MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately...

10
Silikaty 31, s. 107-115 (1987) MODEL OF NON-ISOT HERMAL FIRING OF A CYLINDRICAL KAOLIN BODY IN THE DEHYDROXYLATIOX REGIOX; II YVONA MAZACOVA, Ji HAVRDA, MARTIN UNZEITIG*, VLADDIIR HANYKYR lnBtitute of Chemical Technology, Department of the Technology of Silicates Suchbatarova 5, 166 28 Prague 6 *Czech Technical University, Engineering Faculty, Suchbatarova 4, 166 07 Prague 6 Received 3. 2. 1986 A general mathematical model of ceramic body firing in the dehydroxylation region, regarding the process as diffusion involving a chemical reaction and conduction of heat with a source, is applied to calculation of time development of concentration and temperature profiles during non-isothermal firing of rt cylindrical body of kaolinite. The calculated time development of concentration and temperature profiles was verified experimentally at two heating rates, and a satisfactory agreement was found. INTRODUCTIOX In deriving the general model of ceramic body firing in the dehydroxylation region (1) the firing was regarded as a combined process of mass and temperature transfer. The former is considered to involve diffusion with a chemical reaction, and the latter conduction of heat with a source. The mass and heat balance equations obtained, allowing the time development of concentration and temperature fields in the body to be calculated, have the following form on the assumption that the ceramic mix is a binary isotropic mixture of incompressible components in the absence of convec- tive flow, and that dehydroxylation is a lst-order chemical rction: 0 ;; = div (DAB(T, XA) grad XA) - k(T) XA (l) whe XA is the weight ratio of component A (i.e. water bound in the form of OH- groups in the structure of kaolinite), is time, DAB is the coefficient of diffusion and k is the rate constant of dehydroxylation, aT . 1 - - = a d 1 v grad T- ----k(T) X A , v Cp XA 0 ( ) where a is thermal conductivity, H is reaction enthalpy, c p is the specific heat under constant pressure, and XA 0 is the initial concentration of component A. For firing a body having the shape of an infinite cylinder OVr the dehydroxylation region, introduction of cylindrical ordinates produces the following form of balances (1) and (2): axA 1 a ( oxA) = DAB(T , XA) r -k(T) XA, aT = a( a 2 T + oT ) - H _l_k(T) XA. O or 2 T or Cp XAo (3) (4) Resolving of equations (3) and (4) requires knowledge of the initial and boundary conditions. Silikaty c. 2, 1987 107

Transcript of MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately...

Page 1: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Silikaty 31, s. 107-115 (1987)

MODEL OF NON-ISOT HERMAL FIRING OF A CYLINDRICAL KAOLIN BODY IN THE DEHYDROXYLATIOX REGIOX; II

YVONA MAZACOVA, J:rni HAVRDA, MARTIN UNZEITIG*, VLADDIIR HANYKYR

lnBtitute of Chemical Technology, Department of the Technology of Silicates Suchbatarova 5, 166 28 Prague 6

*Czech Technical University, Engineering Faculty, Suchbatarova 4, 166 07 Prague 6

Received 3. 2. 1986

A general mathematical model of ceramic body firing in the dehydroxylation region, regarding the process as diffusion involving a chemical reaction and conduction of heat with a source, is applied to calculation of time development of concentration and temperature profiles during non-isothermal firing of rt cylindrical body of kaolinite. The calculated time development of concentration and temperature profiles was verified experimentally at two heating rates, and a satisfactory agreement was found.

INTRODUCTIOX

In deriving the general model of ceramic body firing in the dehydroxylation region(1) the firing was regarded as a combined process of mass and temperature transfer.The former is considered to involve diffusion with a chemical reaction, and the latterconduction of heat with a source. The mass and heat balance equations obtained,allowing the time development of concentration and temperature fields in the bodyto be calculated, have the following form on the assumption that the ceramic mixis a binary isotropic mixture of incompressible components in the absence of convec­tive flow, and that dehydroxyla.tion is a. lst-order chemical rea.ction:

0;; = div (D AB(T, XA) grad XA) - k(T) XA (l)

where XA is the weight ratio of component A (i.e. water bound in the form of OH­groups in the structure of kaolinite), -r is time, DAB is the coefficient of diffusion and k is the rate constant of dehydroxylation,

aT . !::.H. 1 -

-:i- = ad1v grad T-----k(T) XA ,v't Cp XA

0

(!?)

where a is thermal conductivity, !1H is reaction enthalpy, cp

is the specific heatunder constant pressure, and XA0

is the initial concentration of component A.

