Model Code for

116

Transcript of Model Code for

Model Code for Service Life Design

Model code prepared by

Task Group 5.6

February 2006

Subject to priorities defined by the Steering Committee and the Presidium, the results of fib’s work in Commissions and Task Groups are published in a continuously numbered series of technical publications called 'Bulletins'. The following categories are used:

category minimum approval procedure required prior to publication Technical Report approved by a Task Group and the Chairpersons of the Commission State-of-Art Report approved by a Commission Manual or Guide (to good practice)

approved by the Steering Committee of fib or its Publication Board

Recommendation approved by the Council of fib Model Code approved by the General Assembly of fib

Any publication not having met the above requirements will be clearly identified as preliminary draft. This Bulletin N° 34 will be submitted to the General Assembly for approval as an fib Model Code in June 2006.

This report was prepared within Task Group 5.6, Model code for service life design of concrete structures:

Peter Schiessl (Convener, Technische Universität, München, Germany) Phil Bamforth (Principal Construction Consultancy, UK), Véronique Baroghel-Bouny (LCPC, France), Gene Corley (Construction Technology Laboratories, Inc., USA), Michael Faber (ETH-Zürich, Switzerland), Jim Forbes (Hyder Consulting, Australia), Christoph Gehlen (Ingenieurbüro Schiessl, Germany), Paulo Helene (Univ. de Sao Paulo PCC/USP, Brazil), Steinar Helland (Skanska Norge AS, Norway), Tetsuya Ishida (Univ. of Tokyo, Japan), Gro Markeset (Norwegian Building Research Institute, Norway), Lars-Olof Nilsson (Lund Institute of Technology, Sweden), Steen Rostam (Cowi A/S, Denmark), A.J.M. Siemes (TNO, The Netherlands), Joost Walraven (Delft Univ. of Technology, The Netherlands) Full address details of Task Group members may be found in the fib Directory or through the online services on fib's website, www.fib-international.org. Cover images: The photos show the carbonation depth of a vertical concrete surface of an existing building after

8 years of exposure without shelter from rain. A phenolphthalein indicator distinguishes areas with pH < 9.5 (not coloured) and areas with a higher pH (coloured). The graph shows the development of the carbonation depth over time, xc(t), compared to the cover depth, a. Scatter of both variables is also given.

© fédération internationale du béton (fib), 2006 Although the International Federation for Structural Concrete fib - féderation internationale du béton - created from CEB and FIP, does its best to ensure that any information given is accurate, no liability or responsibility of any kind (including liability for negligence) is accepted in this respect by the organisation, its members, servants or agents. All rights reserved. No part of this publication may be reproduced, modified, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission. First published in 2006 by the International Federation for Structural Concrete (fib) Post address: Case Postale 88, CH-1015 Lausanne, Switzerland Street address: Federal Institute of Technology Lausanne - EPFL, Section Génie Civil Tel +41 21 693 2747, Fax +41 21 693 6245, E-mail [email protected], web www.fib-international.org ISSN 1562-3610 ISBN 2-88394-074-6 Printed by Sprint-Digital-Druck, Stuttgart

fib Bulletin 34: Model code for Service Life Design iii

Contents Preface iv 0 Introduction 1 1 General 5 1.1 Scope 5 1.2 Associated codes 5 1.3 Assumptions 5 1.4 Definitions 6 1.5 Symbols 10

2 Basis of design 12 2.1 Requirements 12 2.2 Principles of limit state design 14 2.3 Basic variables 14 2.4 Verification 16 3 Verification of Service Life Design 20 3.1 Carbonation induced corrosion – uncracked concrete 20 3.2 Chloride induced corrosion – uncracked concrete 23 3.3 Influence of cracks upon reinforcement corrosion 24 3.4 Risk of depassivation with respect to pre-stressed steel 25 3.5 Freeze/thaw attack – without de-icing agents 25 3.6 Freeze/thaw attack – with de-icing agents 27

4 Execution and its quality management 29 4.1 General 29 4.2 Project specification 29 4.3 Quality management 30 4.4 Materials 31 4.5 Geometry 32

5 Maintenance and condition control 33 5.1 General 33 5.2 Maintenance 33 5.3 Condition control during service life 33 5.4 Action in the event of non-conformity 34 Annex A (informative) Management of reliability for Service Life Design of concrete structures 36 Annex B (informative) Full probabilistic design methods 44 Annex C (informative) Partial factor methods 83 Annex R (informative) Reliability management: from SLS to ULS 90

References 109

fib Bulletin 34: Model code for Service Life Design v

Preface fib and its preceding organizations, CEB and FIP, have a long tradition in treating durability aspects and

to design for them. In 1978 CEB created a first working group, the “Task Group Durability”. Milestones in the CEB and FIP work on durability are CEB Bulletins 148 “Durability of concrete structures”, 182 “Durable concrete structures” and 238 “New approach to durability design”. In the latter document the framework for a probabilistic design approach was set. In 2002 fib established Task Group 5.6 “Model code for service life design of concrete structures” with the objective to develop a model code document on probabilistic service life design. The approach developed in this document is intended to be the basis for the service life design approach of the new fib Model Code, currently under development. Furthermore it might serve as a basis for further work in ISO (TC 71) and CEN (TC 104 and TC 250/SC2).

The following members of Task Group 5.6 actively contributed to the work (in alphabetic order): – Veronique BAROGHEL BOUNY

– Phil BAMFORTH – Gene CORLEY

– Michael Havbro FABER

– Christoph GEHLEN* (secretary) – Paulo HELENE

– Steinar HELLAND* – Tetsuya ISHIDA

– Gro MARKESET – Lars Olof NILSSON*

– Steen ROSTAM – Peter SCHIESSL* (Convener)

*Members of the Drafting Board

The format of this Model Code follows the CEB-FIP tradition: the main provisions are given on the right-hand side of the page, and on the left-hand side, the comments.

Peter SCHIESSL

Convener of fib Task Group 5.6

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 1

0 In

trod

uctio

n Th

e ba

sic

idea

of

serv

ice

life

desi

gn a

s pr

esen

ted

in t

his

docu

men

t is

to

esta

blis

h a

desi

gn a

ppro

ach

to a

void

det

erio

ratio

n ca

used

by

envi

ronm

enta

l ac

tion

com

para

ble

to l

oad

desi

gn a

s w

e ar

e us

ed t

o ha

ve i

t in

our

des

ign

code

s (e

.g. E

C2)

. Tha

t mea

ns q

uant

ifiab

le m

odel

s on

the

load

sid

e (th

ese

are

the

envi

ronm

enta

l act

ions

) and

on

the

resi

stan

ce s

ide

(this

is th

e re

sist

ance

of

the

conc

rete

aga

inst

the

con

side

red

envi

ronm

enta

l ac

tions

). Th

e de

sign

ap

proa

ch w

ill b

e ex

ampl

ified

for

des

ign

agai

nst

rein

forc

emen

t co

rros

ion

caus

ed b

y ca

rbon

atio

n of

con

cret

e w

ithou

t loa

d or

rest

rain

t ind

uced

cra

cks.

Th

e fir

st s

tep

in t

he d

esig

n ap

proa

ch i

s to

qua

ntify

the

det

erio

ratio

n m

echa

nism

with

rea

listic

mod

els

desc

ribin

g th

e pr

oces

s ph

ysic

ally

and

/or

chem

ical

ly w

ith s

uffic

ient

acc

urac

y (e

.g.

ingr

ess

of c

arbo

natio

n in

to t

he

conc

rete

dep

endi

ng o

n th

e en

viro

nmen

t an

d th

e re

leva

nt c

oncr

ete

qual

ity

para

met

ers)

. Su

ch a

mod

el f

or i

ngre

ss o

f ca

rbon

atio

n is

giv

en i

n th

e do

cum

ent.

Suff

icie

nt a

ccur

acy

mea

ns th

at th

e m

odel

sho

uld

be v

alid

ated

by

real

istic

lab

orat

ory

expe

rimen

ts a

nd b

y pr

actic

e ob

serv

atio

ns, s

o th

at m

ean

valu

es a

nd s

catte

r of t

he m

ater

ial r

esis

tanc

e pa

ram

eter

s ar

e kn

own

and

can

be

cons

ider

ed i

n th

e m

odel

. In

the

sam

e w

ay m

odel

s fo

r th

e en

viro

nmen

tal

actio

ns

with

st

atis

tical

ly

quan

tifie

d en

viro

nmen

tal

para

met

ers

(e.g

. te

mpe

ratu

re, r

elat

ive

hum

idity

, spl

ash

rain

eve

nts

etc.

) nee

d to

exi

st.

The

seco

nd s

tep

is th

e de

finiti

on o

f lim

it st

ates

aga

inst

the

stru

ctur

e sh

ould

be

des

igne

d fo

r. A

ppro

pria

te li

mit

stat

es w

ould

be

- de

pass

ivat

ion

of re

info

rcem

ent c

ause

d by

car

bona

tion

- cr

acki

ng d

ue to

rein

forc

emen

t cor

rosi

on

- sp

allin

g of

con

cret

e co

ver d

ue to

rein

forc

emen

t cor

rosi

on

- co

llaps

e du

e to

loss

of c

ross

sec

tion

of th

e re

info

rcem

ent.

Th

e ob

ject

ive

of t

his

docu

men

t is

to

iden

tify

agre

ed d

urab

ility

rel

ated

m

odel

s an

d to

pre

pare

the

fra

mew

ork

for

stan

dard

izat

ion

of p

erfo

rman

ce

base

d de

sign

app

roac

hes.

This

Mod

el C

ode

treat

s de

sign

for

env

ironm

enta

l ac

tions

lea

ding

to

degr

adat

ion

of c

oncr

ete

and

embe

dded

stee

l.

– 2

0 In

trod

uctio

n

The

third

ste

p is

the

cal

cula

tion

of t

he p

roba

bilit

y th

at t

he l

imit

stat

es

defin

ed a

bove

occ

ur (

dete

rmin

atio

n of

the

pro

babi

lity

of o

ccur

ance

). Th

is

will

be

done

by

appl

ying

the

mod

els

desc

ribed

in s

tep

1 ab

ove.

Now

aday

s it

is c

omm

only

acc

epte

d th

at t

he s

afet

y of

stru

ctur

es s

houl

d be

exp

ress

ed i

n te

rms

of r

elia

bilit

y (r

elia

bilit

y in

dex β)

. Dep

endi

ng o

n th

e ty

pe o

f lim

it st

ate

(SLS

, ULS

) and

the

cons

eque

nces

of a

failu

re, v

alue

s fo

r β a

re g

iven

in E

C 0

.

The

four

th s

tep

is th

e de

finiti

on o

f th

e ty

pe o

f lim

it st

ate

(SLS

, ULS

) of

th

e lim

it st

ates

des

crib

ed in

ste

p 2.

Nor

mal

ly d

epas

siva

tion

will

be

clas

sifie

d as

a S

LS a

s th

ere

is n

o im

med

iate

con

sequ

ence

on

stru

ctur

al s

afet

y if

the

rein

forc

emen

t is

depa

ssiv

ated

. The

refo

re β

-val

ues

in t

he r

ange

of β

= 1.

0 to

1.

5 m

ay b

e ap

prop

riate

for

dep

assi

vatio

n. H

owev

er, t

he o

wne

r m

ay r

equi

re

high

er β

-val

ues

for

exam

ple

to s

afel

y en

sure

the

aes

thet

ic q

ualit

y of

the

st

ruct

ure.

For

the

limit

stat

e cr

acki

ng a

nd s

palli

ng th

e de

sign

er h

as to

dec

ide

whi

ch t

ype

of l

imit

stat

e is

nee

ded

or s

houl

d be

cho

sen.

If,

for

exam

ple,

cr

acki

ng

and

spal

ling

occu

rs

in

anch

orag

e zo

nes

with

out

suff

icie

nt

trans

vers

al re

info

rcem

ent,

spal

ling

may

lead

to c

olla

pse.

In th

is c

ase

crac

king

an

d sp

allin

g ne

ed t

o be

def

ined

as

ULS

. In

oth

er c

ases

if

crac

king

and

sp

allin

g do

es n

ot i

nflu

ence

the

loa

d be

arin

g ca

paci

ty o

f th

e st

ruct

ural

el

emen

t, cr

acki

ng a

nd sp

allin

g m

ay b

e de

fined

as S

LS.

The

Mod

el C

ode

is d

ivid

ed in

to fi

ve c

hapt

ers:

1.

Gen

eral

2.

B

asis

of d

esig

n

3.

Ver

ifica

tion

of S

ervi

ce L

ife D

esig

n 4.

Ex

ecut

ion

and

its q

ualit

y co

ntro

l

5.

Mai

nten

ance

and

con

ditio

n co

ntro

l

The

serv

ice

life

desi

gn a

ppro

ach

in t

his

docu

men

t is

ela

bora

ted

for

thre

e di

ffer

ent l

evel

s. T

he fu

ll pr

obab

ilist

ic a

ppro

ach

(leve

l 1) w

ill b

e us

ed o

nly

for

exce

ptio

nal

stru

ctur

es.

Bas

ed o

n th

e fu

ll pr

obab

ilist

ic a

ppro

ach

a pa

rtial

sa

fety

fact

or a

ppro

ach

com

para

ble

to lo

ad d

esig

n is

giv

en. T

he p

artia

l saf

ety

fact

or a

ppro

ach

(leve

l 2)

is a

det

erm

inis

tic a

ppro

ach

whe

re th

e pr

obab

ilist

ic

natu

re o

f the

pro

blem

(sca

tter o

f m

ater

ial r

esis

tanc

e an

d en

viro

nmen

tal l

oad)

is

take

n in

to a

ccou

nt b

y pa

rtial

saf

ety

fact

ors.

Fina

lly th

e de

emed

to s

atis

fy

appr

oach

(le

vel 3

), ag

ain

deriv

ed f

rom

the

ful

l pr

obab

ilist

ic a

ppro

ach

is

Th

e flo

w c

hart

in F

igur

e 1.

1-1

illus

trate

s th

e flo

w o

f de

cisi

ons

and

the

desi

gn a

ctiv

ities

nee

ded

in a

ratio

nal s

ervi

ce li

fe d

esig

n pr

oces

s w

ith a

cho

sen

leve

l of

rel

iabi

lity.

Tw

o st

rate

gies

hav

e be

en a

dopt

ed,

whe

reof

the

firs

t is

in

trodu

ced

of th

ree

leve

ls o

f sop

hist

icat

ion.

In su

m 4

opt

ions

are

ava

ilabl

e.

Stra

tegy

1:

Leve

l 1.

Full

prob

abili

stic

des

ign

appr

oach

, (op

tion

1)

Leve

l 2.

Parti

al fa

ctor

des

ign

appr

oach

, (op

tion

2)

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 3

elab

orat

ed. T

his

type

of a

ppro

ach

is c

ompa

rabl

e to

the

appr

oach

whi

ch c

an b

e fo

und

in t

he s

tand

ards

now

aday

s. H

owev

er d

escr

iptiv

e ru

les

of t

oday

’s

stan

dard

s ar

e no

t ba

sed

on p

hysi

cally

and

che

mic

ally

cor

rect

mod

els

but

mor

e on

pra

ctic

al (s

omet

imes

bad

) exp

erie

nce.

In th

e fu

ture

cur

rent

ly a

pplie

d ru

les u

rgen

tly h

ave

to b

e ca

libra

ted

agai

nst t

he fu

ll pr

obab

ilist

ic a

ppro

ach.

Ano

ther

opt

ion

give

n in

this

doc

umen

t is

the

use

of n

on re

activ

e m

ater

ials

(e

.g. s

tain

less

stee

l, st

rate

gy 2

/opt

ion

4).

Oth

er m

etho

ds o

r lev

els

betw

een

the

leve

ls c

hose

n fo

r thi

s do

cum

ent m

ay

be a

ppro

pria

te f

or S

ervi

ce L

ife D

esig

n (e

. g.

the

dur

abili

ty f

acto

r m

etho

d ap

proa

ch, [

1]).

Leve

l 3.

Dee

med

to sa

tisfy

des

ign

appr

oach

, (op

tion

3)

Stra

tegy

2:

Avo

idan

ce o

f det

erio

ratio

n de

sign

app

roac

h, (o

ptio

n 4)

Fi

gure

1.1

-1:

Flo

w c

hart

“se

rvic

e lif

e de

sign

– 4

0 In

trod

uctio

n

W

ithin

Cha

pter

3 v

ario

us d

eter

iora

tion

mec

hani

sms

are

treat

ed:

– ca

rbon

atio

n-in

duce

d co

rros

ion;

: –

chlo

ride-

indu

ced

corr

osio

n;

– fr

eeze

/thaw

atta

ck w

ithou

t de-

icin

g ag

ents

; –

free

ze/th

aw a

ttack

with

de-

icin

g ag

ents

.

For

thes

e m

echa

nism

s br

oad

acce

pted

mod

els

exis

t. O

ther

det

erio

ratio

n m

echa

nism

s ar

e no

t tre

ated

, fo

r ex

ampl

e al

kali

silic

a re

actio

n, a

nd s

ulfa

te

atta

ck, m

ainl

y du

e to

the

situ

atio

n th

at b

road

acc

epte

d m

odel

s do

not

exi

st s

o fa

r.

Sim

ulta

neou

s dy

nam

ic lo

adin

g an

d co

rros

ion

of s

teel

e. g

. in

the

regi

on o

f lo

ad o

r re

stra

int

indu

ced

crac

ks,

will

lea

d to

a r

educ

tion

in t

he f

atig

ue

resi

stan

ce. T

he S

-N-c

urve

s as

the

basi

s fo

r fat

igue

des

ign

may

be

up to

50

%

low

er r

elat

ed t

o th

e st

ress

ran

ge c

ompa

red

to S

-N-c

urve

s of

rei

nfor

cem

ent

with

out c

orro

sion

atta

ck.

B

esid

e ab

ove

men

tione

d m

echa

nism

s al

so f

atig

ue c

ause

d by

dyn

amic

lo

adin

g an

d le

adin

g to

tim

e de

pend

ent

mat

eria

l de

grad

atio

n an

d co

rros

ion

fatig

ue c

ause

d by

dyn

amic

loa

ding

and

sim

ulta

neou

s co

rros

ion

caus

ed b

y en

viro

nmen

tal a

ctio

n is

not

trea

ted.

To

mak

e th

is d

ocum

ent

com

plet

e, m

issi

ng m

odel

s ha

ve t

o be

dev

elop

ed

whi

ch h

ave

to re

spec

t the

gen

eral

prin

cipl

es o

f Cha

pter

2.

The

serv

ice

life

desi

gn a

ppro

ach

desc

ribed

in

this

doc

umen

t m

ay b

e ap

plie

d fo

r th

e de

sign

of

new

stru

ctur

es,

for

the

upda

te o

f th

e se

rvic

e lif

e de

sign

if

the

stru

ctur

e ex

ists

an

d re

al

mat

eria

l pr

oper

ties

and/

or

the

inte

ract

ion

of e

nviro

nmen

t an

d st

ruct

ure

can

be m

easu

red

(rea

l co

ncre

te

cove

rs, c

arbo

natio

n de

pths

) and

for t

he c

alcu

latio

n of

the

resi

dual

serv

ice

life.

Atta

ched

to

the

MC

-SLD

are

4 i

nfor

mat

ive

anne

xes.

The

se a

re g

ivin

g ba

ckgr

ound

info

rmat

ion

as w

ell a

s ex

ampl

es o

f pr

oced

ures

and

det

erio

ratio

n m

odel

s fo

r the

app

licat

ion

in S

LD. O

ther

suf

ficie

ntly

val

idat

ed p

roce

dure

s fo

r re

liabi

lity

man

agem

ent a

nd m

odel

s for

det

erio

ratio

n m

ight

be

used

.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 5

1 G

ener

al

1.1

Scop

e Tr

aditi

onal

ly,

natio

nal

and

inte

rnat

iona

l co

ncre

te

stan

dard

s gi

ve

requ

irem

ents

to a

chie

ve th

e de

sire

d de

sign

ser

vice

life

bas

ed o

n th

e “d

eem

ed-

to-s

atis

fy”

and

the

“avo

idan

ce o

f det

erio

ratio

n” a

ppro

ach.

Such

ope

rativ

e re

quire

men

ts h

ave

to b

e ca

libra

ted

by t

he r

espo

nsib

le

stan

dard

izat

ion

body

. Thi

s doc

umen

t giv

es g

uida

nce

for s

uch

calib

ratio

n.

(1

) Th

e pr

esen

t Mod

el C

ode

is a

pplic

able

for

Ser

vice

Life

Des

ign

(SLD

) of

pla

in c

oncr

ete,

rei

nfor

ced

conc

rete

and

pre

-stre

ssed

con

cret

e st

ruct

ures

w

ith a

spe

cial

focu

s on

des

ign

prov

isio

ns fo

r man

agin

g th

e ad

vers

e ef

fect

s of

de

grad

atio

n. T

he M

odel

Cod

e pr

ovid

es t

he b

asis

for

ser

vice

life

des

ign

of

conc

rete

stru

ctur

es. F

our d

iffer

ent o

ptio

ns a

re o

ffer

ed:

– a

full

prob

abili

stic

app

roac

h

– a

sem

i pro

babi

listic

app

roac

h (p

artia

l fac

tor d

esig

n)

– de

emed

to sa

tisfy

rule

s

– av

oida

nce

of d

eter

iora

tion

The

met

hodo

logy

des

crib

ed i

n th

is d

ocum

ent

mig

ht a

lso

be a

pplie

d fo

r as

sess

men

t of r

emai

ning

serv

ice

life

of e

xist

ing

stru

ctur

es.

1.2

Ass

ocia

ted

code

s C

EN E

N 1

990

“Bas

is fo

r des

ign”

is b

ased

on

the

gene

ral p

rinci

ples

for t

he

verif

icat

ion

of th

e re

liabi

lity

of s

truct

ures

giv

en in

ISO

239

4:19

98 “

Gen

eral

pr

inci

ples

on

relia

bilit

y fo

r stru

ctur

es”

(1

) The

pre

sent

cod

e is

app

licab

le a

s de

scrib

ed u

nder

1.1

toge

ther

with

– C

EN E

uroc

ode

0 (E

N 1

990:

2002

) ”B

asis

for d

esig

n”

– “P

roba

bilis

tic M

odel

Cod

e”, J

oint

Com

mitt

ee o

n St

ruct

ural

Saf

ety

(JC

SS P

MC

:200

0), w

ww

.jcss

.eth

.ch

– C

EN E

NV

136

70-1

:200

0 “E

xecu

tion

of c

oncr

ete

stru

ctur

es”

– IS

O 2

394:

1998

(E),

”Gen

eral

prin

cipl

es o

n re

liabi

lity

for s

truct

ures

1.

3 A

ssum

ptio

ns

CEN

EN

V 1

3670

-1 is

pre

sent

ly th

e m

ain

refe

renc

e do

cum

ent f

or IS

O T

C-

71/S

C3

whe

n dr

aftin

g an

inte

rnat

iona

l sta

ndar

d fo

r the

exe

cutio

n of

con

cret

e st

ruct

ures

.

This

CEN

sta

ndar

d m

ight

be

repl

aced

by

the

com

ing

EN 1

3670

, or b

y th

e IS

O d

ocum

ent

whe

n av

aila

ble,

or

with

the

exe

cutio

n pr

ovis

ions

in t

he n

ext

vers

ion

of th

e fib

Mod

el C

ode.

(1

) In

add

ition

to

the

gene

ral

assu

mpt

ions

of

EN 1

990

the

follo

win

g as

sum

ptio

ns a

pply

:

– St

ruct

ures

are

des

igne

d by

app

ropr

iate

ly q

ualif

ied

and

expe

rienc

ed

pers

onne

l. –

Ade

quat

e su

perv

isio

n an

d qu

ality

con

trol i

s pr

ovid

ed in

fact

orie

s, in

pl

ants

and

on

site

.

– 6

1 G

ener

al

The

exec

utio

n st

anda

rd a

ssum

es th

at th

e co

nstru

ctio

n m

ater

ials

bro

ught

to

the

build

ing

site

com

ply

with

rel

evan

t pr

oduc

t st

anda

rds

defin

ing

thei

r m

inim

um p

erfo

rman

ces.

– C

onst

ruct

ion

is c

arrie

d ou

t by

pers

onne

l hav

ing

the

appr

opria

te s

kill

and

expe

rienc

e.

– Th

e co

nstru

ctio

n m

ater

ials

and

pro

duct

s ar

e us

ed a

s sp

ecifi

ed in

the

rele

vant

mat

eria

l or p

rodu

ct sp

ecifi

catio

ns.

– Th

e st

ruct

ure

will

be

adeq

uate

ly m

aint

aine

d ac

cord

ing

to t

he

optio

ns g

iven

in th

is d

ocum

ent.

