Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint...

38
NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Model order reduction via dominant poles Joost Rommes [[email protected]] NXP Semiconductors/Corp. I&T/DTF/Mathematics Joint work with Nelson Martins (CEPEL), Gerard Sleijpen (UU) Symposium on recent advances in MOR November 23, 2007

Transcript of Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint...

Page 1: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

NXP PowerPoint template (Title)Template for presentations (Subtitle)

Name

Subject

Project

MMMM dd, yyyy

Model order reductionvia dominant poles

Joost Rommes [[email protected]]NXP Semiconductors/Corp. I&T/DTF/MathematicsJoint work with Nelson Martins (CEPEL), Gerard Sleijpen (UU)

Symposium on recent advances in MORNovember 23, 2007

Page 2: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Introduction

Eigenvalue problems and applications

Dynamical systems and transfer functions

Dominant poles

Dominant Pole Algorithm

Applications

Conclusions

2/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 3: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Introduction

I Large-scale dynamical systems arise inI electrical circuit simulationI structural engineeringI power system engineeringI . . .

I Transfer function and properties are used forI simulationI behavioral modelingI stability analysisI controller design

I Relatively few transfer function poles of practical importanceI Three key questions:

I Which poles are important (dominant)?I How to compute these poles efficiently?I How to use these poles in model order reduction?

3/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 4: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Motivating example I: Pole-zero analysisFrequency response of regulator IC (1000 unknowns). Which polecauses peak around 6MHz?

1.010.0

100.01.0k

10.0k100.0k

1.0M10.0M

100.0M1.0G

10.0G

(LOG)

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0(LIN)

Oct 17, 200711:35:07

Bode Plot

Analysis: AC

User: nlv18077 Simulation date: 17-10-2007, 10:21:28

File: /home/nlv18077/test/pstar/stability_ne.sdif

F

DB(VN(VREG))

Note dB(x)= 20 ·10 log(x), e.g. -60 dB = 10−3

4/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 5: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Motivating example II: Model order reduction

Transfer function of power system (66 unknowns). How tocompute reduced order model?

0 5 10 15 20 25 30 35−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency (rad/s)

Gai

n (d

B)

ExactReduced (series) (k=11)Error (orig − reduced)

5/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 6: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

The generalized eigenvalue problem

Given A,E ∈ Rn×n, find (λ, x, y) that satisfy

Ax = λEx, x 6= 0

y∗A = λy∗E , y 6= 0

An eigentriplet (λ, x, y) consists of

λ ∈ C eigenvalue

x ∈ Cn right eigenvector

y ∈ Cn left eigenvector

I (A,E ) has n eigenvalues (real / complex conjugated pairs)

I Corresponding eigenspaces need not be n-dimensional

I Bi-orthogonality: λi 6= λj ⇒ y∗j Exi = 0

6/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 7: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Eigenvalue decompositions

Complete eigenvalue decomposition (Λ,X ,Y ):

AX = EXΛ, Y ∗A = ΛY ∗E with Y ∗EX = I ,Y ∗AX = Λ

Λ = diag(λ1, λ2, . . . , λn) ∈ Cn×n

X = [x1, x2, . . . , xn] ∈ Cn×n

Y = [y1, y2, . . . , yn] ∈ Cn×n

In practice only interest in k � n eigentriplets: partial ED

AXk = EXkΛk , Y ∗k A = ΛkY ∗

k E with Y ∗k EXk = I ,Y ∗

k AXk = Λk

Λk = diag(λ1, λ2, . . . , λk) ∈ Ck×k

Xk = [x1, x2, . . . , xk ] ∈ Cn×k

Yk = [y1, y2, . . . , yk ] ∈ Cn×k

7/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 8: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Eigenvalue computations

Methods for complete eigendompositions:

I QR method for AX = XΛ

I QZ method for AX = EXΛ

I Complexity O(n3), practical use up to n ≈ 2000

Methods for partial eigendecompositions:

I Krylov methods (Lanczos, Arnoldi)

I Newton based methods (Jacobi-Davidson [Sleijpen, Van derVorst (1995)])

I No dense matrix computations needed

I Careful selection strategies needed

8/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 9: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

First-order dynamical systems

First-order SISO dynamical system{E x(t) = Ax(t) + bu(t)y(t) = c∗x(t) + du(t)

where

u(t), y(t), d ∈ R, input, output, direct i/o

x(t),b, c ∈ Rn, state, input-to-, -to-output

E ∈ Rn×n, system (descriptor) matrix

A ∈ Rn×n, system matrix

9/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 10: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Transfer functionFirst-order SISO dynamical system (d = 0):{