For firing a body having the shape of an infinite cylinder OVP,r the dehydroxylationregion, introduction of cylindrical ordinates produces the following form of balances(1) and (2):

axA 1 a ( ox A) --a;-=-;- a;- DAB(T, XA) r

ar -k(T) XA,

aT = a ( a2T + __!._ oT )- !1H _l_k(T) XA.

O't or2 T or Cp XAo

(3)

(4)

Resolving of equations (3) and (4) requires knowledge of the initial and boundaryconditions.

Silika ty c. 2, 1987 107

Page 2: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Y. Mazawva, J. Hav-rda, M. Unzeitig, V. Hanykyf:

The case of firing an infinite cylinder in the dehydroxylation region can be fomula­ted by the following conditions:

- initial conditions

- boundary conditions

XA(r, 0) = XAo,

T(r, 0) = T0,

XA(R, -r) = XA0

exp (-k(T) -r),

T(R, -r) = /(-r),

OXA(O, -r) = O

or '

oT(O, -r) = O

or

(5)

(6)

(7)

(7)

(8)

(9)

One has further to know the material quantities and their general dependence on temperature and concentration, i.e.

k = k(T), D.H = D.H(T),

Cp = Cp(T, XA), a= a(T, XA)-

On considering the model of firing a cylindrical body of Podbofany kaolin in the dehydroxylation region, it was found [2] that dehydroxylation can be regarded as a lst-order reaction and that the temperature dependence of the rate constant over the temperature interval TE <773 K; 873 K) has the form

k(T) = 36034,956 exp (-21,903 K/T) s-1. (10)

In [3] it was found for Podbofany kaolin that the diffusion coefficient of water vapour can be taken as being independent of concentration and that its temperature dependence over the temperature interval TE <733 K; 873 K) has the form

DAn(T) = 43,045 exp (-24,357 K/T) m2 s-1. (11)

It was further found [4] that during firing over the dehydroxylation region, thermal conductivity can be considered approximately constant and for Podbofany kaolin has the value

a = 2.2 X 10-1 m2 s-1. (12)

During firing over the dehydroxylation range, specific heat Cp can likewise be assumed

to be constant, and according to (5, 6, 7] the following value can be considered for Podbofany kaolin:

Cp = 0.8 kJ kg-1 K-1. (13)

The following mean value of reaction enthalpy can be derived from studies [8-22]:

D.H = 594 kJ kg-1. (14)

The finding that over the dehydroxylation region the thermal conductivity as well as specific heat can be regarded as being constant, i.e. independent of temperature and composition, justifies correctness of this assumption in the derivation of the heat balance (4) in (1 ].

108 Silikaty c. 2, 1987

Page 3: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Model of Non-Isothermal Firing of a Cylindrical Kaolin Body ...

Equations (3) through (14) then provide an adequate basis for solving the problem of non-isothermal firing of a body having the shape o� infinite cylinder and made of Podbol'any kaolin.

The present study had the aim to calculate the time development of concentration and temperature profiles during non-isothermal firing of a cylindrical body in the dehydroxylation region, and to verify the results experimentally.

C AL CULATION AND EXPERIMENTAL DETERMINATION

OF CONCENTRATION AND TEMPERATURE PROFILES

All the measurements and calculations were carried out for bodies of Podbofany kaolin.

Drawing on a vacuum auger was used to prepare cylindrical bodies which were dried at 378 K, and annealed at 573 K to remove residual technological water and in­terlattice molecular water originating from the illitic-montmorillonitic component of Podbol'any kaolin [23]. The bodies were 32 mm in diameter and 190 mm in height.

The time development of temperature and concentration profiles was calculated by solving equations (3) and (4) using the network method [24] for the following input data:

- initial homogeneous distribution of concentration and temperature throughoutthe body, i.e.

XAc = 0.106 kg kg-1,

To= 573 K.

(15)

(16)

- boundary conditions expressed by the time dependence of concentrationand temperature on the body surface, while

a) the actual form of the condition for concentration is given by equation (7)in association with (15) and equation (10);

b) in the case of temperature, two different time dependences of the surface bodytemperatures were chosen, namely linear temperature increase at rates of 1 K min-1

and 5 K min-1 of the body surface; - the material quantities and their dependences, (10) through (14).

Verification of the mathematical model requires experimental determination of theconcentration and temperature profiles in the body in terms of time for the initial and boundary conditions used in the calculation. The experimental determination of the time development of concentration and temperature profiles during non­isothermal body firing was carried out in a kanthal furnace with a shift-out bottom onto which the body 32 mm in diameter was set. The body temperatures were measured by differentially connected Pt-PtRh 10-Pt thermocouples in corundum capillaries, placed at the surface, at 1/2 R and at the centre in one plane, at the middle of the body height. This part of the body was in the constant-temperature zone of the tubular furnace.