– Th

e st

ruct

ure

will

be

used

in a

ccor

danc

e w

ith th

e de

sign

brie

f.

– Th

e m

inim

um r

equi

rem

ents

for

exe

cutio

n an

d w

orkm

ansh

ip g

iven

in

EN

V 1

3670

are

com

plie

d w

ith.

1.4

Def

initi

ons

(1)

The

term

s an

d de

finiti

ons

give

n in

EN

199

0 ap

ply

with

the

follo

win

g am

endm

ents

:

1.

4.1

Bas

ic v

aria

ble1)

8)

part

of a

spe

cifie

d se

t of v

aria

bles

rep

rese

ntin

g ph

ysic

al q

uant

ities

, whi

ch

char

acte

rise

actio

ns a

nd e

nviro

nmen

tal

influ

ence

s, g

eom

etric

al q

uant

ities

, an

d m

ater

ial p

rope

rties

.

1.4.

2 C

hara

cter

istic

val

ue (

Xk o

r R

k ) 2

) In

thi

s re

spec

t a

“nom

inal

val

ue”

mea

ns a

val

ue f

ixed

on

non-

stat

istic

al

base

s, fo

r ins

tanc

e on

acq

uire

d ex

perie

nce

or o

n ph

ysic

al c

ondi

tions

.

valu

e of

a m

ater

ial o

r pro

duct

pro

perty

hav

ing

a pr

escr

ibed

pro

babi

lity

of

not b

eing

atta

ined

in a

hyp

othe

tical

unl

imite

d te

st s

erie

s. Th

is v

alue

gen

eral

ly

corr

espo

nds

to a

spe

cifie

d fr

actil

e of

the

assu

med

sta

tistic

al d

istri

butio

n of

the

parti

cula

r pro

perty

of t

he m

ater

ial o

r pro

duct

. A n

omin

al v

alue

is u

sed

as th

e ch

arac

teris

tic v

alue

in so

me

circ

umst

ance

.

1.

4.3

Cha

ract

eris

tic

valu

e of

a

geom

etri

cal

prop

erty

(a

k)2)

8)

valu

e us

ually

cor

resp

ondi

ng t

o th

e di

men

sion

s sp

ecifi

ed i

n th

e de

sign

. W

here

rel

evan

t, va

lues

of

geom

etric

al q

uant

ities

may

cor

resp

ond

to s

ome

pres

crib

ed fr

actil

es o

f the

stat

istic

al d

istri

butio

n.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 7

1.4.

4 C

hara

cter

istic

val

ue o

f an

actio

n (F

k)2)

8)

prin

cipa

l rep

rese

ntat

ive

valu

e of

an

actio

n.

1.4.

5 D

esig

n cr

iteri

a2)

quan

titat

ive

form

ulat

ions

that

des

crib

e fo

r ea

ch li

mit

stat

e th

e co

nditi

ons

to b

e fu

lfille

d.

1.4.

6 D

esig

n se

rvic

e lif

e3) 8

) Th

is d

ocum

ent

appl

ies

the

term

“D

esig

n Se

rvic

e Li

fe”.

The

mea

ning

of

this

term

is e

quiv

alen

t to

the

term

“D

esig

n w

orki

ng li

fe”

as u

sed

by C

EN.

as

sum

ed p

erio

d fo

r w

hich

a s

truct

ure

or a

par

t of

it

is t

o be

use

d fo

r its

in

tend

ed p

urpo

se.

1.4.

7 D

esig

n si

tuat

ions

1) 8

)

se

ts o

f phy

sica

l con

ditio

ns re

pres

entin

g th

e ex

pect

ed c

ondi

tions

occ

urrin

g du

ring

a ce

rtain

tim

e in

terv

al f

or w

hich

the

desi

gn w

ill d

emon

stra

te th

at th

e re

leva

nt li

mit

stat

es a

re n

ot e

xcee

ded.

1.

4.8

Des

ign

valu

e of

a g

eom

etri

cal p

rope

rty

(ad)

1) 8

)

ge

nera

lly

a no

min

al

valu

e.

Whe

re

rele

vant

, va

lues

of

ge

omet

rical

qu

antit

ies

may

cor

resp

ond

to s

ome

pres

crib

ed f

ract

ile o

f th

e st

atis

tical

di

strib

utio

n.

Not

e: T

he d

esig

n va

lue

of a

geo

met

rical

pro

perty

is g

ener

ally

equ

al to

the

char

acte

ristic

val

ue. H

owev

er, i

t may

be

treat

ed d

iffer

ently

in c

ases

whe

re th

e lim

it st

ate

unde

r co

nsid

erat

ion

is

very

se

nsiti

ve

to

the

valu

e of

th

e ge

omet

rical

pro

perty

. A

ltern

ativ

ely,

it

can

be e

stab

lishe

d fr

om a

sta

tistic

al

basi

s, w

ith a

val

ue c

orre

spon

ding

to

a m

ore

appr

opria

te f

ract

ile (

e.g.

rar

er

valu

e) th

an a

pplie

s to

the

char

acte

ristic

val

ue.

1.4.

9 D

esig

n va

lue

of a

n ac

tion

(Fd)

2) 9

)

va

lue

obta

ined

by

mul

tiply

ing

the

repr

esen

tativ

e va

lue b

y th

e par

tial f

acto

r γ f.

Not

e: T

he p

rodu

ct o

f th

e re

pres

enta

tive

valu

e m

ultip

lied

by t

he p

artia

l fa

ctor

γF

= γ S

d ⋅ γ

f m

ay a

lso

be d

esig

nate

d as

the

desi

gn v

alue

of t

he a

ctio

n (S

ee E

N 1

990

– 6.

3.2)

– 8

1 G

ener

al

1.4.

10

Des

ign

valu

e of

mat

eria

l or

pro

duct

pro

pert

y ( X

d or

Rd

)2) 9

)

va

lue

obta

ined

by

divi

ding

the

char

acte

ristic

val

ue b

y a

parti

al fa

ctor

γm

or

γ M ,

or, i

n sp

ecia

l circ

umst

ance

s, by

dire

ct d

eter

min

atio

n.

1.4.

11

Insp

ectio

n4)

conf

orm

ity e

valu

atio

n by

obs

erva

tion

and

judg

emen

t ac

com

pani

ed a

s ap

prop

riate

by

mea

sure

men

t, te

stin

g or

gau

ging

.

1.4.

12

Irre

vers

ible

serv

icea

bilit

y lim

it st

ates

2) 8

)

se

rvic

eabi

lity

limit

stat

es w

here

som

e co

nseq

uenc

es o

f ac

tions

exc

eedi

ng

the

spec

ified

serv

ice

requ

irem

ents

will

rem

ain

whe

n th

e ac

tions

are

rem

oved

.

1.4.

13

Lim

it st

ates

2) 8

)

st

ates

bey

ond

whi

ch th

e st

ruct

ure

no lo

nger

ful

fils

the

rele

vant

des

ign

crite

ria.

1.4.

14

Mai

nten

ance

5)

set o

f act

iviti

es th

at a

re p

lann

ed to

take

pla

ce d

urin

g th

e se

rvic

e lif

e of

the

stru

ctur

e in

ord

er to

fulfi

l the

requ

irem

ents

for r

elia

bilit

y.

1.4.

15

Proj

ect s

peci

ficat

ion7)

do

cum

ents

co

verin

g te

chni

cal

data

an

d re

quire

men

ts

for

mat

eria

ls,

exec

utio

n, m

aint

enan

ce a

nd c

ondi

tion

cont

rol f

or a

par

ticul

ar p

roje

ct p

repa

red

to su

pple

men

t and

qua

lify

the

requ

irem

ents

of g

ener

al s

tand

ards

.

1.4.

16

Ref

eren

ce p

erio

d 2)

8)

chos

en p

erio

d of

tim

e th

at i

s us

ed a

s a

basi

s fo

r as

sess

ing

stat

istic

ally

va

riabl

e ac

tions

, and

pos

sibl

y fo

r acc

iden

tal a

ctio

ns.

1.4.

17

Rel

iabi

lity

1) 8

)

ab

ility

of

a st

ruct

ure

or a

stru

ctur

al m

embe

r to

ful

fil t

he s

peci

fied

requ

irem

ents

, in

clud

ing

the

desi

gn s

ervi

ce l

ife,

for

whi

ch i

t ha

s be

en

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 9

desi

gned

. Rel

iabi

lity

is u

sual

ly e

xpre

ssed

in p

roba

bilis

tic te

rms.

Not

e: R

elia

bilit

y co

vers

safe

ty, s

ervi

ceab

ility

and

dur

abili

ty o

f a st

ruct

ure.

1.

4.18

R

elia

bilit

y di

ffere

ntia

tion2)

m

easu

res

inte

nded

for s

ocio

-eco

nom

ic o

ptim

isat

ion

of th

e re

sour

ces

to b

e us

ed

to

build

co

nstru

ctio

n w

orks

, ta

king

in

to

acco

unt

all

expe

cted

co

nseq

uenc

es o

f fai

lure

s and

the

cost

of t

he c

onst

ruct

ion

wor

ks.

1.4.

19

Rep

air2)

ac

tiviti

es p

erfo

rmed

to

pres

erve

or

to r

esto

re t

he f

unct

ion

of a

stru

ctur

e th

at fa

ll ou

tsid

e th

e de

finiti

on o

f mai

nten

ance

.

1.4.

20

Rep

rese

ntat

ive

valu

e of

an

actio

n (F

rep

)2) 8

)

va

lue

used

for t

he v

erifi

catio

n of

a li

mit

stat

e. A

repr

esen

tativ

e va

lue

may

be

the

char

acte

ristic

val

ue (F

k ) o

r an

acco

mpa

nyin

g va

lue

(ψF k

).

Not

e:

The

acco

mpa

nyin

g va

lue

of

a va

riabl

e ac

tion

may

be

th

e co

mbi

natio

n va

lue,

the

freq

uent

val

ue o

r the

qua

si p

erm

anen

t val

ue.

1.4.

21

Res

ista

nce1)

ca

paci

ty o

f a

mem

ber

or c

ompo

nent

, or

a cr

oss-

sect

ion

of a

mem

ber

or

com

pone

nt o

f a st

ruct

ure,

to w

ithst

and

actio

ns d

ue to

det

erio

ratio

n.

1.4.

22

Serv

icea

bilit

y lim

it st

ates

(SL

S) 2)

9)

SLS

is t

his

docu

men

t on

ly t

reat

ed i

n its

nar

row

sen

se,

i.e.

dura

bilit

y re

late

d lim

it st

ates

, and

not

in it

s gen

eral

wid

er s

ense

, e.g

. to

cove

r def

lect

ion.

SLS

mig

ht b

e as

soci

ated

with

any

dur

abili

ty r

elat

ed c

ondi

tion

beyo

nd

whi

ch t

he o

wne

r fe

els

unco

mfo

rtabl

e an

d w

hich

are

inc

lude

d in

the

des

ign

crite

ria.

st

ates

tha

t co

rres

pond

to

cond

ition

s be

yond

whi

ch s

peci

fied

serv

ice

requ

irem

ents

for a

stru

ctur

e or

stru

ctur

al m

embe

r are

no

long

er m

et.

1.4.

23

Serv

icea

bilit

y cr

iteri

on 2)

de

sign

crit

erio

n fo

r a s

ervi

ceab

ility

lim

it st

ate.

– 10

1 G

ener

al

1.4.

24

Ulti

mat

e lim

it st

ate

(UL

S)2)

9)

stat

es a

ssoc

iate

d w

ith c

olla

pse

or w

ith o

ther

sim

ilar

form

s of

stru

ctur

al

failu

re

Not

e: T

hey

gene

rally

cor

resp

ond

to th

e m

axim

um lo

ad-c

arry

ing

resi

stan

ce

of a

stru

ctur

e or

stru

ctur

al m

embe

r

1) T

he d

efin

ition

is b

ased

on

that

in E

N 1

990

2) T

he d

efin

ition

is id

entic

al to

that

in E

N 1

990

3) C

EN d

ocum

ents

are

usi

ng t

he t

erm

“D

esig

n w

orki

ng l

ife”

whe

re t

his

docu

men

t is

appl

ying

“D

esig

n se

rvic

e lif

e”

4) T

he d

efin

ition

is id

entic

al to

that

in IS

O 9

000

5) B

ased

on

ISO

156

86-1

:200

0 “B

uild

ing

and

cons

truct

ion

asse

ts –

Ser

vice

lif

e pl

anni

ng, P

art 1

: Gen

eral

prin

cipl

es”

clau

se 6

.7

6) Th

e de

finiti

on is

in a

ccor

danc

e w

ith J

CSS

“Pr

obab

ilist

ic M

odel

Cod

e –

Part

1”

7) B

ased

on

CEN

EN

V 1

3670

-1

8) T

he d

efin

ition

is b

ased

on

that

in IS

O 2

394

9) T

he d

efin

ition

is id

entic

al to

that

in IS

O 2

394

1.5

Sym

bols

(1

) For

the

purp

ose

of th

is d

ocum

ent,

the

follo

win

g sy

mbo

ls a

pply

:

F A

ctio

n F d

D

esig

n va

lue

of a

ctio

n

R

Res

ista

nce

SLS

Serv

icea

bilit

y lim

it st

ate

ULS

U

ltim

ate

limit

stat

e a

Dis

tanc

e, a

ge e

xpon

ent

t Th

ickn

ess,

tim

e be

ing

cons

ider

ed

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 11

γ Pa

rtial

fact

or

γ c

Parti

al fa

ctor

for c

oncr

ete

γ f

Parti

al f

acto

r fo

r ac

tions

with

out

taki

ng a

ccou

nt o

f m

odel

un

certa

intie

s

γ F

Parti

al

fact

or

for

actio

n,

also

ac

coun

ting

for

mod

el

unce

rtain

ties a

nd d

imen

sion

al v

aria

tions

γ m

Parti

al f

acto

rs f

or m

ater

ial

prop

erty

, tak

ing

acco

unt

only

of

unce

rtain

ties i

n th

e m

ater

ial p

rope

rty

γ M

Parti

al

fact

ors

for

mat

eria

l pr

oper

ty,

taki

ng

acco

unt

of

unce

rtain

ties

in th

e m

ater

ial p

rope

rty it

self

and

in th

e de

sign

m

odel

use

d

γ Sd

Parti

al f

acto

r as

soci

ated

with

the

unc

erta

inty

of

the

actio

n an

d/or

act

ion

effe

ct m

odel

γ Rd

Parti

al fa

ctor

ass

ocia

ted

with

the

unce

rtain

ty o

f the

resi

stan

ce

mod

el,

plus

geo

met

ric d

evia

tions

if

thes

e ar

e no

t m

odel

led

expl

icitl

y

– 12

2 B

asis

of d

esig

n

2 B

asis

of d

esig

n

2.

1 R

equi

rem

ents

2.

1.1

Bas

ic r

equi

rem

ents

(1

) The

SLD

of c

oncr

ete

stru

ctur

es s

hall

be in

acc

orda

nce

with

the

gene

ral

rule

s giv

en in

EN

199

0.

(2)

The

supp

lem

enta

ry p

rovi

sion

s fo

r co

ncre

te s

truct

ures

giv

en i

n th

is

docu

men

t sha

ll al

so b

e ap

plie

d.

(3)

The

basi

c re

quire

men

ts o

f EN

199

0 Se

ctio

n 2

are

deem

ed t

o be

sa

tisfie

d fo

r co

ncre

te s

truct

ures

whe

n SL

D i

s ca

rrie

d ou

t ac

cord

ing

to t

he

requ

irem

ents

giv

en in

sect

ion

2.1.

2 (2

).

2.1.

2 R

elia

bilit

y m

anag

emen

t

(1

) R

elia

bilit

y m

anag

emen

t sh

all

follo

w t

he r

ules

giv

en i

n EN

199

0 Se

ctio

n 2.

(2) T

he se

rvic

e lif

e de

sign

shal

l eith

er:

– fo

llow

the

gene

ral p

rinci

ples

for

pro

babi

listic

ser

vice

life

des

ign

of

conc

rete

stru

ctur

es o

utlin

ed in

the

JCSS

PM

C, I

SO 2

394:

1998

(E)

, re

spec

tivel

y.

– us

e th

e pa

rtial

fact

or m

etho

d gi

ven

in th

is d

ocum

ent

– us

e th

e de

emed

-to-s

atis

fy m

etho

d gi

ven

in th

is d

ocum

ent

– be

bas

ed o

n th

e av

oida

nce-

of-d

eter

iora

tion

met

hod

give

n in

thi

s do

cum

ent

2.1.

3 D

esig

n se

rvic

e lif

e,

dura

bilit

y an

d qu

ality

m

anag

emen

t

(1

) The

rule

s fo

r des

ign

of s

ervi

ce li

fe, d

urab

ility

and

qua

lity

man

agem

ent

are

give

n in

EN

199

0 Se

ctio

n 2.

(2)

The

desi

gn s

ervi

ce li

fe is

the

assu

med

per

iod

for

whi

ch a

stru

ctur

e or

pa

rt of

it is

to b

e us

ed f

or it

s in

tend

ed p

urpo

se w

ith a

ntic

ipat

ed m

aint

enan

ce

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 13

– bu

t with

out m

ajor

repa

ir be

ing

nece

ssar

y.

The

desi

gn se

rvic

e lif

e is

def

ined

by:

A d

efin

ition

of t

he re

leva

nt li

mit

stat

e

– A

num

ber o

f yea

rs

– A

lev

el o

f re

liabi

lity

for

not

pass

ing

the

limit

stat

e du

ring

this

pe

riod

(3)

Dur

abili

ty o

f th

e st

ruct

ure

in i

ts e

nviro

nmen

t sh

all

be s

uch

that

it

rem

ains

fit

for

use

durin

g its

des

ign

serv

ice

life.

Thi

s re

quire

men

t ca

n be

co

nsid

ered

in o

ne, o

r a c

ombi

natio

n, o

f the

follo

win

g w

ays:

– B

y de

sign

ing

prot

ectiv

e an

d om

itiga

ting

syst

ems

– B

y us

ing

mat

eria

ls t

hat,

if w

ell

mai

ntai

ned,

will

not

deg

ener

ate

durin

g th

e de

sign

serv

ice

life

– B

y gi

ving

suc

h di

men

sion

s th

at d

eter

iora

tion

durin

g th

e de

sign

se

rvic

e lif

e is

com

pens

ated

– B

y ch

oosi

ng a

sho

rter

lifet

ime

for

stru

ctur

al e

lem

ents

, whi

ch m

ay

be re

plac

ed o

ne o

r mor

e tim

es d

urin

g th

e de

sign

life

in

com

bina

tion

with

ap

prop

riate

in

spec

tion

at

fixed

or

co

nditi

on

depe

ndan

t int

erva

ls a

nd a

ppro

pria

te m

aint

enan

ce a

ctiv

ities

. In

all

case

s th

e re

liabi

lity

requ

irem

ents

for

lon

g an

d sh

ort-t

erm

per

iods

sh

ould

be

met

.

(4

) Th

e se

rvic

eabi

lity

crite

ria s

hall

be s

peci

fied

for

each

pro

ject

and

ag

reed

with

the

clie

nt.

Gui

danc

e fo

r th

e ch

oice

of

se

rvic

eabi

lity

crite

ria

com

bine

d w

ith

appr

opria

te ta

rget

val

ues o

f rel

iabi

lity

are

give

n in

Ann

ex A

.

The

“Con

sequ

ence

cla

sses

”, “

Rel

iabi

lity

clas

ses”

and

“D

esig

n su

perv

isio

n le

vels

” ar

e id

entic

al t

o th

ose

defin

ed i

n A

nnex

B o

f EN

199

0, w

hile

the

“I

nspe

ctio

n le

vels

dur

ing

exec

utio

n” o

f EN

199

0 ar

e on

ly o

ne e

lem

ent i

n th

e “E

xecu

tion

clas

ses”

def

ined

in th

e pr

esen

t doc

umen

t.

(5

) A

s a

guid

ance

to r

elia

bilit

y di

ffer

entia

tion,

Ann

ex A

to th

is d

ocum

ent

defin

es th

e fo

llow

ing

gene

ral c

lass

ifica

tions

:

– C

onse

quen

ce c

lass

CC

3, C

C2

and

CC

1

– R

elia

bilit

y cl

ass R

C3,

RC

2 an

d R

C1

– D

esig

n su

perv

isio

n le

vel D

SL3,

DSL

2 an

d D

SL1

– Ex

ecut

ion

clas

s EX

C1,

EX

C2

and

EXC

3

– 14

2 B

asis

of d

esig

n

– R

obus

tnes

s Cla

ss R

OC

1, R

OC

2 an

d R

OC

3

For s

ervi

ce li

fe d

esig

n, A

nnex

A, i

n ad

ditio

n, c

lass

ify 4

leve

ls o

f con

ditio

n co

ntro

l dur

ing

the

serv

ice

life:

– C

CL3

, CC

L2, C

CL1

and

CC

L0

2.2

Prin

cipl

es o

f lim

it st

ate

desi

gn

The

perf

orm

ance

of

a w

hole

stru

ctur

e or

par

t of

it

shou

ld b

e de

scrib

ed

with

ref

eren

ce t

o a

spec

ified

set

of

limit

stat

es a

nd a

ssoc

iate

d le

vels

of

relia

bilit

y w

hich

sepa

rate

des

ired

stat

es o

f the

stru

ctur

e fr

om u

ndes

ired

stat

es.

It

shal

l be

verif

ied

that

non

e of

thes

e lim

it st

ates

are

exc

eede

d w

ith a

less

de

gree

of r

elia

bilit

y th

an g

iven

in th

e de

sign

crit

eria

. Th

e de

finiti

ons o

f SLS

and

ULS

are

giv

en in

1.4

.22

and

1.4.

24.

SLS

repr

esen

ts a

ll lim

it st

ates

exc

ept t

hat a

ssoc

iate

d w

ith c

olla

pse

or o

ther

si

mila

r for

ms o

f stru

ctur

al fa

ilure

.

Exam

ples

of

limit

stat

es a

ssoc

iate

d w

ith S

LS a

nd d

ealt

with

in

this

do

cum

ent

mig

ht b

e: d

epas

siva

tion

of r

einf

orce

men

t, cr

acki

ng,

spal

ling

of

cove

r, er

osio

n of

surf

ace

due

to fr

eeze

-thaw

, etc

.

(1

) The

rule

s for

lim

it st

ate

desi

gn a

re g

iven

in E

N 1

990

Sect

ion

3.

2.3

Bas

ic v

aria

bles

2.

3.1

Act

ions

and

env

iron

men

tal i

nflu

ence

s R

ules

for a

ctio

ns a

nd e

nviro

nmen

tal i

nflu

ence

s ar

e al

so g

iven

in E

N 1

990,

Se

ctio

n 4.

(1

) Act

ions

spec

ific

to S

LD a

re g

iven

in re

leva

nt se

ctio

ns.

Cha

ract

eris

tic v

alue

s of a

ctio

ns fo

r use

in S

LD sh

all e

ither

be

– ba

sed

on d

ata

deriv

ed fo

r the

par

ticul

ar p

roje

ct o

r –

from

gen

eral

fiel

d-ex

perie

nce

– fr

om re

leva

nt li

tera

ture

Oth

er a

ctio

ns, w

hen

rele

vant

, sha

ll be

def

ined

in th

e de

sign

spe

cific

atio

n fo

r a p

artic

ular

pro

ject

.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 15

2.3.

2 M

ater

ial a

nd p

rodu

ct p

rope

rtie

s

(1

) Th

e ru

les

for

mat

eria

l an

d pr

oduc

t pr

oper

ties

are

give

n in

EN

199

0 Se

ctio

n 4.

(2

) C

hara

cter

istic

val

ues

of m

ater

ials

and

pro

duct

pro

perti

es f

or u

se i

n SL

D sh

all e

ither

be

– ba

sed

on d

ata

deriv

ed fo

r the

par

ticul

ar p

roje

ct o

r

– fr

om g

ener

al fi

eld-

expe

rienc

e

– fr

om re

leva

nt li

tera

ture

M

ater

ials

and

pro

duct

pro

perti

es t

o be

det

erm

ined

will

dep

end

on t

he

dete

riora

tion

mod

el u

sed.

If d

iffer

ent m

odel

s w

ith d

iffer

ent b

asic

ass

umpt

ions

ar

e of

fere

d, a

che

ckin

g pr

oces

s sh

ould

be

esta

blis

hed,

to

avoi

d an

inco

rrec

t m

ixtu

re o

f dat

a.