E x(t) = Ax(t) + bu(t)y(t) = c∗x(t)

with transfer function

H(s) = c∗(sE − A)−1b

Poles are λ ∈ C for which

lims→λ

H(s) =∞,

or, equivalently,det(λE − A) = 0,

i.e. the eigenvalues of (A,E )

10/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 11: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Transfer function H(s) = c∗(sE − A)−1b

Can be expressed as

H(s) =n∑

i=1

Ri

s − λi,

where residues Ri are

Ri = (c∗xi )(y∗i b),

and (λi , xi , yi ) are eigentriplets (i = 1, . . . , n)

Axi = λiExi , right eigenpairs

y∗i A = λiy∗i E , left eigenpairs

y∗i Exi = 1, normalization

y∗j Exi = 0 (i 6= j), E -orthogonality

11/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 12: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant poles cause peaks in Bode-plot

H(s) = c∗(sE − A)−1b =n∑

i=1

Ri

s − λiwith Ri = (c∗xi )(y

∗i b)

Bode-plot is graph of (ω, |H(iω)|)I frequency ω ∈ RI magnitude |H(iω)| usually in dB (note dB(x)= 20 ·10 log(x))

Consider pole λ = α + βi with residue R, then

limω→β

H(iω) = limω→β

R

iω − (α + βi)+

n−1∑j=1

Rj

iω − λj

=R

α+ Hn−1(iβ)

Hence pole λ with large∣∣∣ RRe(λ)

∣∣∣ causes peak

12/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 13: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

0 2 4 6 8 10 12 14 16 18 20−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (rad/s)

Gai

n (d

B)

ResponseDominant poles

Figure: Bode plot (ω, |H(iω)|). Pole λj dominant if|Rj |

|Re(λj )|large.

13/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 14: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant poles of transfer functions

H(s) =n∑

i=1

Ri

s − λiwith Ri = (c∗xi )(y

∗i b)

I Pole λi dominant if |Ri ||Re(λi )|

large

I Dominant poles cause peaks in Bode-plot (ω, |H(iω)|)I Effective transfer function behavior:

Hk(s) =k∑

i=1

Ri

s − λi,

where k � n and (λi ,Ri ) ordered by decreasing dominance

I Early work modal approximation [Davison, Marschall (1966)]

14/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 15: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant Pole Algorithm (DPA) and extensions

DPA [Martins (1996)] computes dominant poles of

H(s) = c∗(sE − A)−1b

1. Newton scheme

2. Nice convergence behavior [R., Sleijpen (2006)]

3. Subspace acceleration, selection, deflation: SADPA [R.,Martins (2006)]

4. Efficient deflation, extensions, applications [R., Martins,Pellanda (2006)]

15/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 16: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant Pole Algorithm [Martins (1996)]

H(s) = c∗(sE − A)−1b

I Pole λ: lims→λ H(s) =∞, or lims→λ1

H(s) = 0

Apply Newton’s Method to 1/H(s):

sk+1 = sk +1

H(sk)

H2(sk)

H ′(sk)

= sk −c∗(skE − A)−1b

c∗(skE − A)−1E (skE − A)−1b

Note dHds = −c∗(skE − A)−1E (skE − A)−1b

16/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 17: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant Pole Algorithm

1: Initial pole estimate s1, tolerance ε� 12: for k = 1, 2, . . . do3: Solve vk ∈ Cn from (skE − A)vk = b4: Solve wk ∈ Cn from (skE − A)∗wk = c5: Compute the new pole estimate

sk+1 = sk −c∗vk

w∗kEvk

6: The pole λ = sk+1 with x = vk/‖vk‖2 and y = wk/‖wk‖has converged if

‖(sk+1E − A)x‖2 < ε

7: end for

17/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 18: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Twosided Rayleigh quotient iteration

Note that with v ≡ vk and w ≡ wk

sk+1 = sk −c∗(skE − A)−1b

w∗Ev

= skw∗Ev

w∗Ev− c∗(skE − A)−1(skE − A)(skE − A)−1b

w∗Ev

=w∗Av

w∗Ev

Step DPA Twosided RQI

3 solve (skE − A)vk = b solve (skE − A)vk = Evk−1

4 solve (skE − A)∗wk = c solve (skE − A)∗wk = E ∗wk−1

Original work on twosided RQI [Ostrowski (1958), Parlett (1974)]

18/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 19: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Convergence behavior: DPA vs. RQI

Figure: λ = −0.47 + 8.9i : DPA: red + yellow, RQI: red + light blue.