The rate of heating was controlled according to the temperature indicated by the thermocouple placed on the body surface; the increase in the body surface temperature was linear at the rates of 1 K min-1 and 5 K min-1, corresponding to the boundary conditions used in the calculation.

At the required time, the dehydroxylation reaction was instantaneously stopped by shifting the body out of the furnace and cooling it down to 298 K. The concentra­tion profile was then determined by the procedure described in [3].

Silika ty c. 2, 1987 109

Page 4: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

.....

102

x A

1 02

x A

.....

� ;T

a)

I

J973

r

b)

0

k gk f

1

a)

'9'9"'�

b)

i I

T

I I

i 12

I

12

I K

I

I

11

I 11

10

10

9

9

923

923

8 8

· �··

J4 U

7 7

: /4

�6

;::

6

"' ;::

5

5

8"

<:!

i:,,

4

4

873

:-, 87

3 3

3

I�

� ;,

cl

2 2

'-.._1,.../

" 1,'8

... ?' 1

1 �

�2

60

�,.-

,-.

16

12

8 4

0 4

8 12

16

16

1 2

8 4

0 4

8 12

16

::!

"' r/

mm

r/

mm

82

3 I

823

� ..

;;;·

Fig

. 1.

T

ime

deve

lopm

ent

of

conc

entr

atio

n pr

ofile

s (a

) ca

lcula

ted,

'.:'

(b

) m

easu

red,

in

the

bod

y at

the

firi

ng r

ate

of 1

K m

in-1

• T

he c

urve

s �

de

sign

ated

by

the

sam

e nu

mbe

r corr

espo

nd to

the

sam

e tim

e fr

om th

e st

art

220

of fi

ring

whe

n de

hydr

oxyl

atio

n w

as i

nsta

ntan

eous

ly s

topp

ed in

the

body

: ;::

1 -

290

min

, 2 -

320

min

, 3

-34

0 m

in,

4 -

360

min

. � ""' <ae

, :,,

I I

v

,,

vr-----J

__ .,.

__.

I

Cll � II>, '< P'

L 16

0J

l i

160

.!"'

Fig

. 2.

Tim

e de

velo

pmen

t of

te

mpe

ratu

re

profi

les

(a)

calc

ulat

ed,

)>-...

(b)

mea

sure

d, i

n th

e bo

dy a

t th

e fi

ring

rat

e of

1 K

min

-1•

The

num

bers

72

3 :ls

at

the

curv

es s

peci

fy t

he t

ime

in m

inut

es f

rom

the

beg

inni

ng o

f fi

ring

. 16

12

8

4

0 4

8 12

16

16

1 2

8

4

0 4

8

12

1 6

__,

r/

mm

r/

mm

Page 5: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

� ;,;'

!"'

!" � '° "' ... .....

.....

.....

102 xA

kgk,

/

11

10

9 8 1 6 5 4 3 2 1

a) I I

0 �

.....__-'--

-1..--4

---l'--

L_...L

.J

16

12

8

4 0

48

121

5 r/

mm

102 xA

k gk

g1

11

10

9 8 1 6 5 4

b) I I"

I I I I I I I I I

. I

;t�

1 I I

0 L....

..,___._

__._____.

,___...__

��

16 1

2 8

4 0

4

8 1

2 16

r/

mm

Fig

. 3.

T

ime

deve

lopm

ent

of c

once

ntra

tion

pr

ofile

s (a

) ca

lcula

ted,

(b

) m

easu

red,

in

the

body

at

the

firi

ng r

ate

of· 5

K m

in-1

• T

he c

urve

s de

sign

ated

by

the

sam

e nu

mbe

r corr

espo

nd t

o th

e sa

me

tim

e fr

om t

he

begi

nnin

g of

firi

ng w

hen

dehy

drox

ylat

ion

was

ins

tant

aneo

usly

sto

pped

in

the b

ody:

1-

65 m

in, 2

-7 5

min

, 3

-90

min

.

Fig

. 4.

T

ime

deve

lopm

ent

of

tem

pera

ture

pr

ofile

s (a

) ca

lcul

ated

, .,..

(b

) m

easu

red,

in

the

body

at

the

firi

ng r

ate

of 5

K m

in-1

• T

he n

umbe

rs

at t

he c

urve

s sp

ecif

y th

e ti

me

in m

inut

es f

rom

the

beg

inni

ng o

f fi

ring

.

1173

T K

1073

973

873

773

a)

1173

T K

b)

673

I I

I 1

) I

I I

I 673

I I

C:::--,

I .,......