(3)

Mat

eria

l pr

oper

ty v

alue

s sh

all

be d

eter

min

ed f

rom

tes

t pr

oced

ures

pe

rfor

med

und

er s

peci

fied

cond

ition

s. A

con

vers

ion

fact

or s

hall

be a

pplie

d,

whe

n ne

cess

ary,

to c

onve

rt th

e te

st r

esul

ts o

f la

bora

tory

cas

t spe

cim

ens

into

va

lues

, whi

ch c

an b

e as

sum

ed t

o re

pres

ent

the

beha

viou

r of

the

mat

eria

l or

pr

oduc

t in

the

stru

ctur

e.

2.3.

3 G

eom

etri

c da

ta

(1) T

he ru

les f

or g

eom

etric

al d

ata

are

give

n in

EN

199

0 Se

ctio

n 4.

O

f pa

rticu

lar

rele

vanc

e fo

r se

rvic

e lif

e de

sign

(SL

D)

are

ENV

136

70-1

cl

ause

10.

6, f

igur

e 3

b an

d 3

d co

ncer

ning

loc

atio

n of

ord

inar

y an

d pr

estre

ssed

rein

forc

emen

t. Fo

r pr

actic

al

reas

ons,

a si

mpl

ified

st

atis

tical

ap

proa

ch

base

d on

“m

axim

um p

erm

itted

dev

iatio

n” is

ofte

n us

ed in

pro

ject

spe

cific

atio

ns. T

his

is o

ften

the

case

for

the

con

cret

e co

ver

to r

einf

orce

men

t. Th

is i

s no

rmal

ly

give

n as

a n

omin

al v

alue

(ta

rget

val

ue)

and

max

imum

per

mitt

ed m

inus

and

pl

us d

evia

tions

.

Whe

n pe

rfor

min

g a

full

prob

abili

stic

SLD

, th

is m

axim

um p

erm

itted

de

viat

ion

has

to b

e tra

nsfo

rmed

to

a gi

ven

frac

tile

of a

n as

sum

ed s

tatis

tical

di

strib

utio

n (s

ee c

laus

e 4

.5 (2

)).

(2

) Des

ign

valu

es o

f geo

met

rical

dat

a fo

r SLD

sha

ll be

in a

ccor

danc

e w

ith

EN 1

990

clau

se 6

.3.4

or

acco

rdin

g to

mea

sure

men

ts o

n th

e co

mpl

eted

st

ruct

ure

or e

lem

ent.

(3)

ENV

136

70-1

“Ex

ecut

ion

of c

oncr

ete

stru

ctur

es”

spec

ifies

per

mitt

ed

geom

etric

al d

evia

tions

. If

the

desi

gn a

ssum

es s

trict

er t

oler

ance

s, t

he d

esig

n as

sum

ptio

ns s

hall

be v

erifi

ed b

y m

easu

rem

ents

on

the

com

plet

ed s

truct

ure

or

elem

ent.

– 16

2 B

asis

of d

esig

n

2.4

Ver

ifica

tion

2.4.

1 V

erifi

catio

n by

full

prob

abili

stic

met

hod

Mat

eria

l par

amet

ers

deriv

ed f

rom

acc

eler

ated

sho

rt-tim

e te

sts

mig

ht h

ave

an in

here

nt u

ncer

tain

ty c

once

rnin

g th

eir a

pplic

atio

n fo

r lon

g-te

rm m

odel

ling.

The

rele

vanc

e of

su

ch

mat

eria

l ch

arac

teris

tics

shou

ld

ther

efor

e be

ca

libra

ted

to lo

ng-te

rm in

field

per

form

ance

.

The

unce

rtain

ty o

f m

odel

s an

d pa

ram

eter

s w

ill n

orm

ally

inf

luen

ce t

he

resu

lt of

the

SLD

to a

gre

ater

deg

ree

whe

n us

ed fo

r des

ign

of n

ew s

truct

ures

th

an w

hen

asse

ssin

g re

mai

ning

serv

ice

life

of e

xist

ing

stru

ctur

es.

(1

) Th

e ge

nera

l prin

cipl

es f

or p

roba

bilis

tic s

ervi

ce li

fe d

esig

n of

con

cret

e st

ruct

ures

out

lined

in th

e JC

SS P

MC

shal

l be

follo

wed

.

In p

artic

ular

the

follo

win

g fo

ur p

rinci

ples

shal

l be

cons

ider

ed:

– Pr

obab

ilist

ic m

odel

s sh

all b

e ap

plie

d th

at a

re s

uffic

ient

ly v

alid

ated

to

giv

e re

alis

tic a

nd re

pres

enta

tive

resu

lts.

– Th

e pa

ram

eter

s of

th

e m

odel

s ap

plie

d an

d th

eir

asso

ciat

ed

unce

rtain

ty s

hall

be q

uant

ifiab

le b

y m

eans

of

test

s, ob

serv

atio

ns

and/

or e

xper

ienc

e.

– R

epro

duci

ble

and

rele

vant

test

met

hods

sha

ll be

ava

ilabl

e to

ass

ess

the

actio

n- a

nd m

ater

ial-p

aram

eter

s.

Unc

erta

intie

s ass

ocia

ted

with

mod

els

and

test

met

hods

sha

ll be

con

side

red.

2.

4.2

Ver

ifica

tion

by th

e pa

rtia

l fac

tor

met

hod

(1) T

he ru

les

for t

he p

artia

l fac

tor m

etho

d ar

e gi

ven

in E

N 1

990

Sect

ion

6 an

d ca

n be

use

d fo

r SL

D

with

out

the

limita

tions

giv

en i

n EN

199

0 cl

ause

6.

2.

(2) T

he s

ame

mod

els

as fo

r the

full

prob

abili

stic

met

hod,

bas

ed o

n de

sign

va

lues

, sha

ll be

use

d fo

r the

par

tial f

acto

r met

hod.

Sim

plifi

catio

ns o

n th

e sa

fe

side

are

pos

sibl

e.

(3)

The

parti

al f

acto

r fo

rmat

sep

arat

es t

he t

reat

men

t of

unc

erta

intie

s an

d va

riabi

litie

s or

igin

atin

g fr

om v

ario

us c

ause

s. I

n th

e ve

rific

atio

n pr

oced

ure

defin

ed in

this

doc

umen

t the

des

ign

valu

es o

f the

fund

amen

tal b

asic

var

iabl

es

are

expr

esse

d as

follo

ws:

Des

ign

valu

es o

f act

ions

are

gen

eral

ly e

xpre

ssed

as

F d =

γf ·

Fre

p (2

.4-1

)

whe

re F

rep a

re re

pres

enta

tive

valu

es o

f act

ion

γ f a

re p

artia

l saf

ety

fact

ors

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 17

–D

esig

n va

lues

of

mat

eria

l or

prod

uct p

rope

rty a

re g

ener

ally

exp

ress

ed

as

Rd =

Rk / γ

m

(2.4

-2)

Or,

in c

ase

unce

rtain

ty in

the

desi

gn m

odel

is ta

ken

into

acc

ount

by:

Rd =

Rk/γ

M =

Rk/(γ m

⋅ γRd

) (2

.4-3

)

whe

re R

k are

cha

ract

eris

tic v

alue

s of

resi

stan

ce

γ m i

s the

par

tial f

acto

r for

mat

eria

l pro

perty

γ Rd

is th

e pa

rtial

fact

or a

ssoc

iate

d w

ith th

e un

certa

inty

of t

he re

sist

ance

m

odel

plu

s geo

met

ric d

evia

tions

if th

ese

are

not m

odel

led

expl

icitl

y.

γ M =

γm

⋅ γ R

d is

the

par

tial

fact

or f

or m

ater

ial

prop

erty

als

o ac

coun

ting

for t

he m

odel

unc

erta

intie

s and

dim

ensi

onal

var

iatio

ns.

–D

esig

n va

lues

of

ge

omet

rical

qu

antit

ies

to

be

cons

ider

ed

as

fund

amen

tal

basi

c va

riabl

es a

re g

ener

ally

dire

ctly

exp

ress

ed b

y th

eir

desi

gn v

alue

s ad.

The

targ

et r

elia

bilit

y le

vel u

sed

for

the

calib

ratio

n sh

all b

e in

acc

orda

nce

with

Cha

pter

2.1

.3. (

4)

(4

) Whe

n us

ing

the

parti

al fa

ctor

met

hod,

it s

hall

be v

erifi

ed th

at th

e ta

rget

re

liabi

lity

for n

ot p

assi

ng th

e re

leva

nt li

mit

stat

e du

ring

the

desi

gn s

ervi

ce li

fe

is n

ot e

xcee

ded

whe

n de

sign

val

ues

for

actio

ns o

r ef

fect

s of

act

ions

and

re

sist

ance

are

use

d in

the

desi

gn m

odel

s. Th

e pa

rtial

fact

ors s

hall

take

into

acc

ount

:

–Th

e po

ssib

ility

of

unfa

vour

able

dev

iatio

ns o

f ac

tion

valu

es f

rom

the

re

pres

enta

tive

valu

es

–Th

e po

ssib

ility

of

unfa

vour

able

dev

iatio

ns o

f m

ater

ials

and

pro

duct

pr

oper

ties f

rom

the

repr

esen

tativ

e va

lues

Mod

el u

ncer

tain

ties a

nd d

imen

sion

al v

aria

tions

The

num

eric

al v

alue

s fo

r th

e pa

rtial

fac

tors

sha

ll be

det

erm

ined

in e

ither

of

two

way

s:

–O

n th

e ba

sis

of s

tatis

tical

eva

luat

ion

of e

xper

imen

tal

data

and

fie

ld

obse

rvat

ions

acc

ordi

ng to

req

uire

men

ts o

f cl

ause

“V

erifi

catio

n by

ful

l

– 18

2 B

asis

of d

esig

n

prob

abili

stic

met

hod”

–O

n th

e ba

sis

of c

alib

ratio

n to

a l

ong

term

exp

erie

nce

of b

uild

ing

tradi

tion

2.4.

3 V

erifi

catio

n by

the

deem

ed-to

-sat

isfy

met

hod

Expo

sure

co

nditi

ons

in t

he d

esig

n si

tuat

ions

mig

ht b

e cl

assi

fied

in

”exp

osur

e cl

asse

s”.

Trad

ition

ally

, de

emed

-to-s

atis

fy p

rovi

sion

s in

clud

e re

quire

men

ts t

o th

e w

orkm

ansh

ip,

conc

rete

co

mpo

sitio

n,

poss

ible

ai

r en

train

men

t, co

ver

thic

knes

s to

the

rei

nfor

cem

ent,

crac

k w

idth

lim

itatio

ns a

nd c

urin

g of

the

co

ncre

te.

How

ever

, oth

er p

rovi

sion

s mig

ht a

lso

be re

leva

nt.

Exam

ples

of

the

calib

ratio

n of

dee

med

-to-s

atis

fy c

riter

ia b

ased

on

a “c

lose

-to”

full

prob

abili

stic

met

hod

and

data

der

ived

from

10

– 15

yea

rs o

ld

stru

ctur

es a

re g

iven

in [2

].

(1

) The

dee

med

-to-s

atis

fy m

etho

d is

a se

t of r

ules

for

– di

men

sion

ing,

mat

eria

l and

pro

duct

sele

ctio

n an

d

– ex

ecut

ion

proc

edur

es

that

ens

ures

tha

t th

e ta

rget

rel

iabi

lity

for

not

pass

ing

the

rele

vant

lim

it st

ate

durin

g th

e de

sign

ser

vice

life

is

not

exce

eded

whe

n th

e co

ncre

te

stru

ctur

e or

com

pone

nt is

exp

osed

to th

e de

sign

situ

atio

ns.

(2) T

he s

peci

fic re

quire

men

ts fo

r des

ign,

mat

eria

ls s

elec

tion

and

exec

utio

n fo

r the

dee

med

-to-s

atis

fy m

etho

d sh

all b

e de

term

ined

in e

ither

of t

wo

way

s:

–O

n th

e ba

sis

of s

tatis

tical

eva

luat

ion

of e

xper

imen

tal

data

and

fie

ld

obse

rvat

ions

acc

ordi

ng to

req

uire

men

ts o

f cl

ause

“V

erifi

catio

n by

ful

l pr

obab

ilist

ic m

etho

d”

–O

n th

e ba

sis

of c

alib

ratio

n to

a l

ong

term

exp

erie

nce

of b

uild

ing

tradi

tion

The

limita

tions

to th

e va

lidity

of

the

prov

isio

ns, e

.g. t

he r

ange

of

cem

ent

type

s cov

ered

by

the

calib

ratio

n, sh

all b

e cl

early

stat

ed.

2.4.

4 V

erifi

catio

n by

the

avoi

danc

e-of

-det

erio

ratio

n m

etho

d

(1

) Th

e av

oida

nce-

of-d

eter

iora

tion

met

hod

impl

ies

that

de

terio

ratio

n pr

oces

s w

ill n

ot ta

ke p

lace

due

to fo

r ins

tanc

e:

–Se

para

tion

of

the

envi

ronm

enta

l ac

tion

from

th

e st

ruct

ure

or

com

pone

nt b

y e.

g. c

ladd

ing

or m

embr

anes

–U

sing

non

-rea

ctin

g m

ater

ials

, e.g

. cer

tain

sta

inle

ss s

teel

s or

alk

ali-n

on-

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 19

reac

tive

aggr

egat

es

–Se

para

tion

of re

acta

nts,

e.g.

kee

ping

the

stru

ctur

e or

com

pone

nt b

elow

a

criti

cal d

egre

e of

moi

stur

e.

–Su

ppre

ssin

g th

e ha

rmfu

l rea

ctio

n e.

g. b

y el

ectro

chem

ical

met

hods

The

assu

med

eff

ectiv

enes

s of

the

actu

al c

once

pt s

hall

be d

ocum

ente

d, fo

r in

stan

ce f

or p

rodu

cts

by c

ompl

ying

with

rel

evan

t min

imum

req

uire

men

ts in

pr

oduc

t sta

ndar

ds.

(2

) The

spe

cific

requ

irem

ents

for d

esig

n, m

ater

ials

sel

ectio

n an

d ex

ecut

ion

for

the

avoi

danc

e-of

-det

erio

ratio

n m

etho

d ca

n in

prin

cipl

e be

det

erm

ined

in

the

sam

e w

ay a

s fo

r the

dee

med

-to-s

atis

fy m

etho

d.

The

limita

tions

to th

e va

lidity

of t

he p

rovi

sion

s sha

ll be

cle

arly

stat

ed.

– 20

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

3.1

Car

bona

tion

indu

ced

corr

osio

n –

uncr

acke

d co

ncre

te

3.1.

1 Fu

ll pr

obab

ilist

ic m

etho

d

3.

1.1.

1 Li

mit

stat

e: d

epas

sivat

ion

To g

et c

orro

sion

an

envi

ronm

ent

that

is

wet

eno

ugh

is n

eede

d. F

or

stru

ctur

al e

lem

ents

sol

ely

expo

sed

to re

lativ

e dr

y in

door

env

ironm

ent,

a lim

it st

ate

‘dep

assi

vatio

n’ m

ay n

ot b

e re

leva

nt a

s no

sig

nific

ant

corr

osio

n w

ill

deve

lop.

(1

) The

follo

win

g re

quire

men

t nee

ds to

be

fulfi

lled:

p{}

= p d

ep. =

p{a

- x c

(t SL)

< 0

} <

p 0

(3.1

-1)

p{}:

pr

obab

ility

that

dep

assi

vatio

n oc

curs

a:

conc

rete

cov

er [m

m]

x c (t

SL):

carb

onat

ion

dept

h at

the

time

t SL [m

m]

t SL:

desi

gn se

rvic

e lif

e [y

ears

] p 0

: ta

rget

failu

re p

roba

bilit

y, c

p. A

nnex

A, T

able

A2-

2

(2) T

he v

aria

bles

a a

nd x

c(tSL

) nee

d to

be

quan

tifie

d in

a fu

ll pr

obab

ilist

ic

appr

oach

.

(3)

To e

xem

plify

the

des

ign

proc

edur

e an

d th

e qu

antif

icat

ion

of a

bove

gi

ven

quan

titie

s, an

app

licab

le d

esig

n m

etho

d is

giv

en in

Cha

pter

B1,

Ann

ex

B. O

ther

met

hods

may

be

used

, pro

vide

d th

at th

e ba

sic

prin

cipl

es fo

rmul

ated

in

Cha

pter

2.4

.1 a

re fu

lfille

d.

3.1.

1.2

Lim

it st

ates

: cor

rosio

n-in

duce

d cr

acki

ng, s

palli

ng a

nd

colla

pse

Rei

nfor

cem

ent c

orro

sion

lead

ing

to c

rack

ing,

spa

lling

and

col

laps

e de

pend

to

a h

igh

exte

nt o

n th

e en

viro

nmen

t at

the

con

cret

e su

rfac

e. T

he m

icro

en

viro

nmen

t m

ay v

ary

cons

ider

able

alo

ng t

he c

oncr

ete

surf

ace

of s

truct

ural

el

emen

ts.

Mos

t un

favo

urab

le m

icro

env

ironm

enta

l co

nditi

ons

are

freq

uent

w

ettin

g an

d dr

ying

and

/or

accu

mul

atio

n of

agg

ress

ive

agen

ts (

chlo

rides

or

igin

atin

g fr

om s

eaw

ater

or d

e-ic

ing

salts

). M

acro

-cel

l cor

rosi

on e

ffec

ts m

ay

(1

) Ex

empl

ified

with

reg

ard

to c

rack

ing,

the

fol

low

ing

basi

c lim

it st

ate

func

tion

need

s to

be fu

lfille

d:

p{}

= p c

rack

= p

{Δr (R

) - Δ

r (S)(t

SL) <

0}

< p 0

(3

.1-2

)

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 21

trigg

er h

igh

corr

osio

n ra

tes

in a

reas

with

les

s se

vere

mic

ro e

nviro

nmen

tal

cond

ition

. For

giv

en d

egre

es o

f co

rros

ion

the

risk

for

crac

king

and

spa

lling

de

pend

s on

the

geom

etry

of t

he c

ross

sec

tion.

Mos

t vul

nera

ble

cros

s se

ctio

nal

area

s, e

. g. t

he e

dges

of b

eam

s, sh

ould

be

chos

en a

s de

cisi

ve fo

r des

ign.

p{}:

pr

obab

ility

that

car

bona

tion-

indu

ced

crac

king

occ

urs

Δr (R

): m

axim

al c

orro

sion

ind

uced

inc

reas

e of

the

reb

ar r

adiu

s w

hich

can

be

acco

mm

odat

ed b

y th

e co

ncre

te w

ithou

t fo

rmat

ion

of c

rack

s at

the

conc

rete

surf

ace

[µm

]

Δr (S

)(tSL

): in

crea

se o

f the

reba

r rad

ius

due

to re

info

rcem

ent c

orro

sion

m]

t SL:

desi

gn se

rvic

e lif

e [y

ears

]

p 0:

targ

et fa

ilure

pro

babi

lity,

cp.

Ann

ex A

, Tab

le A

2-2

An

alte

rnat

ive

desi

gn a

ppro

ach

is:

p{}

= p c

rack

= p

{tSL

- t in

i - t p

rop <

0}

< p 0

(3

.1-3

)

p{}:

pr

obab

ility

that

car

bona

tion-

indu

ced

crac

king

occ

urs

t SL:

desi

gn se

rvic

e lif

e [y

ears

]

t ini:

initi

atio

n pe

riod

[yea

rs]

t prop

: pr

opag

atio

n pe

riod

[yea

rs]

p 0:

targ

et fa

ilure

pro

babi

lity,

cp.

Ann

ex A

, Tab

le A

2-2

Firs

t app

roac

hes

exis

t to

quan

tify

the

varia

bles

Δr (S

)(tSL

) and

Δr (R

). M

ost o

f th

e co

rres

pond

ing

mod

els

are

empi

rical

ly d

eriv

ed,

ofte

n ba

sed

on v

ery

limite

d, i

n co

nseq

uenc

e in

suff

icie

nt d

ata

basi

s. Th

e co

rrel

atio

n be

twee

n co

rros

ion

rate

s/co

ncre

te q

ualit

y/m

icro

env

ironm

ent

is n

ot y

et q

uant

ified

in

deta

il. T

he s

ame

appl

ies

to th

e lim

it st

ates

spa

lling

and

col

laps

e. T

o ge

t firs

t im

pres

sion

s on

the

pro

paga

tion

perio

d TG

5.6

org

anis

ed a

Del

phic

ora

cle.

O

ne re

sult

of th

e ex

posu

re d

epen

dent

out

put o

f thi

s D

elph

ic o

racl

e is

giv

en in

A

nnex

R. T

oget

her

with

exi

stin

g m

odel

s de

scrib

ing

the

initi

atio

n pe

riod

and

the

here

with

ov

eral

l qu

antif

ied

prop

agat

ion

perio

d,

fully

-pro

babi

listic

ca

lcul

atio

ns w

ith r

egar

d to

cor

rosi

on in

duce

d cr

acki

ng, s

palli

ng a

nd c

olla

pse

of c

oncr

ete

stru

ctur

es c

an b

e pe

rfor

med

, see

Equ

atio

n 3.

1-3.

(2

) The

var

iabl

es Δ

r (R) a

nd Δ

r (S)(t

SL) o

r the

var

iabl

es t i

ni a

nd t p

rop n

eed

to b

e qu

antif

ied

in a

full

prob

abili

stic

app

roac

h.

– 22

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

(3)

To e

xem

plify

the

des

ign

proc

edur

e an

d th

e qu

antif

icat

ion

of a

bove

gi

ven

quan

titie

s, an

app

licab

le d

esig

n m

etho

d is

giv

en i

n A

nnex

R.

Oth

er

met

hods

may

be

used

, pr

ovid

ed t

hat

the

basi

c pr

inci

ples

for

mul

ated

in

Cha

pter

2.4

.1 a

re fu

lfille

d.

3.1.

2 Pa

rtia

l fac

tor

met

hod

3.1.

2.1

Lim

it st

ate:

dep

assiv

atio

n

(1

) The

follo

win

g lim

it st

ate

func

tion

need

s to

be fu

lfille

d:

a d -

x c,d(t S

L) ≥

0

(3.1

-4)

a d:

desi

gn v

alue

of t

he c

oncr

ete

cove

r [m

m]

x c,d(t S

L):

desi

gn v

alue

of t

he c

arbo

natio

n de

pth

at ti

me

t SL [m

m]

(2

) The

des

ign

valu

e of

the

conc

rete

cov

er a

d is

cal

cula

ted

as fo

llow

s:

a d =

ak -

Δa

(3.1

-5)

a k:

char

acte

ristic

val

ue o

f the

con

cret

e co

ver [

mm

]

Δa:

sa

fety

mar

gin

of th

e co

ncre

te c

over

[mm

]

(3)

The

desi

gn v

alue

of

the

carb

onat

ion

dept

h at

a t

ime

t SL x

c,d(

t SL)

is

calc

ulat

ed a

s fol

low

s:

x c,d(t S

L) =

xc,

c(tSL

) ⋅γ f

(3

.1-6

)

x c,c(t S

L):

char

acte

ristic

val

ue o

f th

e ca

rbon

atio

n de

pth

at a

tim

e t SL

[m

m],

e.g.

mea

n va

lue

of th

e ca

rbon

atio

n de

pth

γ f:

parti

al sa

fety

fact

or o

f the

car

bona

tion

dept

h [-

]

(4

) To

exe

mpl

ify t

he d

esig

n pr

oced

ure

and

the

quan

tific

atio

n of

abo

ve

give

n qu

antit

ies,

an a

pplic

able

des

ign

met

hod

is g

iven

in

Ann

ex C

. O

ther

m

etho

ds m

ay b

e us

ed,

prov

ided

tha

t th

e ba

sic

prin

cipl

es f

orm

ulat

ed i

n C

hapt

er 2

.4.2

are

fulfi

lled.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 23

3.1.

3 D

eem

ed-t

o-sa

tisfy

met

hod

Bas

ic r

equi

rem

ents

with

reg

ard

to c

over

, C

O2-

diff

usio

n an

d bi

ndin

g ch

arac

teris

tics

as w

ell a

s ex

ecut

iona

l req

uire

men

ts w

ill b

e gi

ven

com

para

ble

as a

lread

y gi

ven

in E

C 2

(co

ver:

c min

, EC

2, T

able

4.4

and

4.5

; diff

usio

n an

d bi

ndin

g ch

arac

teris

tics:

ind

irect

ly b

y st

reng

th c

lass

, m

inim

um r

equi

rem

ents

w

ith re

gard

to c

oncr

ete

com

posi

tion,

EC

2, T

able

E.1

N; e

xecu

tion…

.).

(1

) W

ithin

thi

s ap

proa

ch a

tra

ding

-off

of

geom

etric

al (

conc

rete

cov

er),

mat

eria

l (d

iffus

ion

and

bind

ing

char

acte

ristic

s) a

nd e

xecu

tiona

l (c

urin

g)

varia

bles

can

be

esta

blis

hed.