19/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 20: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Convergence behavior: DPA vs. RQI

Typically, with initial pole guess s0,I DPA converges to dominant pole closest to s0

I with ∠(c, x) and ∠(b, y) smallI i.e., large |R| with R = (c∗x)(y∗b)

I Quadratic rate of convergence

I See also [R., Sleijpen (2006)]

while

I RQI converges to pole closest to s0I Originally intended for refinement of eigenpairs

I Cubic rate of convergence

I See also [Ostrowski (1958), Parlett (1974)]

20/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 21: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Extensions of DPA

I DPA is a single pole algorithm

I May have very local behavior

I In practice more than one pole neededI Subspace Accelerated DPA [R., Martins (2006)]

I Subspace AccelerationI Several pole selection strategiesI Deflation techniques

21/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 22: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Subspace acceleration and selectionI Keep approximations vk and wk in search spaces V and W

I Petrov-Galerkin leads to projected eigenproblem

Ax = θE x,

y∗E = θy∗A

where E = W ∗EV ∈ Ck×k and A = W ∗AV ∈ Ck×k

I Gives k approximations (θi , xi = V xi , yi = W yi ) in iter k

I Select approximation with largest residue as next shift:

sk+1 = argmaxi

∣∣∣∣(c∗xi )(y∗i b)

Re(θi )

∣∣∣∣I Similarities with twosided Jacobi-Davidson ([Hochstenbach

(2003), Stathopoulos (2002)])

22/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 23: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Deflation for H(s) = c∗(sE − A)−1b

I Triplet (λ, x, y): Ax = λEx and y∗A = λy∗E

I New search spaces: V ⊥ E ∗y and W ⊥ Ex

I Usual deflation (every iteration):

vk ← (I − xy∗E )vk

wk ← (I − yx∗E ∗)wk

I More efficient: deflate only once

bd ← (I − Exy∗)b ⇒ vk = (skE − A)−1bd ⊥ E ∗y

cd ← (I − E ∗yx∗)c ⇒ wk = (skE − A)−∗cd ⊥ Ex

I Note that y∗bd = c∗dx = 0

23/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 24: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Deflation of dominant poles removes peaks

0 2 4 6 8 10 12 14 16 18 20−90

−80

−70

−60

−50

−40

−30

Frequency (rad/sec)

Gain

(dB

)

Bodeplot

Exact

Modal Equiv.

Figure: Exact transfer function (solid) with removal of dominant poles:−0.467± 8.96i (square), −0.297± 6.96i (asterisk), −0.0649 (diamond),and −0.249± 3.69i (circle).

24/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 25: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Applications of DPA

I Pole-zero analysis in circuit simulationI Applications in model order reduction

I Modal approximationI Dominant poles may lie anywhere in complex planeI Combinations with rational Krylov methods

25/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 26: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Pole-zero analysis

I Large nonlinear Regulator IC (n = 1000)

I Designed to deliver constant output voltage

I Turns unstable for certain loads

I Interested in positive poles and dominant poles

I Linearization around DC solution

Results:

Method Time (s) Poles

QR 450 allDPA 41 994 · 103 ± i5.6 · 106

−8.0 · 106 ± i4 · 106

−337 · 103

26/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 27: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Pole-zero analysisFrequency response of circuit (1000 unknowns). Pole994 · 103 ± i5.6 · 106 causes peak around 6MHz.

1.010.0

100.01.0k

10.0k100.0k

1.0M10.0M

100.0M1.0G

10.0G

(LOG)

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0 (LIN)

Oct 17, 200716:38:18

names: A_* --> 3 stability_ne.qr.sdif (AC)Bode Plot + B_* --> 1 stability_ne_dpa_3.cgap (AC)Bode Plot

Analysis: AC

User: nlv18077 Simulation date: 17-10-2007, 10:21:28

File: /home/nlv18077/test/pstar/stability_ne.qr.sdif

F

- y1-axis -

A_DB(VN(VREG))

B_DB

27/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 28: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Model order reduction

Given large-scale dynamical system{E x(t) = Ax(t) + bu(t)y(t) = c∗x(t) + du(t)

where x(t),b, c ∈ Rn and E ,A ∈ Rn×n, find{Ek xk(t) = Akxk(t) + bku(t)yk(t) = c∗kxk(t) + du(t)

where xk(t),bk , ck ∈ Rk , Ek ,Ak ∈ Rk×k and

I k � n

I approximation error ‖y − yk‖ small

28/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 29: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Model order reduction

Model order reduction via projection:

