4.79

Page 48: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

fk

= over C(8), C(15), C(16) y C(21),

fk

= over C(58), C(87) y C(74).

Page 49: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Electronic properties

M05 2X/6-31+G(d,p)

Molecule E (u.a) μ (Debye) α(Bohr3)

ββ-carotene 1598.202 1.2844 579.85

I

(eV)

A (eV)

Χ (eV)

η

(eV)

Ѕ

(eV)

ω (eV)

5.5479 1.2213 3.3846 2.1632 1.0816 2.6477

Page 50: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Bixina

500100015002000250030003500

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

330

541

606950

1063

1217

1382

14731562

1664

1765

3063

3263

1217

1382

1664

3063

1606

Tra

nsm

itancia

u.a

número de onda (cm-1)

IR-bixin-3-21G(d)

N.M Gómez-Ortíz, et al., Sol. Energy Mater. Sol. Cells (2009)

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng

Bixin

Page 51: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Norbixin

05001000150020002500300035004000

0.0

0.2

0.4

0.6

0.8

1.0

500

613

787

879

1099

1255

1428

1671

3255

3561

% T

ran

smis

ion

u.a

número de onda(cm-1)

IR-Norbixin-M052X-3-21G(d)-gas

Page 52: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Transbixin

01000200030004000

0.0

0.2

0.4

0.6

0.8

1.0

57

9.4

10

95

.6

13

96

.2

175230

08

.6

1304.61617.5

% T

ran

sm

isio

n u

.a

numero de onda (cm-1)

IR-Transbixina-3-21G(d)-gas

Page 53: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Retinoic acid

1000200030004000

0.00

0.25

0.50

0.75

1.00

31

1

84

4

10

46

13

52

14

74

15

65

31

15

32

1234

94

226881114615073372

% T

ran

smit

an

cia u

.a

número de onda (cm-1)

IR-ácido retinóico-M052X-321G(d)-gas

L.F.C. de Oliveira, S.O. Dantas, E.S. Velozo, P.S. Santos, M.C.C. Ribeiro, Journal of

Molecular Structure 435, (1997), 101-107

Page 54: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

0500100015002000250030003500

0.0

0.2

0.4

0.6

0.8

1.0

579.4

1095.6

1396.2

17523008.6

1304.61617.5

% T

ran

sm

ita

ncia

u.a

número de onda (cm-1)

IR-crocetina-3-21G(d)-gas

Crocetin

Page 55: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

HOMO, LUMO and Fukui functions

)04.3(9Cf

k

)72.2(11

Cfk

Page 56: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

First excited states for the carotenoids

Molécula Λ (nm)

(eV)

(f) (S) H=HOMO, L= LUMO

bixina 460.8 2.69 3.9273

S H-0->L+0(+81%)

H-1->L+1(5%)

norbixina 472.1

* 471.5 2.62 3.8699

S H-0->L+0(+82%)

H-1->L+1(6%)

transbixina 472.2 2.63 3.9274

S H-0->L+0(+82%)

H-1->L+1(6%)

crocetina 438.0 2.823 3.2313 S H-0->L+0(+82%)

ácido

retinoico 359.1 3.45 1.7841

S H-0->L+0(+83%)

Page 57: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Calculated properties of carotenoids using the M052X/6-31+G(d,p) model chemistry

PROPIEDAD FASE

MOLECULA CAROTENOIDE

bixina norbixina transbixina crocetinaAcido

retinoico

BRECHA DE

ENERGÍA GAP

gas 4.359 5.009 4.233 4.514 6.3541

acuosa 2.46 2.4603 2.468 2.6243 3.7096

MOMENTO

DIPOLAR

gas 3.8788 3.6095 1.126 3.1805 2.1745

acuosa 4.7075 4.60 0.1937 5.005 2.5051

HOMO

gas -6.413 -7.784 -6.388 -6.989 -7.986

acuosa -6.368 -6.727 -6.2314 -6.589 -6.7484

LUMO

gas -2.110 -2.178 -2.098 -2.090 -1.445

acuosa -2.009 -1.718 -2.144 -2.075 -1.4694

ENERGIA TOTAL

(Hartrees)

gas -1271.70 -1232.1504 -1271.4609 -1077.364 -929.3464

acuosa -1271.50 -1232.20 -1271.50 -1077.40 -929.370

pKa acuosa 4.784 4.768 4.778 H28= 3.77 H42= 6.65

α (Bohr3) acuosa 464.64 465.2 462.59 328.12 174.83

Page 58: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Conceptual DFT descriptors