3.1.

4 A

void

ance

-of-

dete

rior

atio

n m

etho

d

(1

) G

ener

ally

, av

oida

nce

is a

chie

ved

if de

pass

ivat

ion

cann

ot t

ake

plac

e du

e to

infin

ite m

ater

ial r

esis

tanc

e or

zer

o en

viro

nmen

tal l

oad.

3.2

Chl

orid

e in

duce

d co

rros

ion

– un

crac

ked

conc

rete

3.

2.1

Full

prob

abili

stic

met

hod

3.2.

1.1

Lim

it st

ate:

dep

assiv

atio

n

(1

) The

follo

win

g lim

it st

ate

func

tion

need

s to

be fu

lfille

d:

p{}

= p d

ep. =

p{C

Crit.

- C

(a,t S

L) <

0} <

p0

(3.2

-1)

p{}:

pr

obab

ility

that

dep

assi

vatio

n oc

curs

CCr

it.:

criti

cal c

hlor

ide

cont

ent [

wt.-

%/b

inde

r con

tent

] C

(a,t S

L)

chlo

ride

cont

ent

at d

epth

a a

nd t

ime

t [w

t.-%

/bin

der

cont

ent]

a:

conc

rete

cov

er [m

m]

t SL:

desi

gn se

rvic

e lif

e [y

ears

] p 0

: ta

rget

failu

re p

roba

bilit

y, c

p. A

nnex

A, T

able

A2-

2

– 24

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

(2)

The

varia

bles

a,

Ccr

it. a

nd C

(a,t S

L) n

eed

to b

e qu

antif

ied

in a

ful

l pr

obab

ilist

ic a

ppro

ach.

(3

) To

exe

mpl

ify t

he d

esig

n pr

oced

ure

and

the

quan

tific

atio

n of

abo

ve

give

n qu

antit

ies,

an a

pplic

able

des

ign

met

hod

is g

iven

in C

hapt

er B

2, A

nnex

B

2.

Oth

er

met

hods

m

ay

be

used

, pr

ovid

ed

that

th

e ba

sic

prin

cipl

es

form

ulat

ed in

Cha

pter

2.4

.1 a

re fu

lfille

d.

See

Cha

pter

3.1

.1.2

3.2.

1.2

Lim

it st

ates

: cor

rosio

n-in

duce

d cr

acki

ng, s

palli

ng a

nd

colla

pse

See

Cha

pter

3.1

.2

3.

2.2

Part

ial f

acto

r m

etho

d Se

e C

hapt

er 3

.1.3

3.2.

3 D

eem

ed-t

o-sa

tisfy

met

hod

See

Cha

pter

3.1

.4

3.

2.4

Avo

idan

ce-o

f-de

teri

orat

ion

met

hod

3.3

Influ

ence

of c

rack

s upo

n re

info

rcem

ent

corr

osio

n Th

e co

rros

ion

rate

s in

the

regi

on o

f cra

cks

cros

sing

the

rein

forc

emen

t are

ex

trem

ely

depe

nden

t on

the

mic

ro c

limat

ic c

ondi

tions

at t

he c

oncr

ete

surf

ace

and

the

orie

ntat

ion

of th

e co

ncre

te s

urfa

ce. M

ost s

ever

e co

nditi

ons

occu

r in

ca

se o

f hor

izon

tal c

oncr

ete

surf

aces

and

bot

h cr

acks

and

chl

orid

e at

tack

from

th

e to

p. F

or u

sual

ser

vice

liv

es m

ore

than

10

year

s an

d fr

eque

nt c

hlor

ide

atta

ck (

e. g

. par

king

dec

ks i

n re

gion

s w

here

de-

icin

g sa

lts a

re u

sed)

spe

cial

pr

otec

tive

mea

sure

s ar

e ne

cess

ary

to a

void

the

rapi

d pe

netra

tion

of c

hlor

ides

to

the

rei

nfor

cem

ent

(e.

g. l

inin

gs o

r cr

ack-

brid

ging

coa

tings

). In

cas

e of

ve

rtica

l sur

face

s an

d ho

rizon

tal s

urfa

ces

with

chl

orid

e sp

ray

from

the

botto

m

side

and

chl

orid

e co

ntai

ning

wat

er n

ot le

akin

g th

roug

h cr

acks

hig

h qu

ality

of

conc

rete

co

ver

(cov

er

thic

knes

s ≥

50 m

m,

low

pe

rmea

bilit

y co

ncre

te,

w/c

≤ 0

.5)

and

ordi

nary

cra

ck w

idth

lim

itatio

n (w

k,ca

l ≤ 0

.3 m

m)

ensu

res

suff

icie

ntly

long

serv

ice

life

(≥ 5

0 ye

ars)

with

out e

xtra

pro

tect

ion.

In c

ase

of c

arbo

natio

n in

duce

d co

rros

ion

adeq

uate

qua

lity

of c

oncr

ete

cove

r an

d or

dina

ry c

rack

wid

th l

imita

tion

ensu

res

suff

icie

ntly

lon

g se

rvic

e lif

e (≥

50

year

s) w

ithou

t ext

ra p

rote

ctio

n.

(1

) Th

e m

inim

um s

truct

ural

rel

iabi

lity

of a

cra

cked

rei

nfor

ced

conc

rete

st

ruct

ure

has

to b

e of

com

para

ble

mag

nitu

de a

s th

e m

inim

um r

elia

bilit

y of

a

com

para

ble

expo

sed

uncr

acke

d st

ruct

ure.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 25

(2)

Sim

ilar

to t

he p

roce

dure

giv

en i

n C

hapt

ers

3.1

and

3.2,

unw

ante

d ev

ents

with

rega

rd to

ser

vice

abili

ty/ f

unct

iona

lity

have

to b

e id

entif

ied

(SLS

). In

add

ition

, it

has

to b

e ch

ecke

d w

heth

er u

ltim

ate

limits

are

aff

ecte

d by

co

ntin

uous

ly c

orro

ding

rein

forc

emen

t with

in th

e cr

acke

d zo

ne o

r not

.

(3)

If f

unct

iona

lity

is a

ffec

ted,

an

avoi

danc

e of

det

erio

ratio

n ap

proa

ch is

re

com

men

ded.

(4

) If

st

ruct

ural

in

tegr

ity

is

affe

cted

, an

av

oida

nce

of

dete

riora

tion

appr

oach

hav

e to

be

appl

ied.

3.4

Ris

k of

dep

assi

vatio

n w

ith r

espe

ct to

pre

-st

ress

ed st

eel

fib B

ulle

tin 3

3 “D

urab

ility

of

post

-tens

ioni

ng te

ndon

s” (

Dec

embe

r 20

05)

desc

ribes

mul

ti-ba

rrie

r sy

stem

s fo

r th

e pr

otec

tion

of p

re-s

tress

ing

syst

ems.

Thes

e sy

stem

s ar

e su

ppos

ed to

sat

isfy

the

desi

gn c

riter

ia w

ith a

mpl

e m

argi

n an

d m

ight

be

clas

sifie

d ac

cord

ing

to C

hapt

er 2

.4 a

s be

twee

n th

e “d

eem

ed-to

-sa

tisfy

” an

d th

e “a

void

ance

-of-

dete

riora

tion”

met

hod.

(1

) App

ly re

leva

nt a

pplic

atio

n ru

les

give

n in

Cha

pter

s 3.

1, 3

.2 a

nd 3

.3 a

nd

avoi

d de

pass

ivat

ion

of p

re-s

tress

ed s

teel

on

an U

LS r

elia

bilit

y le

vel,

cp.

Ann

ex A

, Tab

le A

2-2.

3.5

Free

ze/th

aw a

ttac

k –w

ithou

t de-

icin

g ag

ents

3.

5.1

Full

prob

abili

stic

met

hod

3.5.

1.1

Lim

it st

ate:

free

ze/th

aw d

amag

e ca

usin

g lo

cal l

oss o

f m

echa

nica

l pro

pert

ies,

crac

king

, sca

ling

and

loss

in c

ross

-se

ctio

n

(1

) The

follo

win

g lim

it st

ate

func

tion

need

s to

be fu

lfille

d:

p{}

= p f

reez

e/th

aw d

amag

e =

p{S C

R –

SA

CT(t

< t SL

) < 0

} <

p 0

(3.5

-1)

p{}:

pr

obab

ility

that

free

ze/th

aw d

amag

e oc

curs

S C

R:

criti

cal d

egre

e of

satu

ratio

n [-

]

S ACT

(t):

actu

al d

egre

e of

satu

ratio

n at

the

time

t [-]

t SL

: de

sign

serv

ice

life

[yea

rs]

p 0:

targ

et fa

ilure

pro

babi

lity,

cp.

Ann

ex A

, Tab

le A

2-2

– 26

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

(2)

The

varia

bles

SC

R an

d S A

CT(t)

nee

d to

be

quan

tifie

d in

a

full

prob

abili

stic

app

roac

h.

(3)

To e

xem

plify

the

des

ign

proc

edur

e an

d th

e qu

antif

icat

ion

of a

bove

gi

ven

quan

titie

s, an

app

licab

le d

esig

n m

etho

d is

giv

en in

Cha

pter

B3,

Ann

ex

B. O

ther

met

hods

may

be

used

, pro

vide

d th

at th

e ba

sic

prin

cipl

es fo

rmul

ated

in

Cha

pter

2.4

.1 a

re fu

lfille

d.

3.5.

1.2

Lim

it st

ates

: fre

eze/

thaw

-indu

ced

defle

ctio

n an

d co

llaps

e

(1

) With

rega

rd to

load

-car

ryin

g ca

paci

ty a

nd d

efor

mat

ions

, the

trad

ition

al

desi

gn m

ust

incl

ude

the

loca

lized

cha

nges

in

mec

hani

cal

prop

ertie

s du

e to

fr

ost d

amag

e.

3.5.

2 Pa

rtia

l fac

tor

met

hod

(1) T

he fo

llow

ing

limit

stat

e fu

nctio

n ne

eds t

o be

fulfi

lled:

S CR

,d –

SA

CT,d

(t <

t SL)

≥ 0

(3

.5-2

) S C

R,d:

de

sign

val

ue o

f the

crit

ical

deg

ree

of sa

tura

tion

[-]

S ACT

,d(t

< t SL

): de

sign

val

ue o

f th

e ac

tual

deg

ree

of s

atur

atio

n at

tim

e t [

-]

t SL:

desi

gn se

rvic

e lif

e [y

ears

]

(2)

The

desi

gn v

alue

of

the

criti

cal

degr

ee o

f sa

tura

tion

is c

alcu

late

d as

fo

llow

s:

S CR

,d =

SCR

,min

– Δ

S CR

(3.5

-3)

S CR

, min

: ch

arac

teris

tic v

alue

of

the

criti

cal

degr

ee o

f sa

tura

tion

(min

imum

val

ue) [

-]

ΔS C

R:

mar

gin

of th

e cr

itica

l deg

ree

of sa

tura

tion

[-]

(3) T

he d

esig

n va

lue

of th

e ac

tual

deg

ree

of s

atur

atio

n at

a ti

me

t SA

CT,d (t

) is

cal

cula

ted

as fo

llow

s:

S ACT

,d(t)

= S

ACT

(t) +

ΔS A

CT

(3.5

-4)

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 27

S ACT

,d:

char

acte

ristic

val

ue o

f th

e ac

tual

deg

ree

of s

atur

atio

n at

a

time

t [-]

ΔS A

CT:

mar

gin

of th

e ac

tual

deg

ree

of s

atur

atio

n (lo

ad) [

-]

(4

) To

exe

mpl

ify t

he d

esig

n pr

oced

ure

an a

pplic

able

des

ign

met

hod

is

give

n in

Ann

ex C

3. O

ther

met

hods

may

be

used

, pr

ovid

ed t

hat

the

basi

c pr

inci

ples

form

ulat

ed in

Cha

pter

2.4

.2 a

re fu

lfille

d.

3.5.

3 D

eem

ed-t

o-sa

tisfy

met

hod

(1) W

ithin

this

app

roac

h a

tradi

ng-o

ff o

f ava

ilabl

e sp

ace

for e

xpan

sion

(air

entra

inm

ent),

m

ater

ial

(non

-fre

ezab

le

wat

er

char

acte

ristic

s)

and

agin

g (c

arbo

natio

n) v

aria

bles

can

be

esta

blis

hed.

3.5.

4 A

void

ance

-of-

dete

rior

atio

n m

etho

d

(1

) G

ener

ally

, av

oida

nce

is a

chie

ved

if fr

ost

dete

riora

tion

cann

ot t

ake

plac

e du

e to

infin

ite m

ater

ial r

esis

tanc

e or

zer

o en

viro

nmen

tal l

oad.

3.6

Free

ze/th

aw a

ttac

k –

with

de-

icin

g ag

ents

3.

6.1

Full

prob

abili

stic

met

hod

3.6.

1.1

Lim

it st

ate

equa

tion

for

the

salt-

free

ze/th

aw in

duce

d su

rfac

e sc

alin

g

(1

) The

follo

win

g lim

it st

ate

func

tion

need

s to

be fu

lfille

d:

p{}

= p s

calin

g = p

{T(t ≤

t SL,C

l- ) – T

R(R

H(T

),T(t)

, ...)

< 0

} <p

0 (3

.6-1

) p{

}:

prob

abili

ty th

at sc

alin

g oc

curs

T(t,…

): co

ncre

te te

mpe

ratu

re in

[K]

T R(t,

…):

criti

cal

free

zing

tem

pera

ture

for

sca

ling

to o

ccur

at

the

time

t

t SL:

desi

gn se

rvic

e lif

e [y

ears

] p 0

: ta

rget

failu

re p

roba

bilit

y, c

p. A

nnex

A, T

able

A2-

2

– 28

3 V

erifi

catio

n of

Ser

vice

Life

Des

ign

(2)

The

varia

bles

T a

nd T

R ne

ed t

o be

qua

ntifi

ed i

n a

full

prob

abili

stic

ap

proa

ch.

(3)

To e

xem

plify

the

des

ign

proc

edur

e an

d th

e qu

antif

icat

ion

of a

bove

gi

ven

quan

titie

s, an

app

licab

le d

esig

n m

etho

d is

giv

en in

Cha

pter

B4,

Ann

ex

B. O

ther

met

hods

may

be

used

, pro

vide

d th

at th

e ba

sic

prin

cipl

es fo

rmul

ated

in

Cha

pter

2.4

.1 a

re fu

lfille

d.

See

Cha

pter

3.5

.2 a

nd C

hapt

er 3

.6.1

.1

3.

6.1.

2 Li

mit

stat

es: f

reez

e/th

aw-in

duce

d de

flect

ion

and

colla

pse

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 29

4 E

xecu

tion

and

its q

ualit

y m

anag

emen

t

4.

1 G

ener

al

“Tho

se q

ualit

y m

anag

emen

t and

con

trol m

easu

res

in d

esig

n, d

etai

ling

and

exec

utio

n w

hich

are

giv

en in

Cha

pter

B4

and

B5

of th

is a

nnex

(R

emar

k: o

f an

nex

B o

f EN

199

0:20

02) a

im to

elim

inat

e fa

ilure

s du

e to

gro

ss e

rror

s, a

nd

ensu

re t

he r

esis

tanc

e as

sum

ed i

n de

sign

”. F

rom

Not

e un

der

EN 1

990:

2002

, B

1 (2

) b).

To d

efin

e a

set o

f m

inim

um r

equi

rem

ents

to th

e ex

ecut

ion,

an

exec

utio

n st

anda

rd p

repa

red

acco

rdin

g to

the

prin

cipl

es g

iven

in

this

doc

umen

t is

ne

eded

as

a re

fere

nce.

Sin

ce E

NV

136

70-1

ful

fils

this

rol

e, a

nd s

ince

it

is

chos

en b

y IS

O T

C-7

1 as

the

basi

s fo

r the

com

ing

ISO

-sta

ndar

d on

exe

cutio

n of

con

cret

e st

ruct

ures

, EN

V 1

3670

-1 i

s al

so c

hose

n by

fib

TG

5.6

as

the

refe

renc

e.

ENV

136

70-1

is e

xpec

ted

to b

e re

plac

ed b

y EN

136

70 in

200

7.

(1

) Th

e SL

D a

ccor

ding

to

this

doc

umen

t as

sum

es t

hat

the

min

imum

re

quire

men

ts fo

r exe

cutio

n an

d its

qua

lity

man

agem

ent g

iven

in E

NV

136

70-

1 “E

xecu

tion

of c

oncr

ete

stru

ctur

es –

Par

t 1:

Com

mon

rul

es”,

inc

lude

d th

e am

endm

ents

giv

en u

nder

, are

met

.

4.2

Proj

ect s

peci

ficat

ion

CEN

EN

V 1

3670

-1 fu

rther

refe

rs to

pro

duct

and

com

pone

nt s

tand

ards

for

conc

rete

, rei

nfor

cem

ent,

pres

tress

ing

syst

ems,

pref

abric

ated

ele

men

ts e

tc.

The

spec

ifica

tion

of t

he p

rope

rties

of

rele

vanc

e to

the

des

ign

of t

hese

m

ater

ials

and

com

pone

nts s

hall

be in

clud

ed in

the

proj

ect s

peci

ficat

ion.

(1

) Th

e pr

ojec

t sp

ecifi

catio

n sh

all

cove

r te

chni

cal

data

and

req

uire

men

ts

for

a pa

rticu

lar

proj

ect p

repa

red

to s

uppl

emen

t and

qua

lify

the

requ

irem

ents

of

EN

V 1

3670

-1.

Dep

endi

ng o

n th

e m

etho

d us

ed in

the

SLD

, the

pro

ject

spe

cific

atio

n w

ill

give

requ

irem

ents

for t

he m

ater

ials

sel

ectio

n, th

e ex

ecut

ion

and

the

cond

ition

co

ntro

l dur

ing

the

serv

ice

life

of th

e st

ruct

ure.

(2

) It

is a

ssum

ed t

hat

the

proj

ect

spec

ifica

tion

incl

udes

all

nece

ssar

y in

form

atio

n an

d te

chni

cal

requ

irem

ents

for

exe

cutio

n of

the

wor

ks a

nd

agre

emen

ts m

ade

durin

g th

e ex

ecut

ion.

The

proj

ect

spec

ifica

tion

shal

l th

eref

ore

com

pris

e al

l th

e as

sum

ptio

ns t

o m

ater

ials

, exe

cutio

n an

d co

nditi

on c

ontro

l mad

e in

the

spec

ific

SLD

.

– 30

4 E

xecu

tion

and

its q

ualit

y m

anag

emen

t

4.3

Qua

lity

man

agem

ent

“Qua

lity

Plan

” an

d “I

nspe

ctio

n” a

re d

efin

ed in

: –

ISO

900

0/3.

7.5

Qua

lity

plan

: “D

ocum

ent s

peci

fyin

g w

hich

pro

cedu

res

and

asso

ciat

ed r

esou

rces

sha

ll be

app

lied

by w

hom

and

whe

n to

a

spec

ific

proj

ect,

prod

uct o

r pro

cess

.”

–IS

O 9

000/

3.8.

2 In

spec

tion:

“C

onfo

rmity

eva

luat

ion

by o

bser

vatio

n an

d ju

dgm

ent

acco

mpa

nied

as

appr

opria

te b

y m

easu

rem

ent,

test

ing

and

gaug

ing.

(1

) The

qua

lity

man

agem

ent f

or th

e ex

ecut

ion:

mig

ht in

volv

e a

qual

ity p

lan

– sh

all i

nclu

de in

spec

tion

of th

e co

mpl

eted

wor

k

4.3.

1 Q

ualit

y pl

an

(1)

If

the

proj

ect

spec

ifica

tion

requ

ires

a qu

ality

pl

an,

the

proj

ect

spec

ifica

tion

shal

l def

ine

wha

t ele

men

ts it

shal

l com

pris

e.

ISO

100

05:2

005”

Qua

lity

man

agem

ent

– G

uide

lines

for

qua

lity

plan

s”

give

s fu

rther

ad

vice

fo

r th

e de

velo

pmen

t, ac

cept

ance

, ap

plic

atio

n an

d re

visi

on o

f qua

lity

plan

s.

(2

) A

qu

ality

pl

an

mig

ht

incl

ude

elem

ents

lik

e co

mpe

tenc

e an

d ap

prop

riate

tra

inin

g of

pe

rson

nel,

the

orga

niza

tion

of

the

proj

ect

and

proc

edur

es fo

r the

exe

cutio

n.

4.3.

2 In

spec

tion

(1)

The

need

ed i

nspe

ctio

n to

per

form

a c

onfo

rmity

eva

luat

ion

of t

he

com

plet

ed w

ork

shal

l be

carr

ied

out a

nd th

e re

sults

doc

umen

ted.

“as-

built

-doc

umen

tatio

n” o

f th

e di

rect

inp

ut p

aram

eter

s to

the

SL

D

mod

els

mig

ht c

onfir

m th

e de

sign

ass

umpt

ions

and

pos

sibl

e gi

ve th

e ba

sis

for

corr

ectiv

e m

easu

res.

It m

ight

als

o se

rve

as a

bas

is fo

r the

con

ditio

n co

ntro

l of

the

stru

ctur

e du

ring

its s

ervi

ce l

ife.

Such

an

extra

ct o

f th

e “a

s-bu

ilt-

docu

men

tatio

n” is

som

etim

es n

amed

the

stru

ctur

e’s

“Birt

h C

ertif

icat

e”.

(2

) Th

e pr

ojec

t sp

ecifi

catio

n m

ight

giv

e re

quire

men

ts f

or t

he “

as-b

uilt-

docu

men

tatio

n” d

epen

ding

on

the

spec

ifics

of t

he a

ctua

l SLD

. Su

ch s

peci

fics

mig

ht b

e th

e do

cum

enta

tion

of t

he a

chie

ved

dire

ct i

nput

pa

ram

eter

s ap

plie

d in

the

SLD

mod

els

like

for i

nsta

nce

diff

usio

n co

effic

ient

s,

cove

r thi

ckne

ss to

the

rein

forc

emen

t etc

.

4.

3.3

Act

ion

in th

e ev

ent o

f non

-con

form

ity

(1)

If t

he i

nspe

ctio

n re

veal

s th

at t

he o

rigin

al S

LD a

ssum

ptio

ns a

re n

ot m

et

durin

g th

e co

nstru

ctio

n, a

ctio

ns a

s giv

en in

5.4

shal

l be

take

n.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 31

4.4

Mat

eria

ls

4.4.

1 Fo

rmw

ork

(1) P

ossi

ble

othe

r req

uire

men

ts th

an th

ose

liste

d in

EN

V 1

3670

-1 s

hall

be

stat

ed in

the

proj

ect s

peci

ficat

ion.

4.4.

2 R

einf

orce

men

t

(1

) R

equi

rem

ents

to

poss

ible

oth

er t

ypes

of

rein

forc

emen

t th

an o

rdin

ary

stee

l ac

cord

ing

to p

rEN

100

80 (

for

inst

ance

gal

vani

zed,

sta

inle

ss,

coat

ed,

non-

met

allic

, etc

.) sh

all b

e st

ated

in th

e pr

ojec

t spe

cific

atio

n.

4.4.

3 Pr

e-st

ress

ing

(1)

Req

uire

men

ts t

o po

ssib

le o

ther

pos

t-ten

sion

ing

syst

ems

than

tho

se

refe

rred

to in

EN

V 1

3670

-1 (f

or in

stan

ce p

last

ic s

heat

hs, n

on-m

etal

lic s

trand

s et

c) sh

all b

e st

ated

in th

e pr

ojec

t spe

cific

atio

n.

4.4.

4 C

oncr

ete

To d

efin

e a

set o

f min

imum

requ

irem

ents

to th

e pe

rfor

man

ce o

f con

cret

e,

a pr

oduc

t st

anda

rd

prep

ared

ac

cord

ing

to

the

prin

cipl

es

give

n in

th

is

docu

men

t is

need

ed a

s a

refe

renc

e. S

ince

EN

206

-1 fu

lfils

this

role

, and

sin

ce

it is

cho

sen

by I

SO T

C-7

1 as

the

bas

is f

or t

he c

omin

g IS

O-s

tand

ard

on

conc

rete

– s

peci

ficat

ion,

per

form

ance

, pro

duct

ion

and

conf

orm

ity, E

N 2

06-1

is

als

o ch

osen

by

fib T

G 5

.6 a

s the

refe

renc

e.