I I

I 16

12

.8

4

0 4

8 12

16

r/

mm

16

12

8

4 0

4 8

12

16

r/m

m

I � � C ;; � r 1:..

"':I

:,·

l" �

;, � i 1'·

1:..

�- '

Page 6: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Y. Mazacova, J. Havrda, M. Unzeitig V. Hanykyf,

The calculated and measured time developments of concentration and temperature profiles are plotted in Figs. 1, 2 for the heating rate of 1 K min-1 and in :fig. 3, 4 for the heating rate of 5 K min-1

DISCUSSION AND CONCLUSION

In the case of non-isothermal firing, the calculated and the experimentally deter­mined developments of concentration profiles were compared quantitatively by expressing the quadratic error <11 and au by the following equations [25]:

n

<11 = L (x!i - xjf)2/(n - 1), (17) i=l

where xii

is the calculated concentration and x1f is the concentration obtained from the approximation curve of values measured at the same temperature and time,

n

o'n = L (xjf - x�i)2/(n - 1), (18) i=l

where x�i is the concentration profile value measured.

The values of errors <11 and au for the heating rate of 1 K min-1 are listed in Table I.

Table I

Values of quadratic errors u1 and Un for the heating rate of 1 K min-1

T

IO'r X 104 Un X 104

--

min (kg kg-1)2 (kg kg-1)2

290 0.58 0.02

320 0.28 0.07

340 0.04 0.06

360 0.58 0.02

On comparing the temperature profiles for the same rate of heating 1 K min-1

the similar errors are listed in Table II, where index T designates association of the error with temperature.

Comparable relations between ar and o'n, as well as O'f and afr were also found for the body surface temperature increase at a rate of 5 K min-1•

On the basis of the ar and a'{ values and while taking into account the values of au and afr, it is possible to point out a satisfactory agreement of the calculated and measured time development of concentration profiles with an erro1 of up to 10 % , and of temperature profiles with an error of up to 2 % .

The finding leads to the conclusion that the approach chosen to resolving the problem of non-isothermal firing in the dehydroxylation region, i.e. considering the process as diffusion with a chemical reaction and conduction of heat with a source, is justified. It appears that the simplifying assumptions introduced in the formulation of the problem, the initial and boundary conditions chosen and the determination of the dependence of material quantities including the respective methods were basically correct.

112 Silikaty c. 2, 1987

Page 7: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Model of Non-Isothermal Firing of a Cylindrical Kaolin Body ...

Table II

Values of quadratic errors a; and a;, for the heating rate of 1 K min-1

T (1T

I air mm K2 K2

160 2.5 0.25 180 0.5 0.25 200 2.5 2.0 220 1.0 0.25 240 10.0 4.0 260 9.0 4.0 280 6.5 2.5 300 17.0 9.0 320 100.0 25.0 340 2.5 0.5 360 17.0 4.0 380 2.0 0.5

References

[l] Havrda J., Mazacova Y., Oujifi F_, Hanykyr V.: Silikaty 31, 17 (1987). [2] Havrda J., Mazacova Y-, Hanykyr V.: Silikaty 31, 27 (1987). [3] Havrda J., Mazacova Y., Unzeitig M., Hanykyr V.: Silikaty 31, 97 (1987). [ 4] Hanykyr V. et al.: Processes Involved in the Formation of Ceramics, unpublished research

report IV-4-1/04, Institute of Chemical Technology, Prague 1984. [5] Babushkin V. I., Matveev G. M., Mchedlov-Petrosyan O. P.: The Thermodynamics of Silicates

(in Russian), Gosstroyizdat, Moscow 1962. [6] Barin I., Knacke 0.: Thermochemical Properties of Inorganic Substances, Springer-Verlag,

Berlin 1973. [ 7] Krempasky J.: M eranie termofysikatnich velicfo (Measurement of Thermophysical Qnantities),

VSA V Bratislava 1969. [8] Chernobayev D.: Rev. Metall., 2, 729 (1905). [9] MacGee A. E.: J. Amer. Ceram. Soc., 10, 561 (1927).