1. Construct matrices V ,W ∈ Rn×k whose columns form a basisfor the dominant dynamics

2. Project using V and W :

Ek = W ∗EV , Ak = W ∗AV , bk = W ∗b, ck = V ∗c

Various projection based methods:

I Modal truncation: columns V , W are eigenvectors of (A,E )

I Moment matching: columns V , W are bases for Krylov spaces

I Balanced truncation: V , W part of balancing transformation

29/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 30: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Modal approximation and moment matching

0 2 4 6 8 10 12 14 16 18 20−90

−80

−70

−60

−50

−40

−30

−20

Frequency (rad/s)

Gai

n (d

B)

SADPA (k=12)Dual Arnoldi (k=30)Orig (n=66)

Figure: Frequency response of complete system (n = 66), modalapproximation (k = 12), and dual Arnoldi model (k = 30).

30/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 31: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant poles: location in complex plane

−16 −14 −12 −10 −8 −6 −4 −2 0 2−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

real

imag

exact polesSADPA (k=12)Dual Arnoldi (k=30)

region of interest

Figure: Pole spectrum of complete system (n = 66), modalapproximation (k = 12), and dual Arnoldi model (k = 30).

31/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 32: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Dominant poles: location in complex plane (zoom)Dominant poles not necessarily at outside of spectrum

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

real

imag

exact polesSADPA (k=12)Dual Arnoldi (k=30)

Figure: Pole spectrum (zoom) of complete system (n = 66), modalapproximation (k = 12), and dual Arnoldi model (k = 30).

32/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 33: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Rational Krylov methods [Ruhe (1998)]

General approach:

1. Choose m interpolation points si

2. Construct Vi ,Wi ∈ Cn×ki such that

colspan(Vi ) = Kki ((siE − A)−1E , (siE − A)−1Eb)

colspan(Wi ) = Kki ((siE − A)−∗E ∗, (siE − A)−∗E ∗c)

3. Project with V = [V1, . . . ,Vm] and W = [W1, . . . ,Wm]

Open question:

I How to choose interpolation points si?

I See also PhD thesis Grimme (1997)

33/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 34: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

10−1

100

101

−60

−40

−20

0

20

40

60

Frequency (rad/sec)

Gai

n (d

B)

k=40 (RKA)k=10 (QDPA)k=50 (RKA+QDPA10)Exact

Figure: Breathing sphere (n = 17611). Exact transfer function (solid),40th order SOAR RKA model (dot), 10th (dash-dot) order modalequivalent, and 50th order hybrid RKA+QDPA (dash).

34/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 35: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Breathing sphere ([Lampe, Voss (2006)]) (n = 17611)

I Two-sided rational SOAR [Bai and Su (2005)] model (k = 40,shifts 0.1, 0.5, 1, 5) misses peaks

I Small QDPA model (k = 10) matches some peaks, missesglobal response

I 500 s (SOAR, k = 2 · 40) vs. 2800 s (QDPA, 108 iters)

I Hybrid: Y = [YQDPA,YSOAR] and X = [XQDPA,XSOAR]

I Larger SOAR models: no improvement

I More poles with QDPA: expensive

I Use imaginary parts of poles as shifts for SOAR!

I Shifts σ1 = 0.65i , σ2 = 0.78i , σ3 = 0.93i , and σ4 = 0.1

I Two-sided rational SOAR, 10-dimensional bases

35/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 36: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

10−1

100

101

−250

−200

−150

−100

−50

0

50

Frequency (rad/sec)

Gai

n (d

B)

k=70 (RKA)ExactRel Error

Figure: Breathing sphere (n = 17611). Exact transfer function (solid),70th order SOAR RKA model (dash) using interpolation points based ondominant poles, and relative error (dash-dot).

36/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 37: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Concluding remarks

I DPA for computation of dominant poles

I Subspace acceleration, selection, and efficient deflation

I Straightforward implementationI Applications:

I Various specialized eigenvalue problemsI Model order reduction:

I Construction of modal approximationsI Interpolation points for rational KrylovI Behavioral modeling

Generalizations:

I Second and higher-order systems

I MIMO systems

I Computation of dominant zeros z : H(z) = 0

37/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007

Page 38: Model order reduction NXP PowerPoint template (Title) via … · 2007-11-22 · NXP PowerPoint template (Title) Template for presentations (Subtitle) Name Subject Project MMMM dd,

Subject/Department, Author, MMMM dd, yyyy

CONFIDENTIAL 3

Thank you!

[email protected]

MOOREN I C E!

38/38NXP Semiconductors Corp. I&T/DTF, Joost Rommes, November 23, 2007