If th

e SL

D is

bas

ed o

n pe

rfor

man

ce c

hara

cter

istic

s of

the

conc

rete

, the

se

mig

ht b

e re

plac

ed b

y re

quire

men

ts t

o m

ix c

ompo

sitio

n ei

ther

in

the

desi

gn

phas

e ba

sed

on

prev

ious

ex

perie

nce,

or

by

in

itial

te

stin

g du

ring

the

cons

truct

ion

phas

e. I

t sha

ll be

sta

ted

if th

e op

erat

iona

l req

uire

men

ts f

or m

ix

com

posi

tion

are

targ

et v

alue

s or

cha

ract

eris

tic v

alue

s.

(1

) The

con

cret

e sh

all b

e sp

ecifi

ed a

ccor

ding

to, a

nd c

ompl

y w

ith E

N 2

06-1

. Th

e pr

ojec

t spe

cific

atio

n sh

all s

tate

pos

sibl

e ad

ditio

nal r

equi

rem

ents

to b

e m

et d

epen

ding

on

the

spec

ific

SLD

mod

els a

pplie

d.

If th

e SL

D is

bas

ed o

n ot

her m

ater

ial c

hara

cter

istic

s th

an th

ose

deal

t with

in

tra

ditio

nal

conc

rete

sta

ndar

ds l

ike

EN 2

06-1

(i.e

. ce

men

t ty

pe,

wat

er-

bind

er r

atio

, cem

ent

cont

ent,

aggr

egat

e pr

oper

ty e

tc),

and

the

SLD

dep

ends

on

a v

erifi

catio

n of

the

se m

ater

ial

char

acte

ristic

s du

ring

cons

truct

ion,

the

pr

ojec

t spe

cific

atio

n sh

all r

efer

to th

e re

leva

nt te

st m

etho

ds a

nd th

e st

atis

tical

(2

) If

tes

t m

etho

ds n

ot r

efer

red

to i

n EN

206

-1 a

re t

o be

app

lied,

the

sa

mpl

ing,

thes

e te

st m

etho

ds, a

nd th

e st

atis

tical

inte

rpre

tatio

n of

thei

r res

ults

, sh

all b

e st

ated

in th

e pr

ojec

t spe

cific

atio

n.

– 32

4 E

xecu

tion

and

its q

ualit

y m

anag

emen

t

inte

rpre

tatio

n of

the

res

ults

(fo

r in

stan

ce c

hara

cter

istic

val

ues

or t

arge

t va

lues

). Su

ch a

dditi

onal

mat

eria

l cha

ract

eris

tics

mig

ht fo

r ins

tanc

e be

the

chlo

ride

diff

usio

n co

effic

ient

or t

he in

vers

e ca

rbon

atio

n re

sist

ance

.

4.5

Geo

met

ry

The

geom

etric

al to

lera

nces

giv

en in

EN

V 1

3670

-1, c

laus

e 10

ach

ieve

s th

e de

sign

ass

umpt

ions

in

the

Euro

pean

des

ign

stan

dard

EN

199

2 an

d th

e re

quire

d le

vel o

f sa

fety

. The

se a

re r

elat

ed to

bot

h SL

D a

nd th

e gi

ven

parti

al

fact

ors f

or m

ater

ials

use

d in

load

bea

ring

desi

gn.

The

tole

ranc

es g

iven

in

ENV

136

70-1

ann

ex F

are

con

side

red

to h

ave

smal

l stru

ctur

al in

fluen

ce.

(1

) Th

e re

quire

men

ts t

o ge

omet

rical

tol

eran

ces

give

n in

cla

ss 1

in

ENV

13

670-

1 cl

ause

10

are

assu

med

to

have

dire

ct r

elev

ance

to

the

desi

gn

assu

mpt

ions

, whi

le th

ose

give

n in

EN

V 1

3670

-1, A

nnex

F d

o no

t.

(2)

The

term

“pe

rmitt

ed d

evia

tion”

in

ENV

136

70-1

on

geom

etric

al

tole

ranc

es m

ight

be

inte

rpre

ted

as th

e 5

% p

erce

ntile

.

(3)

Poss

ible

oth

er a

ssum

ptio

ns o

n ge

omet

rical

tol

eran

ces

appl

ied

in t

he

SLD

tha

n th

ose

give

n in

EN

V 1

3670

-1 s

hall

be s

tate

d in

the

pro

ject

sp

ecifi

catio

n.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 33

5 M

aint

enan

ce a

nd c

ondi

tion

cont

rol

5.1

Gen

eral

(1

) Thi

s ch

apte

r pro

vide

s th

e ge

nera

l bas

is fo

r mai

nten

ance

and

con

ditio

n co

ntro

l dur

ing

the

serv

ice

life

for c

oncr

ete

stru

ctur

es.

(2)

Cha

pter

A6,

Ann

ex A

giv

es a

dvic

e fo

r th

e ex

tent

of

insp

ectio

n /

mon

itorin

g of

the

stru

ctur

e du

ring

its se

rvic

e lif

e.

Tabl

e A

6-1

defin

es 4

“C

ondi

tion

Con

trol

Leve

ls”

as a

gui

danc

e to

the

re

liabi

lity

diff

eren

tiatio

n to

be

used

in th

e SL

D.

5.2

Mai

nten

ance

B

ased

on

§ 6.

7 of

ISO

156

86-1

:200

0.

(1

) In

this

doc

umen

t the

term

“m

aint

enan

ce”

is u

sed

on a

ctiv

ities

that

are

pl

anne

d to

take

pla

ce d

urin

g th

e se

rvic

e lif

e of

the

stru

ctur

e in

ord

er to

ens

ure

the

fulfi

lmen

t of t

he a

ssum

ptio

ns in

the

SLD

.

Th

e m

aint

enan

ce p

lan

mig

ht c

ompr

ise

activ

ities

lik

e ge

nera

l cl

eani

ng,

drai

nage

, add

ition

of s

eala

nts,

repl

acem

ent o

f com

pone

nts e

tc.

(2

) A

mai

nten

ance

pla

n sh

all

stat

e ty

pe a

nd f

requ

ency

of

the

fore

seen

ac

tiviti

es.

5.3

Con

ditio

n co

ntro

l dur

ing

serv

ice

life

Gui

danc

e m

ight

be

foun

d in

ISO

/DIS

156

86-7

:200

4 “B

uild

ings

and

co

nstru

ctio

n as

sets

– S

ervi

ce li

fe p

lann

ing

– Pa

rt 7

: Per

form

ance

eva

luat

ion

for f

eedb

ack

of s

ervi

ce li

fe d

ata

from

pra

ctic

e”.

Cha

pter

A6,

Ann

ex A

, pro

pose

s 4

clas

ses

for

“Con

ditio

n C

ontro

l” g

ivin

g gu

idan

ce f

or th

e ty

pe a

nd e

xten

t of

insp

ectio

n/m

onito

ring

durin

g th

e se

rvic

e lif

e. Acc

ordi

ng to

Cha

pter

A6,

Ann

ex A

, the

low

est l

evel

of c

ondi

tion

cont

rol

is “

No

syst

emat

ic m

onito

ring

nor i

nspe

ctio

n”. I

n ev

ery-

day

cons

truct

ion,

this

is

ofte

n th

e m

ost a

ppro

pria

te le

vel,

and

its c

onse

quen

ces

shal

l be

take

n in

to

acco

unt f

or th

e re

liabi

lity

man

agem

ent f

or th

e SL

D.

– 34

5 M

aint

enan

ce a

nd c

ondi

tion

cont

rol

5.3.

1 In

spec

tion

and

mon

itori

ng d

urin

g se

rvic

e lif

e Th

e co

nfor

mity

eva

luat

ion

mig

ht b

e do

ne b

y vi

sual

obs

erva

tions

and

ju

dgm

ent a

ccom

pani

ed a

s ap

prop

riate

by

mea

sure

men

ts, t

estin

g an

d ga

ugin

g.

(1

) In

this

doc

umen

t “in

spec

tion”

mea

ns a

ctiv

ities

to e

valu

ate

conf

orm

ity

with

the

des

ign

data

for

act

ions

and

/or

mat

eria

l an

d/or

pro

duct

pro

perti

es

used

in th

e SL

D o

n a

perio

dic

basi

s du

ring

the

serv

ice

life

of th

e st

ruct

ure,

w

hile

“m

onito

ring”

mea

ns th

e sa

me

activ

ities

, but

on

a co

ntin

uous

bas

is.

5.3.

2 C

ondi

tion

cont

rol p

lan

The

serv

ice

life

of a

com

pone

nt o

r stru

ctur

e is

alw

ays

rela

ted

to o

ne, o

r a

few

requ

ired

func

tions

of t

hat c

ompo

nent

or s

truct

ure.

The

plan

ned

activ

ities

on

insp

ectio

n / m

onito

ring

shal

l the

refo

re fo

cus

on

the

eval

uatio

n of

the

desi

gn d

ata

appl

ied

in th

ese

dete

riora

tion

mod

els.

(1

) The

pla

n sh

all s

tate

:

– W

hat t

ypes

of i

nspe

ctio

n / m

onito

ring

that

shal

l tak

e pl

ace

– W

hat c

ompo

nent

s of t

he st

ruct

ure

to b

e in

spec

ted

/ mon

itore

d

– Th

e fr

eque

ncy

of th

e in

spec

tions

– Th

e pe

rfor

man

ce c

riter

ia to

be

met

Poss

ible

doc

umen

tatio

n of

the

resu

lts

– A

ctio

n in

the

even

t of n

on-c

onfo

rmity

with

the

perf

orm

ance

crit

eria

5.

4 A

ctio

n in

the

even

t of n

on-c

onfo

rmity

(1

) If t

he in

spec

tion/

mon

itorin

g re

veal

s th

at th

e or

igin

al S

LD a

ssum

ptio

ns

are

not m

et, o

ne o

r mor

e of

the

follo

win

g ac

tions

shal

l be

take

n:

–W

iden

ing

the

scop

e of

the

perf

orm

ance

sur

vey

to im

prov

e th

e qu

ality

an

d re

pres

enta

tiven

ess o

f the

dat

a.

–Pe

rfor

min

g a

reca

lcul

atio

n of

the

orig

inal

SLD

to

asse

ss t

he r

esid

ual

serv

ice

life

of th

e st

ruct

ure.

The

new

cal

cula

tion

shal

l be

supp

lem

ente

d w

ith th

e da

ta fo

r act

ion,

mat

eria

ls a

nd p

rodu

cts

deriv

ed fr

om th

e fie

ld-

expo

sed

stru

ctur

e. T

he r

edes

ign

shal

l co

nfor

m t

o th

e re

quire

men

ts

give

n in

Cha

pter

2 o

f thi

s doc

umen

t. –

The

stru

ctur

e sh

all b

e re

paire

d or

stre

ngth

ened

to b

ring

its p

erfo

rman

ce

back

to th

e ag

reed

des

ign

assu

mpt

ions

. The

rep

air

shal

l be

base

d on

a

parti

al o

r ful

l rec

alcu

latio

n of

the

orig

inal

SLD

as s

tate

d un

der 2

. –

The

stru

ctur

e sh

all

be p

rote

cted

to

redu

ce t

he a

ctio

n. T

he p

rote

ctio

n sh

all b

e ba

sed

on a

reca

lcul

atio

n of

the

orig

inal

SLD

as

stat

ed u

nder

2.

–Th

e st

ruct

ure

shal

l bec

ome

obso

lete

.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 35

For

exis

ting

stru

ctur

es th

e co

sts

of a

chie

ving

a h

ighe

r rel

iabi

lity

leve

l are

us

ually

hig

h co

mpa

red

to st

ruct

ures

und

er d

esig

n.

For t

his

reas

on th

e ta

rget

leve

l of r

elia

bilit

y fo

r red

esig

n of

ser

vice

life

of

exis

ting

stru

ctur

es u

sual

ly sh

ould

be

low

er.

(Bas

ed o

n 7.

2.1

of J

CSS

PM

C:2

000

“Pro

babi

listic

Mod

el C

ode”

, Jo

int

Com

mitt

ee o

n St

ruct

ural

Saf

ety)

(2

) A

ccor

ding

to

Cha

pter

2.1

.3 (

4) o

f th

is d

ocum

ent,

the

serv

icea

bilit

y cr

iteria

to b

e ap

plie

d du

ring

the

asse

ssm

ent s

hall

be s

peci

fied

for

the

proj

ect

and

agre

ed w

ith th

e ow

ner.

– 36

Anne

x A:

Man

agem

ent o

f rel

iabi

lity

for S

ervi

ce L

ife D

esig

n of

con

cret

e st

ruct

ures

This

ann

ex i

s ba

sed

on E

N 1

990,

Ann

ex B

“M

anag

emen

t of

Stru

ctur

al

Rel

iabi

lity

for C

onst

ruct

ion

Wor

ks”

A

nnex

A (i

nfor

mat

ive)

M

anag

emen

t of r

elia

bilit

y fo

r Se

rvic

e L

ife

Des

ign

of c

oncr

ete

stru

ctur

es

A

1 Sc

ope

and

field

of a

pplic

atio

n

(1

) Th

is

anne

x pr

ovid

es

addi

tiona

l gu

idan

ce

to

2.1.

2 (r

elia

bilit

y m

anag

emen

t).

(2)

The

appr

oach

gi

ven

in

this

an

nex

reco

mm

ends

th

e fo

llow

ing

proc

edur

es fo

r the

man

agem

ent o

f rel

iabi

lity

of S

LD fo

r con

cret

e st

ruct

ures

:

– In

rel

atio

n to

2.1

.2 (

1), c

lass

es a

re in

trodu

ced

and

are

base

d on

the

assu

med

co

nseq

uenc

es

of

failu

re

and

the

expo

sure

of

th

e co

nstru

ctio

n w

orks

to

haza

rd.

A p

roce

dure

for

allo

win

g m

oder

ate

diff

eren

tiatio

n in

the

par

tial

fact

ors

for

actio

ns a

nd r

esis

tanc

e co

rres

pond

ing

to th

e cl

asse

s is g

iven

in A

2.

Not

e: R

elia

bilit

y cl

assi

ficat

ion

can

be r

epre

sent

ed b

y β

inde

xes,

w

hich

take

acc

ount

of

acce

pted

or

assu

med

sta

tistic

al v

aria

bilit

y in

ac

tion

effe

cts a

nd re

sist

ance

and

mod

el u

ncer

tain

ties.

– In

rel

atio

n to

2.1

.2 (

1),

a pr

oced

ure

for

allo

win

g di

ffer

entia

tion

betw

een

vario

us ty

pes

of c

onst

ruct

ion

wor

ks in

the

requ

irem

ents

for

qual

ity le

vels

of d

esig

n an

d ex

ecut

ion

proc

ess,

as w

ell a

s th

e ex

tent

of

con

ditio

n co

ntro

l dur

ing

the

serv

ice

life,

are

giv

en in

A3,

A4

and

A5.

N

ote:

Tho

se q

ualit

y m

anag

emen

t an

d co

ntro

l m

easu

res

in d

esig

n,

deta

iling

and

exe

cutio

n w

hich

are

giv

en i

n A

3 an

d A

4 ai

m t

o el

imin

ate

failu

res

due

to g

ross

err

ors,

and

to

ensu

re t

he r

esis

tanc

e as

sum

ed in

the

desi

gn.

(3)

The

proc

edur

e ha

s be

en f

orm

ulat

ed i

n su

ch a

way

so

to p

rodu

ce a

fr

amew

ork

to a

llow

diff

eren

t rel

iabi

lity

leve

ls to

be

used

, if d

esire

d.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 37

A2

Rel

iabi

lity

diffe

rent

iatio

n

A

2.1

Con

sequ

ence

s cla

sses

Tabl

e A

2-1

is id

entic

al to

tabl

e B

1 of

EN

199

0.

(1

) Fo

r th

e pu

rpos

e of

rel

iabi

lity

diff

eren

tiatio

n, c

onse

quen

ces

clas

ses

(CC

) m

ay b

e es

tabl

ishe

d by

con

side

ring

the

cons

eque

nces

of

failu

re o

r m

alfu

nctio

n of

the

stru

ctur

e as

giv

en in

Tab

le A

2-1.

Tabl

e A2

-1:

Def

initi

on o

f con

sequ

ence

s cl

asse

s C

onse

quen

ces

Cla

sses

D

escr

iptio

n Ex

ampl

es

of

build

ing

and

civi

l eng

inee

ring

wor

ks

CC

3 H

igh

cons

eque

nce

for l

oss o

f hu

man

life

, or e

cono

mic

, soc

ial o

r en

viro

nmen

tal c

onse

quen

ces v

ery

grea

t

Gra

ndst

ands

, pub

lic b

uild

ings

w

here

con

sequ

ence

s of

failu

re

are

high

(e. g

. a c

once

rt ha

ll)

CC

2 N

orm

al c

onse

quen

ce fo

r los

s or

hum

an li

fe, e

cono

mic

or

envi

ronm

enta

l con

sequ

ence

s co

nsid

erab

le

Res

iden

tial a

nd o

ffic

e bu

ildin

gs, p

ublic

bui

ldin

gs

whe

re c

onse

quen

ces

of fa

ilure

ar

e m

ediu

m (e

. g. a

n of

fice

build

ing)

CC

1 Lo

w c

onse

quen

ce fo

r los

s of

hum

an li

fe, a

nd e

cono

mic

, soc

ial

or e

nviro

nmen

tal c

onse

quen

ces

are

smal

l or n

eglig

ible

Agr

icul

tura

l bui

ldin

gs w

here

pe

ople

do

not n

orm

ally

ent

er

(e.g

. sto

rage

bui

ldin

gs),

gree

n ho

uses

(2

) Th

e cr

iterio

n fo

r cl

assi

ficat

ion

of c

onse

quen

ces

is t

he i

mpo

rtanc

e, i

n th

e te

rms

of c

onse

quen

ces

of f

ailu

re, o

f th

e st

ruct

ure

or s

truct

ural

mem

ber

conc

erne

d. S

ee A

2.3.

(3)

Dep

endi

ng o

n th

e st

ruct

ural

for

m a

nd d

ecis

ions

mad

e du

ring

desi

gn,

parti

cula

r m

embe

rs o

f th

e st

ruct

ure

may

be

desi

gned

in

the

sam

e, h

ighe

r or

lo

wer

con

sequ

ence

s cl

ass t

han

for t

he e

ntire

stru

ctur

e.

– 38

Anne

x A:

Man

agem

ent o

f rel

iabi

lity

for S

ervi

ce L

ife D

esig

n of

con

cret

e st

ruct

ures

A2.

2 D

iffer

entia

tion

by β

val

ues

(1)

The

relia

bilit

y cl

asse

s (R

C)

may

be

defin

ed b

y th

e β

relia

bilit

y in

dex

conc

ept.

(2)

Thre

e re

liabi

lity

clas

ses

RC

1, R

C2

and

RC

3 m

ay b

e as

soci

ated

with

th

e th

ree

cons

eque

nces

cla

sses

CC

1, C

C2

and

CC

3.

The

norm

al c

onse

quen

ce b

y pa

ssin

g a

SLS

(for

inst

ance

dep

assi

vatio

n of

su

rfac

e re

info

rcem

ent),

is

that

pos

sibl

e pr

otec

tive

mea

sure

s /

repa

ir be

com

e m

ore

expe

nsiv

e.

In a

ny c

ase,

a U

LS d

esig

n ha

s to

be

mad

e. I

t is

ass

umed

, tha

t th

e us

ual

desi

gn o

f re

info

rced

and

pre

-stre

ssed

stru

ctur

es is

mad

e in

that

way

, tha

t the

U

LS

requ

irem

ents

of

Ta

ble

A2-

2 ar

e fu

lfille

d ex

actly

. C

orro

sion

of

re

info

rcem

ent

(pre

-stre

ssin

g st

eel)

and/

or d

eter

iora

tion

of c

oncr

ete

(bon

d fa

ilure

, la

ck o

f su

ffic

ient

com

pres

sive

cro

ss s

ectio

n) w

ill d

ecre

ase

the

relia

bilit

y. I

f co

rros

ion

can

not

be e

xclu

ded

at a

ULS

re

liabi

lity

and

insp

ectio

n/m

aint

enan

ce/re

pair

that

mea

ns “

inte

rven

tion”

can

not

be

exec

uted

, th

is w

ill l

ead

to t

he n

eed

of e

xtra

rei

nfor

cem

ent

(sac

rific

ial

cros

s se

ctio

n)

and/

or s

peci

al d

etai

ling

in o

rder

to

avoi

d bo

nd f

ailu

re w

ithin

the

bon

ding

zo

ne.

The

dim

ensi

on o

f th

is e

xtra

cro

ss s

ectio

n hi

ghly

dep

ends

on

the

relia

bilit

y, d

epas

siva

tion

is e

xclu

ded.

Tha

t m

eans

, the

hig

her

the

relia

bilit

y w

ith re

gard

to d

epas

siva

tion

the

low

er th

e ne

ed o

f ext

ra re

info

rcem

ent.

(3

) Ta

ble

A2-

2 gi

ves

reco

mm

ende

d m

inim

um v

alue

s fo

r th

e re

liabi

lity

inde

x as

soci

ated

with

the

relia

bilit

y cl

asse

s.

Tabl

e A2

-2:

Reco

mm

ende

d m

inim

um v

alue

s fo

r re

liabi

lity

inde

x ß

for u

se in

SLD

(int

ende

d fo

r the

des

ign

life

time)

SLS1

ULS

Expo

sure

C

lass

Euro

code

2

Des

crip

tion

Rel

iabi

lity

Cla

ss

Dep

assi

vatio

n2,3

Col

laps

e

XC

3 C

arbo

natio

n R

C1

1.3

(pf ≈

10-1

) 3.

7 (p

f ≈ 1

0-4)

RC

2 1.

3 (p

f ≈ 1

0-1)

4.2

(pf ≈

10-5

)

RC

3 1.

3 (p

f ≈ 1

0-1)

4.4

(pf ≈

10-6

)

XD

3 D

eici

ng s

alt

RC

1 1.

3 (p

f ≈ 1

0-1)

3.7

(pf ≈

10-4

)

RC

2 1.

3 (p

f ≈ 1

0-1)

4.2

(pf ≈

10-5

)

RC

3 1.

3 (p

f ≈ 1

0-1)

4.4

(pf ≈

10-6

)

XS3

Seaw

ater

R

C1

1.3

(pf ≈

10-1

) 3.

7 (p

f ≈ 1

0-4)

RC

2 1.

3 (p

f ≈ 1

0-1)

4.2

(pf ≈

10-5

)

RC

3 1.

3 (p

f ≈ 1

0-1)

4.4

(pf ≈

10-6

) 1 A

SLS

relia

bilit

y of

β =

1.3

in c

onse

quen

ce c

ould

lead

to lo

wer

ULS

relia

bilit

ies

than

usu

ally

req

uire

d by

the

cod

es,

cp.

ISO

239

4. T

hat

mea

ns f

or v

ery

aggr

essi

ve c

limat

es, h

ighe

r va

lues

for

βSL

S ar

e re

quire

d, c

p. A

nnex

R, i

n or

der

to fu

lfil t

he U

LS re

quire

men

ts.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 39

2 Dep

assi

vatio

n of

the

sur

face

rei

nfor

cem

ent

in t

he a

rea

expo

sed

to t

he d

esig

n en

viro

nmen

tal l

oad.

3 In

cas

es w

ith su

ffic

ient

acc

ess

of o

xyge

n an

d m

oist

ure

to s

uppo

rt co

rros

ion.

A

2.3

Diff

eren

tiatio

n by

mea

sure

s re

latin

g to

the

part

ial f

acto

rs

(1)

One

way

of

achi

evin

g re

liabi

lity

diff

eren

tiatio

n is

by

dist

ingu

ishi

ng

clas

ses

of γ

F fa

ctor

s to

be

used

in

fund

amen

tal

com

bina

tions

for

per

sist

ent

desi

gn s

ituat

ions

. For

exa

mpl

e, fo

r the

sam

e de

sign

sup

ervi

sion

and

exe

cutio

n in

spec

tion

leve

ls, a

mul

tiplic

atio

n fa

ctor

KFI

, se

e Ta

ble

A2-

3, m

ay b

e ap

plie

d to

the

parti

al fa

ctor

s. Ta

ble

A2-3

: K

FI fa

ctor

s R

elia

bilit

y C

lass

RC

1 R

C2

RC

3

KFI

So

far n

o qu

antif

ied

num

ber

avai

labl

e (<

1)

1.0

So fa

r no

quan

tifie

d nu

mbe

r av

aila

ble

(> 1

)

N

ote:

In

parti

cula

r, fo

r cl

ass

RC

3, o

ther

mea

sure

s as

des

crib

ed i

n th

is

anne

x ar

e no

rmal

ly p

refe

rred

to u

sing

KFI

fact

ors.

KFI

sho

uld

be a

pplie

d on

ly

to u

nfav

oura

ble

actio

ns.