[lO] Klever E., Kordes E.: Chem. Zbl. 1, 2443 (1931). [ll] Schwarz R., Trageser G.: Chem. d. Ertle, 7, 566 (1933). [12] Bazilevich A.: Ogneupory, 4, 38 (1936). [13] Shvetsow B. S., Gevorkyan K. 0.: J. Appl. Chem., 15, 302 (1942). [14] Sabatier G.: Bull. Soc. Franc. Miner., 77, 953 (1954). [15] Allison E. B.: Clay Min. Bull., 2, 242 (1955). [16] Vaughan F.: Clay Min. Bull., 2, 265 (1955). [17] Stone R., Rowland R. A.: Proc. 3rd Nat. Conf. on Clays and Clay Minerals, 103 (1954). [18J Van der Mare! H. W.: Amer. Min., 41, 222 (1956). [19] Schwiete H. E., Ziegler G.: Zement, Kalk, Gips, 9, 257 (1956). [20] Vaughan F.: Trans. Brit. Ceram. Soc., 57, 38 (1958). [21) Ellis B. G.; Morttand M.: Amer. Min., 47, 371 (1962). [22] Nicholson S. P., Fulrath M. R.: J. Amer. Ceram. Soc., 59, 278 (1976). [23] Baburek J.: Ber. Deut. Keram. Ges., 49, 411 (1972). [24] Benda J., Cerna R.: Numerical Mathematica, Textbook of Engineering Faculty, Prague 1982. [25] Likes J., l\fachek J.: Mathematical Statiatics (in Czech), SNTL, Prague l 983.

Silikaty c. 2. 1987 113

Page 8: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Y. Mazacova, J. Havrda, M. Unzeitig V. Hanykyf

MODEL NEIZOTERMNfHO VYPALU KAOLINOVEHO T:8LESA TVARU VALCE V OBLASTI DEHYDROXYLACE

Yv)na Mazacova, Jifi Havrda, Martin Unzeitig*, Vladimir HanykyI"

Vyaoka skola chemicko-technologicka, katedra technologie Bilikatu, 166 28 Praha *) Geske vyaoke uceni technicke, fakulta strojni, 166 07 Praha

Obeeny matematicky model vypalu telesa v oblasti dehydroxylace je aplikovan na vypocet casovych vyvoju koncentra.cnich a teplotnich profihi pri neizotermnim vypalu valcoveho te!esa z kaolinitu. Overeni vhodnosti prijatych predpokladu zavedenych pri formulaci ulohy, pocatec­nich a okrajovych podminek a. pouzitych hodnot materialovych velicin lze provest na zaklade porovnani vysledku modelu s experimentem. Z porovnani provedenych pro dve rychlosti vypa.lu vyplynula vhodnost pristupu k reseni povazujici vypal telesa v oblasti dehydroxylace za difuzi e chemickou reakci a vedeni tepla se zdrojem, spravnost volby pocatecnich a okrajovych podminek 11ohoto procesu a vhodnost pouzitych materialovych velicin, resp. jejich zavislosti.

Obi-. J. Gasovy vyvoj koncentracnich profilu vypocteny (a) a namlfeny (b) v telese pfi rychlosti vypalu 1 K min-1

• Kfivky oznacene stejnym cislem odpovidaji temuz casu od pocatku vypalu, kdy byla v telese akokove zastavena dehydroxylace: 1 - 290 min, 2 - 320 min, 3 - 840 min, 4-360 min.

Obi'. 2. Gaaovy vyvoj teplotnich profilu v teleae vypocteny (a) a namefeny (b) pro rychlost vypalu 1 K min-1

• Gisla u jednotlivych kfivek maji vyznam caau v minutach od pocatku vypalu. Obr. 3. Gasovy vyvoj koncentracnich profilu vypocteny (a) a namlfeny (b) v telese pfi rychloati

vypalu 5 K min-1• Kfivky oznacene stejnym cislem odpovidaji temuz casu od pocatku vypalu,

kdy v teleae byla akokove zaatavena dehydroxylace: 1- 65 min, 2- 75 min, 3-90 min. Obi-. 4. Gasovy vyvoj teplotnich profilu v telese vypocteny (a) a namefeny (b) pro rychlost vypalu

5 K min. Gisla u jednotlivych kfivek maji vyznam �asu v minutach od pocatku vypalu.

MO,JJ;EJih HEM30TEPMJiqEc1rnro OBiKMfA

KAOJIMHOBoro TEJIA B BM,JJ;E �MJIMH,JJ;PA

B OBJIACTM ,JJ;EfM,JJ;POKCMJIMPOBAHMH

MBoHa Maaa'IOBa, Mp»ui: I'aBpµ;a, Mapnrn Ynaeii:Tn:r•, BJia):{HMHp fann:Kn:prn

X u.41,u:,;:o-mex1-1,0J102u11£c11:uu u11.cmumym, :,;:arj,e8pa mexnoJ102uu cuJZu:,;:amoe, 16628 IIpaaa

• II paJ1Cc:,;:uu noJ1umex1-1,u44ec11:uu u1-1,cmumym, ..41,amu1-1,ocmpoumeJ1bHWU cjJa:,;:yJZbmem, 16607 IIpa2a