* Utilizando las energías HOMO y LUMO con el teorema de Koopmans

DESCRIPTOR DE

REACTIVIDADFASE

MOLECULA CAROTENOIDE

bixina norbixina transbixina crocetina

Acido

retinoico

Potencial de Ionización

(I)

gas 6.68 7.09 6.68 6.99 7.22

acuosa 5.30 5.29 5.30 5.46 5.72

Afinidad electrónica

(A)

gas 1.77 1.31 1.82 1.72 0.94

acuosa 2.84 2.83 2.83 2.84 2.53

Electronegatividad

Χ

gas 4.23 4.20 4.254.32

* 4.33

4.08

*4.72

acuosa 4.23 4.22 4.26 4.36 4.12

Dureza

ηgas 2.45 2.89 2.43

2.62

*2.26

3.14

*3.27

acuosa 2.16 2.51 2.18 1.31 1.59

Blandura

Ѕ

gas 6.28 6.34 6.36 6.37 1.598

acuosa 0.616 0.615 0.617 0.67 0.79

Índice de

electrofilicidad

ω

gas 3.64 3.05 3.723.55

4.16*

3.30

*3.34

acuosa 4.19 3.56 4.29 4.18 5.32

Page 59: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Zinc oxide (ZnO) has a large

application potential owing to the

diverse physical properties and

the fine-tuning in the preparation

process. The wide band gap of

3.2 eV has also made it suitable

for short-wavelength

optoelectronic devices,

including UV detectors,

photocatalysts, laser diodes

and light-emitting diodes (LEDs).

Page 60: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

(ZnO)16

Zincite (101) optimized with the M05-2X/LANL2DZ model chemistry

Page 61: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Calculated and experimental IR spectra of ZnO

2003004005006007008009001000

0.0

0.2

0.4

0.6

0.8

1.0

274.4

456.1

644.5

740.8

306.7599.6768.4

% T

ran

smit

an

ce

número de onda (cm-1)

X.Q.Wei,, et al. Optics and Laser Technology 41 (2009) 530-534

Page 62: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Calculated and experimental UV-Vis spectra of (Zn16O16)

200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

476.1

9

377.3

6

425.53

Ab

sorb

an

cia

nanómetros (nm)

UV-ZnO-M052X-LANL2DZ-optimizado

Abs λ(nm)

E

(eV)

(f) S

1 476 2.6 0.164 S H-0->L+0(+74%) O

H-1->L+1(5%)

2 395 3.14 0.0657 S H-0->L+1(+74%) Zn

H-1->L+0(13%)

3 372 3.33 0.1497 S H-1->L+0(+49%) BV

H-0->L+1(+14%)

Shalaka C. Navale, I.S. Mulla, 2009 Materials Science and

Engineering C 29 (2009) 1317–1320

Wei,X.Q., Z, Zhang et al

2009

Page 63: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Calculated properties of (ZnO)16 using the M052X/LANL2DZ model chemistry

DESCRIPTOR DE REACTIVIDAD

(ZnO)16

Potencial de

Ionización (I) 6.94

Afinidad

electrónica (A) 1.759

Electronegatividad 4.35

*4.31

Dureza 2.59

*1.97

Blandura 1.29

Índice de

electrofilicidad

3.65

*4.71

PROPIEDAD (ZnO)16

Energía GAP 3.9 eV

Momento

dipolar 10.97 Debyes

HOMO -6.28eV

LUMO -2.34eV

Energía Total -2249.91Hartrees

*Koopmans’s theorem

Page 64: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Voc ≈ HOMO donor – LUMO acceptor

(interfacial bandgap)

η ≈ HOMO donor – LUMO acceptor

(interfacial hardness)

Voc ≈ η

Conclusion: The larger the interfacial

hardness η, the larger Voc, and then, the

larger the efficiency of the solar cell

Page 65: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Following the previous idea, and

considering Conceptual DFT, we can

define:

Χ ≈ HOMO donor + LUMO acceptor

(interfacial electronegativity)

and

ω (interfacial electrophilicity) as the

relation between the square of the

interfacial electronegativity divides by

twice the interfacial hardness

Page 66: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Conceptual DFT Interfacial Reactivity Descriptors for Carotenoids and ZnO