(2)

Rel

iabi

lity

diff

eren

tiatio

n m

ay a

lso

be a

pplie

d th

roug

h th

e pa

rtial

fa

ctor

s on

resi

stan

ce γ

M. H

owev

er, t

his i

s not

nor

mal

ly u

sed.

(3)

Acc

ompa

nyin

g m

easu

res,

for

exa

mpl

e th

e le

vel o

f qu

ality

con

trol f

or

the

desi

gn a

nd e

xecu

tion

of th

e st

ruct

ure,

may

be

asso

ciat

ed to

the

clas

ses

of

γ F. I

n th

is a

nnex

, a th

ree

leve

l sys

tem

for c

ontro

l dur

ing

desi

gn a

nd e

xecu

tion

has

been

ado

pted

. Des

ign

supe

rvis

ion

leve

ls a

nd in

spec

tion

leve

ls a

ssoc

iate

d w

ith th

e re

liabi

lity

clas

ses a

re su

gges

ted.

(4)

Ther

e ca

n be

cla

sses

(e.

g. l

ight

ing

pole

s, m

asts

, et

c.)

whe

re,

for

reas

ons

of e

cono

my,

the

stru

ctur

e m

ight

be

in R

C1,

but

be

subj

ecte

d to

hig

her

corr

espo

ndin

g de

sign

supe

rvis

ion

and

insp

ectio

n le

vels

.

– 40

Anne

x A:

Man

agem

ent o

f rel

iabi

lity

for S

ervi

ce L

ife D

esig

n of

con

cret

e st

ruct

ures

A3

Rob

ustn

ess o

f sec

tions

rel

ated

to

corr

osio

n St

ruct

ural

failu

re c

ause

d by

cor

rosi

on o

f rei

nfor

cem

ent m

ay b

e du

e to

loss

of

cro

ss s

ectio

n of

bar

s or

due

to

spal

ling

of c

oncr

ete

cove

r an

d lo

ss o

f an

chor

age.

Spal

ling

of c

oncr

ete

cove

r in

anc

hora

ge z

ones

with

out c

onfin

emen

t may

le

ad to

sudd

en fa

ilure

.

Rel

iabl

e fin

ding

s fo

r lim

it va

lues

of

corr

osio

n in

tens

ities

cau

sing

spa

lling

do

not

exi

st. L

imit

valu

es w

ill d

epen

d on

bar

dia

met

er a

nd b

ar s

paci

ng a

nd o

n en

viro

nmen

tal

cond

ition

s (v

olum

e of

rus

t pr

oduc

ts).

The

give

n va

lues

in

Tabl

e A

3-1

are

roug

h es

timat

es a

nd n

eed

to b

e co

nfirm

ed b

y fu

rther

rese

arch

. B

eing

rou

gh e

stim

ates

the

give

n va

lues

in T

able

A3-

1 ca

n be

take

n as

mea

n va

lues

pro

vidi

ng th

e cr

oss s

ectio

n co

ntai

ns m

ore

than

thre

e si

ngle

bar

s.

(1

) Th

e se

rvic

e lif

e of

a s

truct

ure

susc

eptib

le to

reb

ar c

orro

sion

dep

ends

on

the

leng

th o

f the

initi

atio

n pe

riod

and

the

leng

th o

f the

pro

paga

tion

perio

d.

That

mea

ns th

e st

ruct

ural

ULS

relia

bilit

y ca

n ei

ther

be

achi

eved

by

excl

udin

g co

rros

ion

at a

ULS

rel

iabi

lity,

or

by a

ddin

g ne

eded

ext

ra r

einf

orce

men

t (s

acrif

icia

l cr

oss

sect

ion)

. In

mos

t ca

ses

both

des

ign

elem

ents

will

be

take

n in

to a

ccou

nt. T

he d

imen

sion

of t

his

extra

cro

ss s

ectio

n hi

ghly

dep

ends

on

the

relia

bilit

y, d

epas

siva

tion

is e

xclu

ded.

Tha

t m

eans

, the

hig

her

the

relia

bilit

y w

ith re

gard

to d

epas

siva

tion

the

low

er th

e ne

ed o

f ext

ra re

info

rcem

ent.

A c

ritic

al lo

ss o

f ext

ra c

ross

sec

tion

of b

ars

caus

ed b

y co

rros

ion

lead

ing

to

stru

ctur

al fa

ilure

nee

d to

be

defin

ed fo

r ULS

. To

diff

eren

tiate

diff

eren

t fai

lure

m

odes

, rob

ustn

ess c

lass

es m

ay b

e de

fined

.

Tabl

e A3

-1:

Robu

stne

ss C

lass

es (R

OC

) R

obus

tnes

s Cla

ss

Cha

ract

eris

tics

Cha

ract

eris

tics L

oss o

f C

ross

sect

ions

(r

ough

est

imat

es)

∆As [

%]

RO

C 3

be

ndin

g re

info

rcem

ent o

utsi

de

of a

ncho

rage

and

laps

25

RO

C 2

sh

ear r

einf

orce

men

t, an

chor

age

zone

s with

con

finem

ent

15

RO

C 1

an

chor

age

zone

s w

ithou

t co

nfin

emen

t 5

In d

epen

denc

y of

RO

C’s

it m

ight

be

nece

ssar

y to

fulfi

l ULS

-req

uire

men

ts

by e

xclu

ding

dep

assi

vatio

n on

a h

ighe

r re

liabi

lity

leve

l as

rec

omm

ende

d in

Ta

ble

A2-

2.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 41

A4

Des

ign,

qua

lity

man

agem

ent

diffe

rent

iatio

n

(1

) D

esig

n su

perv

isio

n di

ffer

entia

tion

cons

ists

of

vario

us o

rgan

isat

iona

l qu

ality

con

trol

mea

sure

s, w

hich

can

be

used

tog

ethe

r. Fo

r ex

ampl

e, t

he

diff

eren

tiatio

n of

des

ign

supe

rvis

ion

leve

l (A

4(2)

) may

be

used

toge

ther

with

ot

her

mea

sure

s su

ch a

s cl

assi

ficat

ion

of d

esig

ners

and

che

ckin

g au

thor

ities

(A

4(3)

).

Min

imum

lev

els

for

the

qual

ity m

anag

emen

t re

gim

e ar

e of

ten

give

n in

na

tiona

l leg

isla

tion.

(2)

Thre

e po

ssib

le d

esig

n su

perv

isio

n le

vels

(D

SL)

are

show

n in

Tab

le

A4-

1. T

he d

esig

n su

perv

isio

n le

vels

may

be

linke

d to

the

rel

iabi

lity

clas

s se

lect

ed o

r ch

osen

acc

ordi

ng t

o th

e im

porta

nce

of t

he s

truct

ure

and

in

acco

rdan

ce w

ith n

atio

nal r

equi

rem

ents

or

the

desi

gn b

rief,

and

impl

emen

ted

thro

ugh

appr

opria

te q

ualit

y m

anag

emen

t mea

sure

s. S

ee 2

.1.2

(1).

Tabl

e A4

-1:

Des

ign

supe

rvis

ion

leve

ls (D

SL)

Des

ign

Supe

rvisi

on L

evel

s C

hara

cter

istic

s M

inim

um r

ecom

men

ded

requ

irem

ents

for

the

chec

king

of c

alcu

latio

ns,

draw

ings

and

spec

ifica

tions

DSL

3 R

elat

ing

to R

C3

Exte

nded

su

perv

isio

n Th

ird p

arty

che

ckin

g:

Che

ckin

g pe

rfor

med

by

an

orga

nisa

tion

diff

eren

t fro

m

that

whi

ch h

as p

erfo

rmed

the

desi

gn

DSL

2 R

elat

ing

to R

C2

N

orm

al s

uper

visi

on

Che

ckin

g by

diff

eren

t per

sons

th

an th

ose

orig

inal

ly

resp

onsi

ble

and

in a

ccor

danc

e w

ith th

e pr

oced

ure

of th

e or

gani

satio

n D

SL1

Rel

atin

g to

RC

1

Nor

mal

supe

rvis

ion

Self-

chec

king

: Che

ckin

g pe

rfor

med

by

the

pers

on w

ho

has p

repa

red

the

desi

gn

(3

) D

esig

n su

perv

isio

n di

ffer

entia

tion

may

als

o in

clud

e a

clas

sific

atio

n of

de

sign

ers

and/

or d

esig

n in

spec

tors

(ch

ecke

rs,

cont

rolli

ng a

utho

ritie

s, et

c.),

depe

ndin

g on

thei

r com

pete

nce

and

expe

rienc

e, th

eir i

nter

nal o

rgan

isat

ion

for

– 42

Anne

x A:

Man

agem

ent o

f rel

iabi

lity

for S

ervi

ce L

ife D

esig

n of

con

cret

e st

ruct

ures

the

rele

vant

type

of c

onst

ruct

ion

wor

ks b

eing

des

igne

d.

Not

e: T

he ty

pe o

f con

stru

ctio

n w

orks

, the

mat

eria

ls u

sed

and

the

stru

ctur

al

form

s ca

n af

fect

this

cla

ssifi

catio

n.

(4)

Alte

rnat

ivel

y, d

esig

n su

perv

isio

n di

ffer

entia

tion

can

cons

ist

of a

mor

e re

fined

det

aile

d as

sess

men

t of

the

nat

ure

and

mag

nitu

de o

f ac

tions

to

be

resi

sted

by

the

stru

ctur

e, o

r of

a s

yste

m o

r de

sign

loa

d m

anag

emen

t to

ac

tivel

y or

pas

sive

ly c

ontro

l (re

stric

t) th

ese

actio

ns.

A5

Exe

cutio

n, q

ualit

y m

anag

emen

t di

ffere

ntia

tion

CEN

EN

V 1

3670

-1 re

fers

to “

insp

ectio

n cl

asse

s”.

“Ins

pect

ion”

is

de

fined

by

IS

O

9000

as

“C

onfo

rmity

ev

alua

tion

by

obse

rvat

ion

and

judg

men

t ac

com

pani

ed a

s ap

prop

riate

by

mea

sure

men

t, te

stin

g or

gau

ging

”.

The

“Exe

cutio

n cl

asse

s” m

ight

als

o co

mpr

ise

othe

r ele

men

ts o

f the

qua

lity

man

agem

ent r

egim

e at

the

cons

truct

ion

site

.

Min

imum

lev

els

for

the

qual

ity m

anag

emen

t re

gim

e ar

e of

ten

give

n in

na

tiona

l leg

isla

tion.

(1

) Th

ree

exec

utio

n cl

asse

s (E

XC

) m

ay b

e in

trodu

ced

as s

how

n in

Tab

le

A5-

1. T

he e

xecu

tion

clas

ses

may

be

linke

d to

the

qual

ity m

anag

emen

t cla

sses

se

lect

ed a

nd im

plem

ente

d th

roug

h ap

prop

riate

qua

lity

man

agem

ent m

easu

res.

Se

e 2.

1.2

(1).

Tabl

e A5

-1:

Exec

utio

n C

lass

es (E

XC)

Exec

utio

n C

lass

C

hara

cter

istic

s R

equi

rem

ents

EXC

3 R

elat

ing

to R

C3

Exte

nded

insp

ectio

n Th

ird p

arty

insp

ectio

n

EXC

2 R

elat

ing

to R

C2

Nor

mal

insp

ectio

n In

spec

tion

in a

ccor

danc

e w

ith th

e pr

oced

ures

of t

he

orga

nisa

tion

EXC

1 R

elat

ing

to R

C1

Nor

mal

insp

ectio

n Se

lf in

spec

tion

A

6 C

ondi

tion

cont

rol d

urin

g se

rvic

e lif

e,

qual

ity m

anag

emen

t diff

eren

tiatio

n A

pro

per

insp

ectio

n du

ring

the

serv

ice

life

of a

stru

ctur

e w

ill g

ive

the

owne

r a

poss

ibili

ty to

app

ly p

rote

ctiv

e m

easu

res

in c

ase

the

expe

ctat

ions

for

th

e se

rvic

e lif

e de

sign

are

not

met

.

The

cons

eque

nces

of

unac

cept

able

per

form

ance

are

thu

s re

duce

d. T

his

(1)

For

serv

ice

life

desi

gn, t

he le

vel o

f su

perv

isio

n du

ring

the

use

of

the

stru

ctur

e or

com

pone

nt i

s al

so d

ecis

ive

for

the

appr

opria

te l

evel

of

relia

bilit

y. F

or t

his

use

the

follo

win

g co

nditi

on c

ontro

l le

vels

(C

CL)

dur

ing

the

serv

ice

life

mig

ht b

e ap

plie

d:

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 43

open

s th

en f

or a

pply

ing

a m

ore

liber

al r

elia

bilit

y cl

ass

and

asso

ciat

ed β

-

valu

e.

Tab

le A

6-1:

C

ondi

tions

Con

trol

Lev

els (

CC

L)

Con

ditio

n C

ontr

ol L

evel

s C

hara

cter

istic

s R

equi

rem

ents

CC

L3

Exte

nded

in

spec

tion

Syst

emat

ic in

spec

tion

and

mon

itorin

g of

re

leva

nt p

aram

eter

s fo

r the

det

erio

ratio

n pr

oces

s(es

) tha

t is

(are

) crit

ical

in th

e SL

D

CC

L2

Nor

mal

insp

ectio

n R

egul

ar v

isua

l ins

pect

ion

by q

ualif

ied

pers

onne

l

CC

L1

Nor

mal

insp

ectio

n N

o sy

stem

atic

mon

itorin

g no

r ins

pect

ion

CC

L0

No

insp

ectio

n N

o po

ssib

le in

spec

tion,

for i

nsta

nce

due

to

lack

of a

cces

s

A

7 R

elat

ive

cost

of m

easu

res

Gui

danc

e m

ight

be

foun

d in

“Pr

obab

ilist

ic M

odel

Cod

e”, J

oint

Com

mitt

ee

on S

truct

ural

Saf

ety

(JC

SS P

MC

:200

0).

(1

) As

serv

icea

bilit

y fa

ilure

s b

y de

finiti

on a

re n

ot a

ssoc

iate

d w

ith lo

ss o

f hu

man

life

or

limb,

the

cost

of

mea

sure

s to

ach

ieve

a h

ighe

r re

liabi

lity

leve

l sh

ould

inf

luen

ce t

he c

hoic

e of

con

sequ

ence

cla

ss a

nd t

hus

relia

bilit

y in

dex

(cp.

Tab

le A

2-1

and

Tabl

e A

2-2)

. (2

) Fo

r ex

istin

g st

ruct

ures

the

cost

s of

ach

ievi

ng a

hig

her

relia

bilit

y le

vel

are

usua

lly h

igh

com

pare

d to

stru

ctur

es u

nder

des

ign.

For

thi

s re

ason

the

ta

rget

leve

l for

exi

stin

g st

ruct

ures

usu

ally

shou

ld b

e lo

wer

.

A8

Part

ial f

acto

rs fo

r re

sist

ance

pro

pert

ies

(1

) A

par

tial

fact

or f

or a

mat

eria

l or

pro

duct

pro

perty

or

a m

embe

r re

sist

ance

may

be

redu

ced

if an

ins

pect

ion

clas

s hi

gher

tha

n th

at r

equi

red

acco

rdin

g to

Tab

le A

5-1

and/

or m

ore

seve

re re

quire

men

ts a

re u

sed.

Not

e: S

uch

a re

duct

ion,

whi

ch a

llow

s fo

r exa

mpl

e fo

r mod

el u

ncer

tain

ties

and

dim

ensi

onal

var

iatio

ns, i

s no

t a

relia

bilit

y di

ffer

entia

tion

mea

sure

: it

is

only

a c

ompe

nsat

ing

mea

sure

in o

rder

to k

eep

the

relia

bilit

y le

vel d

epen

dent

on

the

effic

ienc

y of

the

cont

rol m

easu

res.

– 44

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

Ann

ex B

(inf

orm

ativ

e)

Full

prob

abili

stic

des

ign

met

hods

B1

Full

prob

abili

stic

des

ign

met

hod

for

carb

onat

ion

indu

ced

corr

osio

n –

uncr

acke

d co

ncre

te

B1.

1 L

imit

stat

e eq

uatio

n fo

r th

e de

pass

ivat

ion

of th

e re

info

rcem

ent

The

orig

inal

Dur

aCre

te m

odel

is

desc

ribed

in

mor

e de

tail

in [

3],

the

DA

RTS

mod

el (r

evis

ed D

uraC

rete

mod

el) i

s des

crib

ed in

[4],

[5].

Whi

le a

sses

sing

exi

stin

g st

ruct

ures

, th

e co

nsta

nts

in E

quat

ion

B1.

1-1

mig

ht b

e co

mbi

ned

to a

chie

ve a

sim

plifi

ed e

xpre

ssio

n:

()

tk

a(t)

xa,

gc

!=

(B

1.1-

1)

In v

iew

of f

ib T

G 5

.6, p

ublis

hed

mod

els

of [6

] or o

ther

s ar

e us

eful

as

wel

l, if

valid

ated

acc

ordi

ng to

the

prin

cipl

es g

iven

in C

hapt

er 2

.

(1

) A

ful

l pr

obab

ilist

ic d

esig

n ap

proa

ch f

or t

he m

odel

ling

of c

arbo

natio

n in

duce

d co

rros

ion

of u

ncra

cked

con

cret

e ha

s be

en d

evel

oped

with

in t

he

rese

arch

pr

ojec

t D

uraC

rete

an

d sl

ight

ly

revi

sed

in

the

rese

arch

pr

ojec

t D

AR

TS, e

ach

proj

ect

was

fun

ded

by th

e Eu

rope

an U

nion

. It i

s ba

sed

on th

e lim

it-st

ate

Equa

tion

B1.

1-2,

in w

hich

the

conc

rete

cov

er a

is c

ompa

red

to th

e ca

rbon

atio

n de

pth

x c(t)

at a

cer

tain

poi

nt o

f tim

e t.

()

() tW

tC

R(k

kk

2a

(t)x

a(t)

x,ag

St

1 AC

C,0

tc

e

cc

!!

!+

!!

!!

"=

"=

"

(B1.

1-2)

a:

conc

rete

cov

er [m

m],

cp. B

1.2.

1 x c

(t):

carb

onat

ion

dept

h at

the

time

t [m

m]

t: tim

e [y

ears

], cp

. B1.

2.2

k e:

envi

ronm

enta

l fun

ctio

n [-

], cp

. B1.

2.3

k c:

exec

utio

n tra

nsfe

r par

amet

er [-

], cp

. B1.

2.4

k t:

regr

essi

on p

aram

eter

[-],

cp. B

1.2.

5

RA

CC,

0-1:

inve

rse

effe

ctiv

e ca

rbon

atio

n re

sist

ance

of

co

ncre

te

[(m

m²/y

ears

)/(kg

/m³)]

, cp.

B1.

2.5

ε t:

erro

r ter

m, c

p. B

1.2.

5

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 45

CS:

C

O2-

conc

entra

tion

[kg/

m³],

cp.

B1.

2.6

W(t)

: w

eath

er fu

nctio

n [-

], cp

. B1.

2.7

(2)

Equa

tion

B1.

1-2

is b

ased

on

diff

usio

n as

the

pre

vaili

ng t

rans

port

mec

hani

sm w

ithin

the

conc

rete

(Fic

k’s

1st l

aw o

f diff

usio

n). I

t is

assu

med

that

th

e di

ffus

ion

coef

ficie

nt f

or c

arbo

n di

oxid

e th

roug

h th

e m

ater

ial i

s a

cons

tant

m

ater

ial p

rope

rty, a

lthou

gh th

e C

O2-

diff

usio

n co

effic

ient

for a

con

cret

e du

ring

serv

ice

life

may

be

a fu

nctio

n of

num

erou

s var

iabl

es.

B1.

2 Q

uant

ifica

tion

of p

aram

eter

s

B

1.2.

1 C

oncr

ete

cove

r a

B1.2

.1.1

G

ener

al

(1)

The

conc

rete

cov

er a

is

chos

en d

urin

g th

e de

sign

pha

se.

Due

to

cons

truct

ion

prac

tices

the

actu

al c

oncr

ete

cove

r doe

s va

ry a

nd th

eref

ore

has

to

be c

onsi

dere

d as

a s

toch

astic

var

iabl

e ra

ther

tha

n a

cons

tant

val

ue.

The

follo

win

g di

strib

utio

n ty

pes

are

in p

rinci

ple

appr

opria

te f

or th

e de

scrip

tion

of

the

conc

rete

cov

er a

and

its v

aria

bilit

y:

– N

orm

al d

istri

butio

n

– B

eta-

dist

ribut

ion

– W

eibu

ll(m

in)-

dist

ribut

ion

– Lo

gnor

mal

dis

tribu

tion

– N

evill

e di

strib

utio

n

Whe

n ch

oosi

ng a

dis

tribu

tion

func

tion

for

the

desc

riptio

n of

the

conc

rete

co

ver,

it ha

s to

be

cons

ider

ed t

hat

valu

es o

f th

e va

ryin

g co

ncre

te c

over

in

clud

ing

the

scat

ter a

re p

ositi

ve d

efin

ed v

alue

s (p

f = p

{a <

0}

= 0)

. Onl

y du

e to

bad

wor

kman

ship

def

ects

, if f

or e

xam

ple

the

rein

forc

emen

t is

bein

g pu

shed

in

to t

he f

orm

wor

k, i

t is

the

oret

ical

ly p

ossi

ble

that

the

con

cret

e co

ver

may

ta

ke n

egat

ive

valu

es.

Als

o co

nsid

erat

ions

tar

gete

d on

res

trict

ing

the

uppe

r va

lue

of th

e co

ncre

te c

over

are

pos

sibl

e (p

f = p

{a >

d}

= 0,

d =

dim

ensi

on o

f th

e st

ruct

ural

ele

men

t).

(2

) By

appl

ying

a B

eta,

Wei

bull(

min

), Lo

gnor

mal

and

Nev

ille

dist

ribut

ion,

ne

gativ

e va

lues

for

the

conc

rete

cov

er a

re e

xclu

ded

due

to th

e ch

arac

teris

tics

of th

ese

type

s of

dis

tribu

tions

. If a

nor

mal

dis

tribu

tion

is c

onsi

dere

d, o

ne h

as to

be

aw

are

that

neg

ativ

e va

lues

for

the

conc

rete

cov

er a

re n

ot e

xclu

ded

by th

e ch

arac

teris

tics

of th

e no

rmal

dis

tribu

tion.

Esp

ecia

lly fo

r con

cret

e co

vers

with

a

smal

l mea

n va

lue,

this

can

lead

to u

nrea

listic

res

ults

, sin

ce a

hig

h pr

obab

ility

of

neg

ativ

e va

lues

for

the

conc

rete

cov

er m

ay e

xist

fro

m a

sta

tistic

al p

oint

of

view

. W

hen

the

mea

n va

lue

beco

mes

lar

ger

(her

eby

assu

min

g a

stea

dy

– 46

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

stan

dard

dev

iatio

n) t

his

effe

ct b

ecom

es n

egle

gibl

e. F

or a

sta

tistic

des

crip

tion

of l

ow c

oncr

ete

cove

rs (

e.g.

nom

a =

20

mm

) in

par

ticul

ar, t

he r

ight

-ske

wed

lo

gnor

mal

dis

tribu

tion,

Nev

ille

dist

ribut

ion

and

beta

-dis

tribu

tion

(with

a lo

wer

bo

und

of a

= 0

mm

) are

con

side

red

to b

e ap

prop

riate

.

B1

.2.1

.2

Qua

ntifi

catio

n of

a

(1)

Dis

tribu

tion

func

tion:

For

lar

ge c

oncr

ete

cove

rs a

ll of

the

dis

tribu

tion

type

s di

scus

sed

befo

re c

an b

e ap

plie

d. In

this

cas

e a

norm

al d

istri

butio

n is

ver

y co

mm

on.

If a

rat

her

smal

l co

ncre

te c

over

has

to

be d

escr

ibed

, di

strib

utio

ns

excl

udin

g ne

gativ

e va

lues

sho

uld

be c

hose

n, a

s fo

r in

stan

ce t

he L

ogno

rmal

, B

eta-

, W

eibu

ll(m

in)-

or

the

Nev

ille

dist

ribut

ion.

Esp

ecia

lly i

f du

e to

the

ap

plic

atio

n of

qua

lity

cont

rol a

ctio

n a

smal

l sta

ndar

d de

viat

ion

is e

xpec

ted,

a

Nev

ille

dist

ribut

ion

show

s goo

d fit

ting

char

acte

ristic

s.