06myro MaTeMaTH'leCKYIO MO,D;eJIL o6mn:ra TeJia B o6JiaCTll µ;ern:µ;pOKCHJilllJ;HJI rrpHM0HflJIH ,D;JIR pacc'leTa BpeMeHHLIX pa8BHTHH KOHD;eHTpan;HOHHhlX ll TeMrrepaTypHhlX rrpocpn:Jieii rrpu HeH80TepMH'leCKOM o6mn:re D;HJIHH):{pH'leCKOro TeJia H8 KaOJIHHHTa. II poBepKy rrpnrO,D;HOCTH rrpn:HRThlX rrpe,u;rroJIOJRenn:ii:, BBO,D;HMhlX rrpn: cpopMYJIHpOBKe aaµ;ann:a, HCXO):{HhlX H rpaHH'I­HLIX YCJIOBHH l1 HCIIOJIL30BaHHLIX BeJIH'IHH MaTepHaJia MOlRHO npOBOAHTL Ha OCHOBaHHH COIIOCTaBJieHHR peayJILTaTOB MO):{eJIH C :mcnepHMeHTOM. Ma COIIOCTaBJieHn:ii, rrpOBO,D;HMI,lX B CJIY'lae ABYX CKOpOcTeii o6mnra cneµ;yeT npnro,D;HOCTL IIO,IJ;XO/J;a K perneHHIO, BaKJIIO'laIOII{a­RCR B TO�, 'ITO o6mnr TeJia B o6JiaCTH µ;ernJJ;pOKCHJIRD;HH C'IHTaeTCR AH<f>cpyaneii: c XHMH'leCKOH peaKD;HeH H TeIIJIOIIpOBO,D;HOCTLIO C HCTO'IHHKOM, H IlpRrOJJ;HOCTL IIOJJ;OOpa HCXO,D;HLIX H rpa­HH'IHhlX ycJIOBHH ,D;aHHOI'O npon.ecca H npHI'O,ll;HOCTL HCIIOJIL3YeMLlX BeJIH'IHH MaTepiiaJia HnH HX 3aBJICHMOCTeii.

Puc. 1. Bpe.Me1-1,1-1,oe paaeumue i.oHlfeH.mpalfU0HH.btX nporj,uJZeu, pace<{uma1-1,1-1,oe (a) u ui1Me­pe1-1,1-1,oe (6) 6 nieJZe npu c11:opocmu o63tCuea 1 K .41,u11,-1• KpuBwe, 06oa1-1,a1te1-1,1-1,we 08u1-1,a-1>06bl,.M, <tUCJZ0M, om6et1.a10m mo.My 3tCe 6 peMeHu c 1-1,a1taJ1a o63tCuea, i.oe8a e meJZe ci.a1ti.o-06 paa11,o ocma1-1,oeUJ1u 8e2u8po11:cu.M1lfU10: 1 - 290 MUH., 2 - 320 MUH.., 3 - 340 MUH., 4 - 36OMUH..

114 Slllkaty c. 2. 1�1�

Page 9: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Model of Non-Isothermal Firing of a Cylindrical Kaolin Body ...

Puc. 2. Bpe.Me11,11,oe paaeumue me.Mnepamyp11,b1x npo<jju.n,eu e me.ae, pacc1'uma11,11,oe (a) u ua.ue­peHHoe (b) a.Ml, c,;opocmu 06:JH:uea 1 R .uuH-1. qucaa y omaeabHblX i.puebix 8b1pa:JH:a10m epe.MR e .Mu11,ymax c Hll1'llaa 06:JH:uea.

Puc. 3. Bpe-«eH,Hoe paaeumue 1,011,l(,eHmpal(,uoHHblX npo<jjuaeu, pacc1'umaH11,oe (a) u ua,41,e­peH11,oe (b) e me.11,e npu c,;opocmu 06:JH:uea 4 R Mun-1. Rpuebie, o6oaHa1'eHHble oau11,a-1,oe1>W 1'UCao.u, omee1ta10m mo.uy :JH:e epe.uenu c Ha1ta.11,a 06:JH:uea, i.oeoa e me.11,e c1.a1'1.o-06paa11,o OCmaH06U.11,U Oeeuopo1,CUM1,l(,UIO,' J - 65 .MUH., 2 -- 75 .MUH., 3 - 90 MUH.

Puc. 4. Bpe.ue11,11,oe paaeumue me.unepamypHblX npo<jjuaeu e meae, pacc1tumaHHb!U (a) u ua­.uepeHHblU (b) OM/, c,;opocmu 06:JH:uea 5 R MUH-1. quc.11,a y omaeabHblX ,;puebix eb1pa­:JH:a10m 8pe-«1J e .Mu11,ymax c Ha1'a.11,a 06:JH:uea.