Electronegativity (Χ)

retinoic acid (4.582) crocetin(4.313) transbixin(4.254)

bixin(4.226) norbixin (4.201)

Hardness (η)

retinoic acid (3.140) norbixin(2.891) crocetin(2.619)

bixin (2.453) transbixin (2.430)

Electrofilicity (ω)transbixin(3.724) bixin(3.640) crocetin(3.551)

norbixin(3.303) retinoic acid (3.052)

Page 67: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

General Conclusions• Three new concepts have been defined: the interfacial

electronegativity, the interfacial hardness and the interfacial

electrofilicity, all in terms of the HOMO of the donor and the

LUMO of the acceptor.

• The calculated results and their comparison with the

experimental values seem to suggest that, for a series of

sensitizer dyes of similar structure, the larger the interfacial

electronegativity and the interfacial hardness, and the

smaller the interfacial electrofilicity, for the interaction

between the dye and the nanostructured metallic oxide, will

result in a larger efficiency of the photovoltaic solar cell.

Page 68: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

• Luz María Rodríguez-Valdez

• Norma Flores-Holguín

• Francisco Espinosa-Magaña

• Marco Gallo-Estrada

• Amelia Valdez-Aguirre

• Erika López-Martínez

• Erasmo Orrantia-Borunda

• Alejandra Favila-Pérez

• Mónica Alvarado-Beltrán

• Isis Rodríguez-Sánchez

• Ana María Mendoza-Wilson

• Diana Barraza Jiménez

• Manuel Alberto Flores-Hidalgo

• Melina Loya Mancilla

• Nora Sánchez-Bojorge

• Hazel Morales-Rodríguez

• Teresita Ruiz-Anchondo

• Cecilia Aguilar-Elguézabal

• Francisco Cervantes-Navarro

• Alfredo Aguilar-Elguézabal

Nanomateriales

Moleculares

Funcionales

Nanoagregados

Metálicos y

Moleculares

Nanomateriales para

Almacenamiento y

Conversión de Energía

Catálisis

Nanomolecular

Nanoelectrónica

Molecular y

Nanobiosensores

Fármacos,

Agroquímicos

y Alimentos

Inhibidores de

la corrosión

DFT Teórica

y Conceptual

Química Modelo

CHIH-DFT

Azatiofenos

Fullerenos

Nanotubos

NANO-OPORTUNIDADES EN QUÍMICA COMPUTACIONAL

Daniel Glossman-Mitnik

Grupo NANOCOSMOS y PRINATEC – CIMAV, SC

Miguel de Cervantes 120 – Comp. Ind. Chihuahua – Chihuahua, Chih. 31109 – México

E-mail: [email protected]

Page 69: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

MONESOL Virtual Net•Organic Nanomaterials for Energy Applications•Photocatalysis•Photostability and Toxicity of Drugs and UV-Photoprotection•Solar Energy•Artificial Light Harvesting Systems•Photomedicine•Photo Nanosystems•Nano Tools for Solar Energy and Photochemistry•Solar Chemistry•Photochromism•Organic Light-Emitting Diodes•PV Systems•Nanostructured Solar Cells•Hybrid and Organic Photovoltaics (Dye Solar Cells and Organic Solar Cells)•Advanced Semiconductors for Nanostructured Inorganic Photovoltaics•Nanostructured Batteries and Capacitors•Nanomaterial-Based Sensors•Biomimetic and Microbial Approaches to Solar Fuel Generation•Basic Theory and New Phenomena at the Nanoscale•Artificial Photosynthesis

Page 70: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Thanks for your

attention!!!

Page 71: Modelado Molecular de Nanomateriales para Fotovoltaica ... · Modelado Molecular de Nanomateriales para Fotovoltaica Molecular Dr. Daniel Glossman-Mitnik Temixco, Morelos –10 de

Dr. Daniel Glossman-MitnikBox 37 C

Tel: +52 614 4391151

E-mail: [email protected]

[email protected]

WWW: http://www.cimav.edu.mx/cv/daniel.glossman

http://blogs.cimav.edu.mx/daniel.glossman

Secretary: Rocío Landeros - Tel +52 614 4391130

Grupo NANOCOSMOS

Departamento de Simulación Computacional

y Modelado Molecular

Boxes 10 C, 11 C and 12 C

Tel: +52 614 4391190 and 4394805