As

the

nom

inal

cov

er is

sec

ured

by

spac

ers

of c

orre

spon

ding

dim

ensi

on,

the

desi

gner

can

exp

ect,

that

the

achi

eved

mea

n va

lue

of th

e co

ncre

te v

alue

m

ay e

qual

to th

e no

min

al v

alue

.

m

ean

valu

e of

a:

m =

nom

a [m

m]

From

fie

ld

inve

stig

atio

ns

it tu

rned

ou

t, th

at

the

obse

rved

st

anda

rd

devi

atio

ns o

f th

e co

ncre

te c

over

wer

e in

the

rang

e of

2 m

m ≤

s ≤

15 m

m. I

n m

ost c

ases

, the

giv

en r

ecom

men

datio

n of

cha

pter

B1.

2.1.

2, (1

) in

rega

rd to

s

can

be ta

ken.

st

anda

rd d

evia

tion

of a

: s =

8 -

10 m

m

with

out p

artic

ular

exe

cutio

n re

quire

men

ts

s = 6

mm

w

ith a

dditi

onal

exe

cutio

n re

quire

men

ts ta

rget

ed

for r

estri

cted

dis

tribu

tions

: lo

wer

lim

it: 0

mm

uppe

r lim

it: 5

· no

m a

< d

, d: w

idth

of t

he st

ruct

ural

ele

men

t [m

m]

B

1.2.

2 D

esig

n se

rvic

e lif

e t S

L

(1

) Ind

icat

ive

valu

es fo

r the

des

ign

serv

ice

life

t SL a

re g

iven

in T

able

B1-

1:

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 47

Com

pare

EN

199

0:20

02, T

able

2.1

.

Tabl

e B1

-1:

Indi

cativ

e va

lues

for t

he d

esig

n se

rvic

e lif

e t SL

de

sign

serv

ice

life

t SL

[yea

rs]

Exam

ples

10

Tem

pora

ry s

truct

ures

(stru

ctur

es o

r par

ts o

f stru

ctur

es th

at c

an b

e di

sman

tled

with

a v

iew

to b

eing

re-u

sed

shou

ld n

ot b

e co

nsid

ered

as

tem

pora

ry)

10 -

25

Rep

lace

able

stru

ctur

al p

arts

, e. g

. gan

try g

irder

s, b

earin

gs

15 –

30

Agr

icul

tura

l and

sim

ilar s

truct

ures

50

Bui

ldin

g st

ruct

ures

and

oth

er c

omm

on s

truct

ures

100

Mon

umen

tal b

uild

ings

stru

ctur

es, b

ridge

s, a

nd o

ther

civ

il en

gine

erin

g st

ruct

ures

B1.

2.3

Env

iron

men

tal f

unct

ion

k e

B1.2

.3.1

G

ener

al

(1)

The

envi

ronm

enta

l fu

nctio

n k e

tak

es a

ccou

nt o

f th

e in

fluen

ce o

f th

e hu

mid

ity l

evel

on

the

diff

usio

n co

effic

ient

and

hen

ce o

n th

e ca

rbon

atio

n re

sist

ance

of t

he c

oncr

ete.

The

refe

renc

e cl

imat

e is

T=

+20°

C/ 6

5% R

H.

Car

bona

tion

mea

sure

men

ts o

n co

ncre

te a

nd m

orta

r sp

ecim

ens

expo

sed

to

vario

us v

alue

s of

rel

ativ

e hu

mid

ity s

how

tha

t up

to a

ppro

x. R

H =

60

% t

he

carb

onat

ion

dept

h in

crea

ses,

whi

ch i

s fo

llow

ed b

y de

crea

sing

car

bona

tion

dept

hs f

or a

n in

crea

sing

rel

ativ

e hu

mid

ity.

Sinc

e fo

r in

stan

ce i

n Eu

rope

an

clim

ates

a r

elat

ive

hum

idity

bel

ow 6

0 %

is

less

com

mon

, Eq

uatio

n B

1.2-

1 ap

pear

s to

be

suff

icie

nt. F

or lo

wer

val

ues

of th

e re

lativ

e hu

mid

ity th

e m

odel

of

ke i

s on

the

safe

side

.

(2

) Th

e en

viro

nmen

tal f

unct

ion

k e c

an b

e de

scrib

ed b

y m

eans

of

Equa

tion

B1.

2-1,

cp.

als

o [4

]: e

e

e

gf

fre

freal

e

100

RH1

100

RH1

k

!!!!! "#

$$$$$ %&

! "#$ %&

'

! "#$ %&

'

=

(B1.

2-1)

RH

real:

rela

tive

hum

idity

of t

he c

arbo

nate

d la

yer [

%]

RH

ref:

refe

renc

e re

lativ

e hu

mid

ity [%

] f e:

ex

pone

nt [-

]

g e:

expo

nent

[-]

– 48

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

B1.2

.3.2

R

elat

ive

hum

idity

RH

real

(1

) D

ata

of th

e ne

ares

t wea

ther

sta

tion

may

be

used

as

an in

put f

or R

Hre

al.

For

quan

tific

atio

n, t

he w

eath

er s

tatio

n da

ta (

daily

mea

n va

lue)

has

to

be

eval

uate

d.

Stric

tly s

peak

ing,

the

rela

tive

hum

idity

of

the

carb

onat

ed la

yer

has

to b

e ta

ken

into

acc

ount

. Sin

ce it

is v

ery

diff

icul

t to

obta

in s

uch

data

and

due

to th

e fa

ct th

at th

e ca

rbon

atio

n pr

oces

s ta

kes

plac

e in

the

oute

r par

ts o

f the

con

cret

e it

seem

s ju

stifi

able

to

use

rela

tive

hum

idity

dat

a (e

.g.

mea

n da

ily v

alue

s)

deriv

ed f

rom

the

am

bien

t ai

r of

the

stru

ctur

e. H

owev

er r

esul

t of

fur

ther

re

sear

ch o

n th

is fa

ctor

may

als

o, th

at m

ean

year

ly v

alue

s m

ay b

e su

ffic

ient

as

wel

l. Fo

r th

e tim

e be

ing

stat

istic

ally

des

crib

ed d

ata

of m

ean

daily

val

ues

are

reco

mm

ende

d.

(2

) Due

to th

e fa

ct th

at th

e re

lativ

e hu

mid

ity v

arie

s by

def

initi

on u

tmos

t in

a ra

nge

of 0

% <

RH

< 1

00 %

, res

trict

ed d

istri

butio

ns w

ith a

n up

per l

imit

shou

ld

be u

sed

to d

escr

ibe

this

var

iabl

e. F

or in

stan

ce in

Eur

opea

n cl

imat

e co

nditi

ons,

a rig

ht-s

kew

ed

dist

ribut

ion

is

in

gene

ral

appr

opria

te

to

desc

ribe

RH

real.

Dep

endi

ng o

n th

e re

gion

the

low

er li

mit

of R

H m

ight

be

sign

ifica

ntly

diff

eren

t fr

om z

ero.

In s

uch

a ca

se it

see

ms

reas

onab

le to

des

crib

e th

e da

ta s

et b

y m

eans

of

a d

istri

butio

n fu

nctio

n w

ith a

n up

per a

nd a

low

er li

mit,

as f

or e

xam

ple:

Bet

a-di

strib

utio

n

– W

eibu

ll(m

ax)-

dist

ribut

ion

B1.2

.3.3

R

efer

ence

rel

ativ

e hu

mid

ity R

Hre

f

(1

) The

refe

renc

e re

lativ

e hu

mid

ity h

as to

be

chos

en in

acc

orda

nce

with

the

test

con

ditio

ns f

or d

eter

min

ing

the

carb

onat

ion

resi

stan

ce o

f th

e co

ncre

te. F

or

the

reco

mm

ende

d A

CC

-test

met

hod,

whi

ch i

s de

scrib

ed i

n C

hapt

er B

1.2.

5.2,

th

e re

fere

nce

clim

ate

T= +

20°C

/ 65%

RH

. Th

eref

ore,

RH

ref

is q

uant

ified

as

follo

ws:

R

Hre

f [%

]:

cons

tant

par

amet

er, v

alue

: 65

B1.2

.3.4

Ex

pone

nts g

e, f e

(1)

The

para

met

ers

g e a

nd f

e ha

ve b

een

dete

rmin

ed b

y m

eans

of

a cu

rve-

fittin

g pr

oced

ure

with

the

act

ual

test

dat

a. T

he b

est

resu

lts w

ere

gain

ed w

ith

the

follo

win

g se

t of p

aram

eter

s, c

p. [4

] and

[5]:

g e [-

]: co

nsta

nt p

aram

eter

, val

ue: 2

.5

f e [-

]: co

nsta

nt p

aram

eter

, val

ue: 5

.0

The

expo

nent

s ar

e in

depe

nden

t of

exp

osur

e co

nditi

ons

and

man

agem

ent

phas

es.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 49

B1.

2.4

Exe

cutio

n tr

ansf

er p

aram

eter

kc

B1.2

.4.1

G

ener

al

Mea

sure

s su

ch a

s w

ater

cur

ed, a

ir cu

red

but s

eale

d w

ith s

heet

s in

ord

er to

pr

even

t des

icca

tion,

cas

ted/

mou

lded

are

bei

ng c

onsi

dere

d as

cur

ing

mea

sure

s.

(1) T

he e

xecu

tion

trans

fer p

aram

eter

kc t

akes

the

influ

ence

of c

urin

g on

the

effe

ctiv

e ca

rbon

atio

n re

sist

ance

int

o ac

coun

t. In

thi

s co

ntex

t, al

l m

easu

res

whi

ch a

re t

arge

ted

on p

reve

ntin

g pr

emat

ure

desi

ccat

ion

of c

oncr

ete

clos

e to

th

e su

rfac

e ar

e be

ing

cons

ider

ed a

s cu

ring

mea

sure

s.

(2

) Fi

gure

B1.

2-1

illus

trate

s th

e in

fluen

ce o

f th

e du

ratio

n of

cur

ing

on th

e cu

ring

effe

ct. T

he s

tatis

tical

qua

ntifi

catio

n of

kc h

as b

een

carr

ied

out b

y m

eans

of

a li

near

regr

essi

on (d

oubl

e lo

garit

hmic

scal

e) a

ccor

ding

to B

ayes

, cp.

[5].

Fi

gure

B1.

2-1:

cur

ing

vari

able

ver

sus c

urin

g pe

riod

(n =

312

), [5

]

– 50

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

(3)

By

mea

ns o

f B

ayes

ian

regr

essi

on, t

he f

ollo

win

g Eq

uatio

n B

1.2-

2 ha

s be

en d

eter

min

ed, [

5]:

cbc

c7t

k! "#

$ %&=

(B

1.2-

2)

k c:

exec

utio

n tra

nsfe

r par

amet

er [-

]

b c:

expo

nent

of r

egre

ssio

n [-

] t c:

pe

riod

of c

urin

g [d

]

B1

.2.4

.2

Qua

ntifi

catio

n of

kc

(1) T

he v

aria

bles

bc a

nd t c

hav

e be

en q

uant

ified

as

follo

ws,

[5]:

b c [

-]:

norm

al d

istri

butio

n,

m:

-0.5

67

s:

0.0

24

t c [d

]: co

nsta

nt, p

aram

eter

, va

lue:

per

iod

of c

urin

g

B

1.2.

5 In

vers

e C

arbo

natio

n R

esis

tanc

e R

AC

C,0

-1

B1.2

.5.1

G

ener

al

(1)

For

the

mod

el i

ntro

duce

d ab

ove,

it

has

been

agr

eed

upon

tha

t th

e in

vers

e ef

fect

ive

carb

onat

ion

resi

stan

ce i

s to

be

dete

rmin

ed b

y ac

cele

rate

d ca

rbon

atio

n te

sts

(AC

C-te

st m

etho

d) i

n w

hich

lab

orat

ory

(20/

65)

pre-

stor

ed

conc

rete

spec

imen

s are

test

ed u

nder

def

ined

con

ditio

ns a

t a re

fere

nce

time

t 0.

(2)

The

rela

tions

hip

betw

een

the

inve

rse

carb

onat

ion

resi

stan

ces

obta

ined

un

der n

atur

al c

ondi

tions

(NA

C) a

nd in

an

acce

lera

ted

test

(AC

C) i

s ill

ustra

ted

in F

igur

e B

1.2-

2, [5

].

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 51

Fi

gure

B1.

2-2:

Rel

atio

nshi

p of

the

inv

erse

car

bona

tion

resi

stan

ces,

ob

tain

ed u

nder

nat

ural

con

ditio

ns (

NAC

) an

d in

an

acce

lera

ted

test

(AC

C, [

5])

(3)

Inve

rse

carb

onat

ion

resi

stan

ces

RN

AC

,0-1

de

term

ined

un

der

natu

ral

carb

onat

ion

cond

ition

s w

ill b

e la

rger

by

an a

vera

ge f

acto

r of

A =

1.2

5. T

his

may

be

expl

aine

d by

the

fact

that

in a

n ac

cele

rate

d te

st th

e dr

ying

fro

nt d

oes

not

pene

trate

as

deep

as

unde

r na

tura

l co

nditi

ons

(thou

gh t

estin

g un

der

the

sam

e cl

imat

ic c

ondi

tions

bei

ng 2

0°C

/65

RH

). Th

is w

ill s

light

ly r

etar

d th

e ca

rbon

atio

n pr

oces

s un

der

AC

C

cond

ition

s. Fo

r ve

ry

dry

conc

rete

th

is

theo

retic

ally

im

plie

s va

lues

of

R

AC

C,0-1

= 0

. A

s co

ncre

te

has

no

infin

ite

resi

stan

ce, t

he so

-cal

led

erro

r ter

m ε

t > 0

(y-in

terc

ept)

has b

een

intro

duce

d.

– 52

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

B1.2

.5.2

Pe

rfor

man

ce te

sts f

or th

e de

term

inat

ion

of R

AC

C,0

-1

Sh

ort

dura

tion

is im

porta

nt t

o ge

t as

early

as

poss

ible

inf

orm

atio

n ab

out

the

mat

eria

l per

form

ance

.

(1

) Fo

r m

easu

ring

the

carb

onat

ion

resi

stan

ce d

iffer

ent

dire

ct a

nd i

ndire

ct

test

ing

met

hods

can

be

used

. The

ben

efits

of t

he A

CC

test

met

hod

are:

– th

e bi

ndin

g ca

paci

ty o

f th

e co

ncre

te d

oes

not h

ave

to b

e co

nsid

ered

ad

ditio

nally

– ch

ange

s of

the

carb

onat

ion

resi

stan

ce d

ue to

car

bona

tion

do n

ot h

ave

to b

e co

nsid

ered

add

ition

ally

good

repr

oduc

ibili

ty o

f the

test

resu

lts

– sh

ort d

urat

ion

The

pres

ente

d pr

oced

ure

is o

pen

for

furth

er m

ore

deta

iled

spec

ifica

tions

, e.

g. t

oler

ance

s on

RH

ref,

T ref

, CS e

tc.

Test

dur

atio

n in

tota

l: ∆t

= 5

6 da

ys. ‘

AC

C-c

ondi

tions

’ with

rega

rd to

CO

2-co

ncen

tratio

n w

ere

set t

o a

max

imum

of C

S = 2

.0 v

ol.-%

to a

void

as

muc

h as

po

ssib

le th

e fo

rmat

ion

of p

hase

s w

hich

nor

mal

ly a

re n

ot fo

rmed

und

er n

atur

al

carb

onat

ion

cond

ition

s, e.

g. v

ater

ite.

(2

) Fo

r th

ese

reas

ons

the

AC

C-te

st m

etho

d w

ith t

he f

ollo

win

g pr

oced

ure

has b

een

chos

en a

s the

refe

renc

e te

st m

etho

d, [5

]. –

Prod

uctio

n of

co

ncre

te

spec

imen

s w

ith

the

follo

win

g di

men

sion

s:

heig

ht/w

idth

/leng

th =

100

/100

/500

[mm

]. –

Afte

r rem

ovin

g of

the

form

wor

k th

e sp

ecim

ens

have

to b

e st

ored

in ta

p w

ater

with

a te

mpe

ratu

re o

f Tre

f = 2

0°C

for o

vera

ll se

ven

days

(ref

eren

ce

curin

g).

–Su

bseq

uent

to

the

wat

er s

tora

ge d

escr

ibed

abo

ve,

the

spec

imen

s ar

e re

mov

ed fr

om th

e w

ater

and

sto

red

for 2

1 fu

rther

day

s in

a s

tand

ardi

sed

labo

rato

ry c

limat

e (T

ref

20°C

, RH

ref =

65

%).

–A

t th

e ag

e of

28

days

(t re

f = 2

8 d)

the

spe

cim

ens

are

plac

ed i

n a

carb

onat

ion

cham

ber

with

th

e st

anda

rdis

ed

labo

rato

ry

clim

ate

(Tre

f 20

°C, R

Hre

f = 6

5 %

). In

the

cham

ber t

he s

peci

men

s ar

e ex

pose

d to

a

CO

2 con

cent

ratio

n of

CS =

2.0

vol

.-% d

urin

g 28

day

s.

–A

fter

rem

oval

the

con

cret

e sp

ecim

ens

are

split

and

the

car

bona

tion

dept

h is

mea

sure

d at

the

pla

ne o

f ru

ptur

e w

ith a

n in

dica

tor

solu

tion

cons

istin

g of

1.0

g ph

enol

phth

alei

n pe

r litr

e.

–B

y ev

alua

tion

of th

e m

easu

red

carb

onat

ion

dept

h ac

cord

ing

to E

quat

ion

B1.

2-3,

the

mea

n va

lue

of t

he r

efer

ence

inv

erse

eff

ectiv

e ca

rbon

atio

n re

sist

ance

can

be

dete

rmin

ed.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 53

2c

1- AC

C,0

xR

! "#$ %&

'=

(B

1.2-

3)

RA

CC,

0-1:

inve

rse

effe

ctiv

e ca

rbon

atio

n re

sist

ance

of

co

ncre

te

[(m²/s

)/(kg

/m³)]

τ:

‘tim

e co

nsta

nt’

in [

(s/k

g/m³)0.

5 ], fo

r de

scrib

ed te

st c

ondi

tions

: τ

= 42

0

x c:

mea

sure

d ca

rbon

atio

n de

pth

in th

e co

mpl

ianc

e te

st [m

]

B1

.2.5

.3

Qua

ntifi

catio

n of

RA

CC

,0-1

(1

) R

ACC

,0-1

sho

ws

a no

rmal

dis

tribu

tion

with

mea

n va

lues

whi

ch c

an b

e ca

lcul

ated

by

mea

ns o

f Equ

atio

n B

1.2-

3. T

he re

latio

nshi

p be

twee

n m

ean

valu

e an

d st

anda

rd d

evia

tion

of R

ACC

,0-1

is il

lust

rate

d in

Fig

ure

B1.

2-3,

cp.

[5].

Fi

gure

B1.

2-3:

Qua

ntifi

catio

n of

RAC

C,0

-1; d

eter

min

atio

n of

the

stan

dard

de

viat

ion

base

d on

the

mea

n va

lue

– 54

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

(2) T

he in

vers

e ca

rbon

atio

n re

sist

ance

sho

uld

be q

uant

ified

as

show

n in

this

ch

apte

r. If

no

test

dat

a is

ava

ilabl

e, th

e fo

llow

ing

liter

atur

e da

ta c

an b

e us

ed fo

r or

ient

atio

n pu

rpos

es, c

p. T

able

B1-

2, c

p. [5

]. Ta

ble

B1-2

: Q

uant

ifica

tion

of R

ACC,

0-1

w/c

eqv.

1

R

AC

C,0

-1 [1

0-11 (m

2 /s)/(

kg/m

3 )]

cem

ent t

ype

0.35

0.

40

0.45

0.

50

0.55

0.

60

CEM

I 42

.5 R

C

EM I

42.5

R +

FA

(k =

0.5

) C

EM I

42.5

R +

SF

(k =

2.0

) C

EM II

I/B 4

2.5

n.d.

2 n.

d.2

3.5

n.d.

2

3.1

0.3

5.5

8.3

5.2

1.9

n.d.

2 16

.9

6.8

2.4

n.d.

2 26

.6

9.8

6.5

16.5

44

.3

13.4

8.

3 n.

d.2

80.0

1 equ

ival

ent w

ater

cem

ent r

atio

, con

side

ring

FA (

fly a

sh)

or S

F (s

ilica

fum

e) w

ith

the

resp

ectiv

e k-

valu

e (e

ffic

ienc

y fa

ctor

).

The

cons

ider

ed c

onte

nts w

ere:

FA

: 22

wt.-

%/c

emen

t; SF

: 5 w

t.-%

/cem

ent.

² n.

d. –

inv

erse

eff

ectiv

e ca

rbon

atio

n re

sist

ance

RA

CC

,0-1

has

not

bee

n de

term

ined

fo

r the

se c

oncr

ete

mix

es.

(3)

Con

side

rabl

e at

tent

ion

has

to b

e pa

id to

the

units

, as

RA

CC,0

-1 h

as b

een

dete

rmin

ed b

y no

w w

ithin

the

uni

t [1

0-11 · (

m2 /s

)/(kg

/m3 )]

. Fo

r tra

nsla

tion

of

RA

CC,

0-1

into

th

e re

spec

tive

unit

for

the

dete

riora

tion

mod

el

[(m

m2 /y

ears

)/(kg

/m3 )]

, a m

ultip

licat

ion

fact

or h

as to

be

appl

ied.

R

AC

C,0-1

[(m

2 /s)/(

kg/m

3 )]: n

orm

al d

istri

butio

n,

m =

acc

ordi

ng to

Equ

atio

n B

1.2-

3

(val

ues f

or o

rient

atio

n pu

rpos

e: T

able

B1-

2)

s =

acco

rdin

g to

Fig

ure

B1.

2-3

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 55

B1.2

.5.4

Te

st m

etho

d fa

ctor

s Fa

ctor

s k t

and

εt w

ill c

over

all

the

diff

eren

ces

betw

een

spec

imen

s te

sted

at

AC

C-c

ondi

tions

an

d th

e ‘s

truct

ure’

te

sted

un

der

‘nat

ural

ca

rbon

atio

n’

cond

ition

s (c

limat

e 20

/65)

. Diff

eren

ces

in c

ompa

ctio

n an

d w

ater

-mov

emen

ts

due

to v

ibra

tion

betw

een

test

spe

cim

ens

and

stru

ctur

e ar

e no

t qua

ntifi

ed so

far

as c

ompa

red

spec

imen

s te

sted

at ‘

AC

C-c

ondi

tions

’ an

d ‘n

atur

al c

ondi

tions

’, se

e Fi

gure

B1.

2-2,

wer

e co

mpa

cted

iden

tical

ly.

(1

) Th

e fa

ctor

s k t

and

εt h

ave

been

int

rodu

ced

in o

rder

to

trans

form

the

re

sults

gai

ned

unde

r “a

ccel

erat

ed c

arbo

natio

n” c

ondi

tions

RA

CC,0

-1 i

nto

an

inve

rse

carb

onat

ion

resi

stan

ce R

NA

C,0

-1 u

nder

“na

tura

l car

bona

tion”

con

ditio

ns

(NA

C),

cp. E

quat

ion

B1.

2-4,

cp

[5].

t1

0,A

CC

t1

0,N

AC

Rk

R!

+"

=#

#

(B1.

2-4)

RA

CC,

0-1:

inve

rse

effe

ctiv

e ca

rbon

atio

n re

sist

ance

of

dr

y co

ncre

te,

dete

rmin

ed a

t a c

erta

in p

oint

of t

ime

t 0 on

spe

cim

ens

with

the

acce

lera

ted

carb

onat

ion

test

AC

C [(

mm²/y

ears

)/(kg

/m³)]

R

NA

C,0-1

: in

vers

e ef

fect

ive

carb

onat

ion

resi

stan

ce o

f dr

y co

ncre

te (

65%

R

H) d

eter

min

ed a

t a c

erta

in p

oint

of t

ime

t 0 on

spe

cim

ens

with

th

e no

rmal

car

bona

tion

test

NA

C [(

mm²/y

ears

)/(kg

/m³)]

k t:

regr

essi

on p

aram

eter

whi

ch c

onsi

ders

the

inf

luen

ce o

f te

st

met

hod

on th

e A

CC

-test

[-]

ε t:

erro

r te

rm c

onsi

derin

g in

accu

raci

es w

hich

occ

ur c

ondi

tiona

lly

whe

n us

ing

the

AC

C te

st m

etho

d [(

mm²/y

ears

)/(kg

/m³)]

(2)

The

test

met

hod

fact

ors

for

the

acce

lera

ted

carb

onat

ion

test

hav

e be

en

quan

tifie

d as

follo

ws,

cp. [

5]:

k t [-

]:

norm

al d

istri

butio

n,

m =

1.2

5

s = 0

.35

ε t [(

mm

2 /yea

rs)/(

kg/m

3 )]:

norm

al d

istri

butio

n,

m =

315

.5

s =

48

B

1.2.