RELE BEZ CfVKY. Japonska firma Teteishi vyvinula rele pracujici na. piezoelektrickem jevu. Piezoelektricky prvek sestava z dvou desek, ktere se pi'i pnlozeni na.peti prohnou a. sepnou nebo rozepnou mecha.nicky konta.kt. Pi'ikon rele je desetinou pi'ikonu elektro­ma.gnetickeho rele a. spinaci easy jsou podstatne kra.tsi. Zatim lze spina.t max. IA. Da.l.si udaje nejsou uvedeny.

(Pi'evza.to z Elektronik c. 25/1983 s. 7) Kaaa

OSOBNf POCfTAC- DAR SEFA. Osobni pocitac IBM venoval prezident spolecnosti United Technologies Corp. (UTC) Harry Gray celkem 1000 svych vedoucich spolupracovniku. S pi'ijetim nevsedniho, pozoruhodneho a. jiste ne levneho darku byla. vsak spojena podminka, ze obdarova.ny se musi zucastnit ti'idenniho seminai'e, na. nemz si muse! osvojit praci s poci­ta.cem a pak jej kva.lifikovane ve sve ka.ncelai'i pouzivat. Je to zcela. nova zajimava ceata jak zvysit produktivitu a uroven vedoucich pracovniku.

(Pi'evzato z Elektronik c. 15/1983 s. 24) Ka11a

MIKROVLNNY OBRAZ LIDSKEHO TELA. Astrofyzikove J.B. Pearce a J. W. Warwick vyvinuJ; novou zobrazovaci techniku, ktera umoznuje snimat vniti'ek lidskeho tela stejnym zpusobem jako vysokofrekvencni vlny snimaji prostor pi'i pi'esne navigaci teles na. obloze. Technika s oznacenim SAFESCAN bude moci nahradit tradicni pouziti Rentgenovych paprsku, i'ezovou tomografii CAT nebo novejsi metodou NMR, ktera je pouzivana pro ti'irozmerne zobrazeni. Technika SAFESCAN generuje t:i'irozmerne obrazy lidskeho tela pomoci sberu a zpracovani mikrovln odrazenych od tela pacienta. Telo pacienta je vystaveno zai'eni o vykonu 10 mW/cm2 po dobu 10-2s. Expozice zminenou frekvenci je absolutne bezpecna a nevyvolava. zadne nebezpeci ionizacnich ucinku. Vysledkem jedne expozice je hologram vniti'ku celeho lidskeho tela.

(Pi'evzato z Electronics c. 11/1983 s. 49) Kasa

MIKROPOCfTACE VE SKOLACH. V letech 1985-1990 se ma ve Francii instalovat 100 000 ks mikropocitacu na skolach a univerzitach. Podle pi'edbeznych propoctu bude tento projekt stat 100 mili6nu marek rocne. Zajem o ucast na projektu projevili vyrobci mikropocita.cu IBM a Apple, kteri by ta.k ,.spolkli kousek tucneho sousta".

(Pfevzato z ST c. 10/1984 s. 390) Kasa

OD VLSI (VERY LARGE SCALE INTEGRATION) K ULSI (ULTRA LARGE SCALE I NTEGRATION). Japonska firma Toshiba vyvinula statickou pa.met s kapacitou 256 kbitu na cipu s rozmery 6,68 X 8,86 mm, obsahujicim 1,6 mili6nu diskretnich prvku (tranzistoru). Kapa.cite. pameti odpovida priblizne informaci jedne stranky novin velkeho formatu. K vyrobe bylo pouzito nove technologie SEPOX (selective silicion oxidation) a struktury LDD (lightly doped drain).

(Pi'evzato z Elektronik c. 9/1984 s. 32) Kasa

Silikiity c. 2, 1987 115

Page 10: MODEL OF NON-ISOTHERMAL FIRING OF A CYLINDRICAL … · conductivity can be considered approximately constant and for Podbofany kaolin has the value a = 2.2 X 10-1 m2 s-1. (12) During

Zajimavosti

SVETOVY RE KORD VE VYKONU LASERU. Skupina vi\dcu na univerzitll Keio v Tokiu zkonstruovala impulsni laser chemickeho typu, v nemz se vyuziva reakce vodiku a fluoru pomoci elektronoveho svazku. Svetelny impuls s delkou trvani 70. 10-• s. dosahuje neuveritel­neho vrcholoveho vykonu 60 GW. (Prevzato z ST c. 5/1985 s. 192)

Kasa

OSMIBITOVY OSOBNf POCfTAC V SS SR. V SSSR pfisel do prodeje prvni osobni pocitac . .Jde o model Achat v cene 3000 Rbl. .Je vybaven osmibitovym procesorem, pameti ROM 32 kbyte a pameti RAM 256 kbyte. (Pfevzato z ST c. 9/1985 s. 351)

Kasa

BYTE, BA.TT. Kazda nova technika prinasi nove pojmy a nova slova, se kterymi se musi jazyk a hlavne autori vypofadat. Byty, kilobyty, megabyty jsou sklonovany ve vilech padech. Ale maji byt sklonovany? .Tsou tvary byty, bytu nebo bytech spravne? .Jisteze, jde-li O sklonovani slova byt, cimz je rozumeno ,,obyvaci celek z nekolika mistnosti; obydli, pfibytek". Zde je vsak mineno slovo byte, ktere je vsak jako cizi slovo nesklonne.

Zaverem tedy: kdyz ,,byte" pak tedy stale byte a nesklonovat. (Pfevzato z ST c. 3/1986 s. 82)

Kasa

NOVY OPTICKY ZDRO.J. Opticky zdroj pro spektroskopii a holografii byl vyvinut v SSSR. .Jde o laserovou diodu na bazi Ga.As pracujici na vlnove delce 0, 85. 10-6 m a zarivy vykon diody je minimalne 300 mW. Sire spektra je 2. 10-• m a velikost aktivni plochy 2. 10-•, 50. 10-• m.

(Pfevzato z SD c. 7/1984) s. 263)Kasa

SIEMEN S A CORNING ZRIZU.Jf VYROBU SVETLOVODU. Koncern Siemens a ame­ricky Corning Glass Works zfidili spolecny zavod na vyrobu sklenenych svetlovodu v Neustadtu u Coburgu v NSR pod nazvem Siecor. Investice na zavod pohltily 70 mili6nu marek. Zpocatkubude zavod vyrabet 80 000 km vlakna a pozdeji se pocita z rozsifenim produkce az na 200 000 km. Vyrobu bude zajisfovat 150 zamestnancu. (Pfevzato z ST c. 3/1986 s. 115)

Kasa

AUTOMATIZ OVANY INFORMACNf SYSTEM RERO (Registr recyklace oclpadu) je system, ktery poskytuje informace o prumyslovych odpadech v CSSR. Tento system je zpraco­vavan podnikem Inorga (Ustav pro automatizaci rizeni v prumyslu Praha, pobocka OstraYa. Mlynska 1, 729 48 Ostrava ). Cilem informacniho systemu RERO je pfispet k vyssimu vyuzivani prumyslovych odpadu jako zdroju druhotnych surovin a energii, a tedy ke zvysene a dokonalejsi ochrane zivotniho prostfedi. System RERO shromazduje, eviduje, zpracovava a poskytuje informace o moznostech efektivniho zhodnocovani odpadu a hospodafeni s nimi. RERO je cha­rakterizovan jako meziodvetvovy system s pusobnosti na celem uzemi CSSR. V systemu RERA jsou evidovany zakladni informace o techto skupinach odpadu: nezelezne kovy, papir, dfevo, textil, kuze, plasticke hmoty, pryz, oleje a mazaci tuky, odpady z petrochemickeho prumyslu, barvy, laky, ostatni organicke latky, sklo, anorganicke kyseliny a zasady, anorganicke soli, ostatni anorganicke latky, katalyzatory, sorbenty, odpadni kaly, velkoobjemove odpady . .Jednot­live skupiny jsou dale trideny na celkem 276 druhu odpadu, System RERO mohou vyuzivat vileohny socialisticke organizace, ktere mohou vyuzit ziskane informace k tomu, a.by druhotne suroviny ve vetlli mire nahrazovaly nedostatkove prvotni suroviny. Uzivatele systemu RERO obdrzi l-2X rocne zpravodaj RERO o evidovanych nabidkach, o informacnim fondu systemu a o dalsim vyvoji systemu. Prostfednictvim systemu maji uzivatele moznost nabizet nevyuzite odpady, ktere by mohly byt vyuzity jako druhotna surovina v jinem vyrobnim procesu, a mohou vyzadovat technicko-ekonomicke informace o odpadech. Informace jsou v zakladni forme cleneny na pfehled nabidek odpadu, pfehled poptavek po druhotnych surovinach a dale je uvedeno uzemni trideni vsech odpadu evidovanych V systemu. Znacne mnozstvi udaju V systemu RERO se dotyka silikatove a anorganicke problematiky. (Materialy INORGA 1986) Skvara

116 Silikaty c. 2, 1987