6 E

nvir

onm

enta

l im

pact

Cs

B1.2

.6.1

G

ener

al

(1)

The

CO

2 co

ncen

tratio

n of

the

am

bien

t ai

r re

pres

ents

the

dire

ct i

mpa

ct

on t

he c

oncr

ete

stru

ctur

e. T

he i

mpa

ct c

an b

e de

scrib

ed b

y th

e fo

llow

ing

Equa

tion

B1.

2-5,

cp.

[5]:

– 56

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

.em

i,S

.at

m,S

SC

CC

+=

B

(1.2

-5)

CS:

C

O2 c

once

ntra

tion

[kg/

m³]

CS,

atm

.: C

O2 c

once

ntra

tion

of th

e at

mos

pher

e [k

g/m³]

CS,

emi.:

addi

tiona

l CO

2 con

cent

ratio

n du

e to

em

issi

on so

urce

s [k

g/m³]

Incr

ease

d C

O2

conc

entra

tions

can

be

appl

ied

e. g

. to

roa

d tu

nnel

s or

whe

n co

mbu

stio

n en

gine

s ar

e us

ed.

For

usua

l st

ruct

ures

, Eq

uatio

n B

1.2-

5 ca

n be

re

duce

d to

Equ

atio

n B

1.2-

6:

.at

m,S

SC

C=

(B

1.2-

6)

B1.2

.6.2

C

O2 co

ncen

trat

ion

of th

e at

mos

pher

e C

S,at

m.

(1)

The

actu

al C

O2

cont

ent i

n th

e at

mos

pher

e ha

s be

en d

etec

ted

to b

e in

a

rang

e of

35

0-38

0 pp

m

(par

ts

per

mill

ion)

. Th

is

corr

espo

nds

with

a

conc

entra

tion

of 0

.000

57 u

p to

0.0

0062

kg/

m3 . T

he s

tand

ard

devi

atio

n of

the

CO

2 co

nten

t is

alm

ost

cons

tant

with

a m

axim

um v

alue

of

10 p

pm.

By

extra

pola

ting

the

mea

n C

O2

conc

entra

tion

in th

e at

mos

pher

e ba

sed

on F

igur

e B

1.2-

4, th

e C

O2 c

once

ntra

tion

will

incr

ease

by

abou

t 1.5

ppm

per

yea

r.

Fi

gure

B1.

2-4:

Pro

gres

s of c

arbo

n di

oxid

e co

ncen

trat

ion

in th

e at

mos

pher

e, [7

]

(2

) Bas

ed o

n th

is e

stim

ated

tren

d th

e at

mos

pher

ic c

once

ntra

tion

of C

O2 c

an

be q

uant

ified

for s

impl

ifica

tion

reas

ons a

s fo

llow

s:

CS,

atm

. [kg

/m3 ]:

no

rmal

dis

tribu

tion,

m

= 0

.000

82

s = 0

.000

1

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 57

B1.

2.7

Wea

ther

func

tion

B1.2

.7.1

G

ener

al

(1)

The

wea

ther

fun

ctio

n W

tak

es t

he m

eso-

clim

atic

con

ditio

ns d

ue t

o w

ettin

g ev

ents

of

the

conc

rete

sur

face

into

acc

ount

, cp.

Equ

atio

n B

1.2-

7, c

p.

[5].

w0

2ToW

)(p

0

tttt

W

wbSR

! "#$ %&

=! "#

$ %&=

'

(B

1.2-

7)

t 0:

time

of re

fere

nce

[yea

rs]

w:

wea

ther

exp

onen

t [-]

ToW

tim

e of

wet

ness

[-],

cp. E

quat

ion

B1.

2-8

da

ys w

ith ra

infa

ll h N

d ≥

2.5

mm

per

yea

r To

W =

36

5 (B

1.2-

8)

p SR:

pro

babi

lity

of d

rivin

g ra

in [-

] b w

: ex

pone

nt o

f reg

ress

ion

[-]

B1

.2.7

.2

Para

met

ers d

escr

ibin

g ra

in e

vent

s

(1

) The

eff

ect o

f rai

n ev

ents

on

the

conc

rete

with

resp

ect t

o its

car

bona

tion

resi

stan

ce d

epen

ds o

n th

e or

ient

atio

n an

d th

e ge

omet

rical

cha

ract

eris

tics

of th

e st

ruct

ure.

The

follo

win

g va

riabl

es h

ave

to b

e qu

antif

ied:

To

W (t

ime

of w

etne

ss)

p SR

(pro

babi

lity

of d

rivin

g ra

in)

(2)

ToW

(Tim

e of

Wet

ness

) is

the

aver

age

num

ber o

f ra

iny

days

per

yea

r. A

rai

ny d

ay i

s de

fined

by

a m

inim

um a

mou

nt o

f pr

ecip

itatio

n w

ater

of

h Nd =

2.5

mm

per

day

. The

dat

a fo

r the

qua

ntifi

catio

n of

ToW

can

be

obta

ined

by

eva

luat

ion

of d

ata

from

the

near

est w

eath

er st

atio

n.

– 58

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

Acc

ordi

ng to

the

expl

anat

ion

abov

e th

e qu

antif

icat

ion

of th

e va

riabl

e To

W

can

be g

iven

as:

To

W [-

]: co

nsta

nt p

aram

eter

, val

ue:

to

be

eval

uate

d fr

om

wea

ther

st

atio

n da

ta

(3)

p SR (

prob

abili

ty o

f dr

ivin

g ra

in)

is th

e av

erag

e di

strib

utio

n of

the

win

d di

rect

ion

durin

g ra

in e

vent

s. A

n ev

alua

tion

can

be c

arrie

d ou

t by

dete

rmin

ing

the

win

d di

rect

ion

durin

g ra

in e

vent

s, ba

sed

on d

ata

from

the

near

est w

eath

er

stat

ion.

The

quan

tific

atio

n of

the

varia

ble

p SR c

an b

e gi

ven

as:

p SR

[-]:

cons

tant

par

amet

er, v

alue

: if

verti

cal e

lem

ents

are

trea

ted

p SR

has

to b

e ev

alua

ted

from

wea

ther

sta

tion

data

cons

tant

par

amet

er, v

alue

: if

horiz

onta

l ele

men

ts a

re tr

eate

d p S

R is

eq

ual t

o 1

cons

tant

par

amet

er, v

alue

: if

inte

rior

stru

ctur

al

elem

ents

ar

e tre

ated

pSR

is e

qual

to 0

B1.2

.7.3

M

odel

var

iabl

es b

W a

nd t 0

(1

) The

wea

ther

func

tion

cont

ains

two

mod

el v

aria

bles

. One

is th

e ex

pone

nt

of re

gres

sion

bw a

nd th

e ot

her i

s th

e tim

e of

refe

renc

e, t o

. The

se v

aria

bles

hav

e be

en q

uant

ified

as f

ollo

ws,

cp. [

5]:

b w [-

]: no

rmal

dis

tribu

tion,

m

=

0.44

6

s =

0.16

3 t o

[yea

rs]:

cons

tant

par

amet

er, v

alue

: 0.

0767

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 59

B2

Full

prob

abili

stic

des

ign

met

hod

for

chlo

ride

indu

ced

corr

osio

n –

uncr

acke

d co

ncre

te

B2.

1 L

imit

stat

e eq

uatio

n fo

r th

e de

pass

ivat

ion

of th

e re

info

rcem

ent

The

Dur

aCre

te m

odel

is

desc

ribed

in

mor

e de

tail

in [

3],

the

DA

RTS

m

odel

(rev

ised

Dur

aCre

te m

odel

) is

desc

ribed

in [4

], [5

]. Th

ese

mod

els

are

in

prin

cipl

e ap

plic

able

bot

h fo

r m

arin

e en

viro

nmen

t an

d fo

r de

-icin

g sa

lts o

n ro

ads/

brid

ges.

Fick

’s 2

nd la

w fo

r diff

usio

n w

as fi

rst p

ropo

sed

for a

pplic

atio

n in

chl

orid

e ex

pose

d st

ruct

ures

by

M. C

olle

pard

i [8]

in 1

970.

In t

he e

arly

199

0s p

aral

lel

effo

rts i

n di

ffer

ent

rese

arch

com

mun

ities

did

ta

ke p

lace

to im

prov

e th

is m

odel

. Suc

h im

prov

ed m

odel

s ar

e, in

add

ition

to

the

Dur

aCre

te/D

AR

TS m

odel

[3],

[4],

resp

ectiv

ely,

mod

els

deve

lope

d by

[6]

and

[9].

By

the

com

mitt

ee o

f th

is d

ocum

ent,

thes

e m

odel

s ar

e re

gard

ed a

s us

eful

as

wel

l. A

s th

e de

tails

with

in th

is fa

mily

of m

odel

s slig

htly

diff

er (e

.g. i

n re

spec

t to

the

treat

men

t of t

he s

urfa

ce la

yer)

, dat

a de

rived

by

the

use

of o

ne m

odel

is n

ot

dire

ctly

app

licab

le f

or u

se i

n th

e ot

her

mod

els

with

out

a re

calc

ulat

ion

acco

rdin

g to

thes

e di

ffer

ence

s.

At

the

time

of p

ublis

hing

thi

s do

cum

ent,

alte

rnat

ive

mod

els

for

chlo

ride

ingr

ess

are

unde

r de

velo

pmen

t an

d ar

e ex

pect

ed t

o fo

rm a

ltern

ativ

es t

o th

e ab

ove-

men

tione

d m

odel

s as

soo

n as

they

are

suf

ficie

ntly

val

idat

ed a

gain

st in

-fie

ld p

erfo

rman

ce.

(1

) A

ful

l pr

obab

ilist

ic d

esig

n ap

proa

ch f

or t

he m

odel

ling

of c

hlor

ide

indu

ced

corr

osio

n in

unc

rack

ed c

oncr

ete

has

been

dev

elop

ed w

ithin

the

re

sear

ch

proj

ect

Dur

aCre

te

and

slig

htly

re

vise

d in

th

e re

sear

ch

proj

ect

DA

RTS

, eac

h pr

ojec

t w

as f

unde

d by

the

Euro

pean

Uni

on. I

t is

base

d on

the

limit-

stat

e Eq

uatio

n B

2.1-

1, in

whi

ch th

e cr

itica

l chl

orid

e co

ncen

tratio

n C

crit

is

com

pare

d to

the

act

ual

chlo

ride

conc

entra

tion

at t

he d

epth

of

the

rein

forc

ing

stee

l at a

tim

e t C

(x =

a, t

).

!! "#

$$ %&

''

((

'(

+=

==

tD

xa

erf

1)

C(C

Ct)

a,(x

CC

Cap

p,0

Äx

S,0

.cr

it

(B2.

1-1)

Ccr

it.:

criti

cal c

hlor

ide

cont

ent [

wt.-

%/c

], cp

. Cha

pter

B2.

2.6

C(x

,t):

cont

ent

of c

hlor

ides

in

the

conc

rete

at

a de

pth

x (s

truct

ure

surf

ace:

x =

0 m

) and

at t

ime

t [w

t.-%

/c]

C0:

initi

al c

hlor

ide

cont

ent o

f th

e co

ncre

te [

wt.-

%/c

], cp

. Cha

pter

B

2.2.

4

CS,Δ

x: ch

lorid

e co

nten

t at

a d

epth

Δx

and

a ce

rtain

poi

nt o

f tim

e t

[wt.-

%/c

], cp

. Cha

pter

B2.

2.5

x:

dept

h w

ith a

cor

resp

ondi

ng c

onte

nt o

f chl

orid

es C

(x,t)

[mm

]

a:

conc

rete

cov

er [m

m],

cp. C

hapt

er B

1.2.

1

Δx:

de

pth

of th

e co

nvec

tion

zone

(co

ncre

te la

yer,

up to

whi

ch th

e pr

oces

s of

chl

orid

e pe

netra

tion

diff

ers

from

Fic

k’s

2nd

law

of

diff

usio

n) [m

m],

cp. (

2) a

nd C

hapt

er B

2.2.

5

Dap

p,C:

ap

pare

nt c

oeff

icie

nt o

f ch

lorid

e di

ffus

ion

thro

ugh

conc

rete

[m

m²/y

ears

], cp

. Equ

atio

n B

2.1-

2

– 60

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

t: tim

e [y

ears

], cp

. Cha

pter

B1.

2.2

erf:

erro

r fun

ctio

n

(2

) The

mod

el is

bas

ed o

n Fi

ck’s

2nd

law

of d

iffus

ion,

taki

ng in

to a

ccou

nt

that

mos

t ob

serv

atio

ns i

ndic

ate

that

tra

nspo

rt of

chl

orid

es i

n co

ncre

te i

s di

ffus

ion

cont

rolle

d. O

ften

the

surf

ace

is o

ften

expo

sed

to a

freq

uent

cha

nge

of

wet

ting

and

subs

eque

nt e

vapo

ratio

n. T

his

zone

is

usua

lly r

efer

red

to a

s th

e “c

onve

ctio

n zo

ne”.

As

the

trans

port

mec

hani

sms

in t

his

conv

ectio

n zo

ne a

re

not

mai

nly

diff

usio

n co

ntro

lled,

the

app

roac

h of

Fic

k’s

2nd

law

of

diff

usio

n yi

elds

no

satis

fact

ory

appr

oxim

atio

n fo

r th

e ch

lorid

e pe

netra

tion

insi

de t

he

conv

ectio

n zo

ne. I

n or

der

to s

till d

escr

ibe

the

pene

tratio

n of

chl

orid

es f

or a

n in

term

itten

t loa

d us

ing

Fick

’s 2

nd la

w o

f diff

usio

n, th

e da

ta o

f the

con

vect

ion

zone

, w

hich

may

dev

iate

con

side

rabl

y fr

om i

deal

diff

usio

n be

havi

our,

is

negl

ecte

d an

d Fi

ck’s

2nd

law

of d

iffus

ion

is a

pplie

d st

artin

g at

a d

epth

Δx

with

a

subs

titut

e su

rfac

e co

ncen

tratio

n C

s, Δx. Δ

x m

arks

the

dept

h of

the

conv

ectio

n zo

ne.

With

thi

s si

mpl

ifica

tion,

Fic

k’s

2nd

law

of

diff

usio

n yi

elds

a

good

ap

prox

imat

ion

of th

e ch

lorid

e di

strib

utio

n at

a d

epth

x ≥

Δx.

Usu

ally

Dap

p,C

is d

eter

min

ed b

y us

e of

the

“C

hlor

ide

prof

iling

met

hod”

. Th

e de

term

ined

Dap

p,C

is a

con

stan

t av

erag

e va

lue

repr

esen

ting

the

perio

d fr

om s

tart

of e

xpos

ure

to th

e m

omen

t of i

nspe

ctio

n w

hen

the

prof

ile is

take

n (ti

me

of i

nter

est).

C

hlor

ide

prof

iles

can

eith

er b

e ta

ken

from

ex

istin

g st

ruct

ures

or f

rom

test

sam

ples

sto

red

unde

r con

ditio

ns w

hich

are

exp

ecte

d in

pr

actis

e. A

s th

e de

term

inat

ion

of D

app,

C on

test

sam

ples

(for

the

desi

gn o

f new

st

ruct

ures

) is

very

tim

e co

nsum

ing,

a s

econ

d, e

mpi

rical

ly d

eriv

ed a

ppro

ach

is

offe

red,

cp.

Equ

atio

n B

2.1-

2.

The

here

by a

pplie

d ra

pid

test

met

hods

are

met

hods

of

conv

enie

nce

and

shou

ld a

lway

s be

cal

ibra

ted

agai

nst

the

“chl

orid

e pr

ofili

ng m

etho

d (u

nder

na

tura

l con

ditio

ns)”

, cp.

[5].

For t

his

reas

on h

undr

eds

of c

hlor

ide

prof

iles

wer

e co

llect

ed fr

om d

iffer

ent

sour

ces a

nd se

para

ted

into

diff

eren

t dat

agro

ups.

Prof

iles

wer

e co

llect

ed

sepa

rate

ly.

Prof

iles

of

cem

ents

m

ixed

w

ith

diff

eren

t bi

nder

s, d

iffer

ent

wat

er/b

inde

r ra

tios

wer

e co

llect

ed s

epar

atel

y. I

n ad

ditio

n to

that

, the

col

lect

ed d

ata

was

fur

ther

sep

arat

ed i

nto

four

exp

osur

e gr

oups

: St

ruct

ures

sub

mer

ged,

stru

ctur

es e

xpos

ed t

o tid

al a

ctio

n, s

truct

ures

ex

pose

d to

chl

orid

e co

ntai

ning

spl

ash

wat

er a

nd s

truct

ural

par

ts s

olel

y ex

pose

d to

salt

fog

(spr

ay z

one)

.

(3

) Th

e ap

pare

nt c

oeff

icie

nt o

f ch

lorid

e di

ffus

ion

of c

oncr

ete

can

be

dete

rmin

ed b

y m

eans

of E

quat

ion

B2.

1-2,

cp.

[5]:

)t(A

kD

kD

t0,

RCM

eC,

app

!!

!=

(B

2.1-

2)

k e:

envi

ronm

enta

l tra

nsfe

r var

iabl

e [-

], cp

. Equ

atio

n B

2.1-

3

!! "#

$$ %&!! "#

$$ %&'

=re

alre

fe

eT1

T1b

exp

k

(B2.

1-3)

b e:

regr

essi

on v

aria

ble

[K],

cp. C

hapt

er B

2.2.

3

T ref

: st

anda

rd te

st te

mpe

ratu

re [K

], cp

. Cha

pter

B2.

2.3.

4 T r

eal:

tem

pera

ture

of

the

stru

ctur

al e

lem

ent

or t

he a

mbi

ent

air

[K],

cp. C

hapt

er B

2.2.

3.3

DRC

M,0:

chlo

ride

mig

ratio

n co

effic

ient

[mm²/a

], cp

. Cha

pter

B2.

2.1

k t:

trans

fer p

aram

eter

[-],

cp. C

hapt

er B

2.2.

2 A

(t):

subf

unct

ion

cons

ider

ing

the

‘age

ing’

[-],

cp. E

quat

ion

B2.

1-4

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 61

1. F

rom

the

se s

epar

atel

y co

llect

ed p

rofil

es D

app,

C w

as c

alcu

late

d ba

ck

repr

esen

ting

the

time

perio

d be

twee

n st

art

of e

xpos

ure

and

the

mom

ent

of

insp

ectio

n w

ith th

e co

rres

pond

ing

loca

l tem

pera

ture

regi

me,

resp

ectiv

ely.

2.

The

inf

luen

ce o

f th

e lo

cal

tem

pera

ture

was

con

side

red

by m

eans

of

Equa

tion

B2.

1-3.

All

colle

cted

app

aren

t diff

usio

n co

effic

ient

s w

ere

conv

erte

d to

th

ose

base

d on

T

= 20

°C.

This

st

ep

was

m

ade

to

mak

e th

e da

ta

com

para

ble.

3. C

ompa

rabl

e ce

men

t mix

es w

ere

test

ed b

y m

eans

of

the

rapi

d ch

lorid

e m

igra

tion

test

(DRC

M,0)

4. S

epar

ate

regr

essi

on a

naly

sis

wer

e m

ade,

eac

h fo

rced

to th

e in

itial

val

ue

of D

RCM

,0 b

y be

st fi

tting

thro

ugh

the

colle

cted

app

aren

t diff

usio

n co

effic

ient

s.

The

outc

ome

of th

ese

regr

essi

on a

naly

sis

wer

e qu

antif

ied

stoc

hast

ic v

aria

bles

(a

gein

g ex

pone

nt).

5. B

ackw

ards

taki

ng th

e in

itial

val

ue o

f DRC

M,0 th

e en

viro

nmen

tal t

rans

fer

varia

ble

k c a

nd t

he q

uant

ified

age

ing

expo

nent

int

o ac

coun

t (f

or t

he t

ime

bein

g, th

e tra

nsfe

r var

iabl

e k t

is s

et to

kt =

1) a

n ap

pare

nt d

iffus

ion

coef

ficie

nt

DRC

M,0 b

e ca

lcul

ated

(D

RCM

,0, k

e, a

are

stoc

hast

ic v

alue

s, D

app,

C is

a s

toch

astic

va

lue)

. Th

is c

alcu

late

d va

lue

of D

app,

C ag

ain

repr

esen

ts t

he t

ime

perio

d be

twee

n st

art

of e

xpos

ure

and

time

of i

nter

est

as a

sto

chas

tic v

alue

, bu

t co

nsta

nt in

tim

e.

a0 tt

)t(A

!! "#$$ %&

=

(B2.

1-4)

a:

agei

ng e

xpon

ent [

-], c

p. C

hapt

er B

2.2.

2 t 0:

re

fere

nce

poin

t of t

ime

[yea

rs],

cp. C

hapt

er B

2.2.

2

B2.

2 Q

uant

ifica

tion

of p

aram

eter

s

B

2.2.

1 C

hlor

ide

mig

ratio

n co

effic

ient

DR

CM

,0

B2.2

.1.1

G

ener

al

Whi

le a

sses

sing

exi

stin

g st

ruct

ures

the

Dap

p mig

ht b

e de

rived

dire

ctly

from

ch

lorid

e pr

ofile

s tak

en fr

om th

e ch

lorid

e ex

pose

d st

ruct

ure

at d

iffer

ent t

imes

.

Whe

n th

e D

app

is d

eriv

ed f

rom

“ch

lorid

e pr

ofili

ng m

etho

d” (

diff

usio

n un

der “

natu

ral c

ondi

tions

”), t

he le

ngth

of t

he e

xpos

ure

shou

ld b

e su

ffic

ient

ly

long

to

ge

t re

liabl

e da

ta.

A

min

imum

du

ratio

n of

se

vera

l m

onth

s is

re

com

men

ded.

By

prof

iling

at d

iffer

ent a

ges,

info

rmat

ion

on th

e tim

e-de

pend

ency

(Dap

p,C)

m

ight

als

o be

obt

aine

d.

(1

) Th

e C

hlor

ide

Mig

ratio

n C

oeff

icie

nt is

one

of t

he g

over

ning

par

amet

ers

for t

he d

escr

iptio

n of

the

mat

eria

l pro

perti

es in

the

chlo

ride

indu

ced

corr

osio

n m

odel

. Sui

tabl

e da

ta fo

r D

RCM

,0 m

ay b

e ob

tain

ed fr

om li

tera

ture

to b

e us

ed a

s st

artin

g va

riabl

es i

n a

serv

ice

life

desi

gn c

alcu

latio

n. W

hen

wor

king

with

sp

ecia

l con

cret

e m

ixes

with

ver

y lo

w w

ater

/bin

der r

atio

s an

d hi

gh c

onte

nts

of

plas

ticis

er,

quan

titat

ive

resu

lts

from

lit

erat

ure

are

usua

lly

not

avai

labl

e.

Ther

efor

e, it

is e

ssen

tial t

o de

term

ine

the

effic

ienc

y of

the

mat

eria

ls to

be

used

th

roug

h ba

sic

test

s, e.

g. i

n or

der

to i

dent

ify t

he s

uita

bilit

y of

the

des

igne

d co

ncre

te m

ix.

– 62

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

Var

ious

met

hods

to a

sses

s th

e di

ffus

ion

char

acte

ristic

s of

con

cret

e co

uld

be r

ecom

men

ded,

cp.

[13

]. Th

e m

odel

des

crib

ed h

ere

has

been

dev

elop

ed

upon

the

basi

s of t

he R

apid

Chl

orid

e M

igra

tion

Met

hod

(RC

M).

(2

) A

mon

g di

ffer

ent

rapi

d te

st m

etho

ds,

the

Rap

id C

hlor

ide

Mig

ratio

n m

etho

d (R

CM

) re

veal

ed t

o be

the

oret

ical

ly c

lear

, exp

erim

enta

lly s

impl

e an

d re

late

d to

pre

cisi

on (r

epea

tabi

lity)

pro

mis

ing

tool

.

B2.2

.1.2

R

apid

chl

orid

e m

igra

tion

met

hod

See

NT

Bui

ld 4

92, [

21].

B2.2

.1.3

Q

uant

ifica

tion

of th

e ch

lori

de m

igra

tion

coef

ficie

nt

DR

CM

,0

(1)

DRC

M,0 i

s a

norm

ally

dis

tribu

ted

varia

ble

with

a m

ean

valu

e to

be

calc

ulat

ed a

ccor

ding

to E

quat

ion

B2.

2-3.

The

sta

ndar

d de

viat

ion

of D

RCM

,0 c

an

be c

alcu

late

d ac

cord

ing

to E

quat

ion

B2.

2-6,

[5].

m!

=2.0

s

(B2.

2-1)

s: st

anda

rt de

viat

ion

of D

RCM

,0

m: m

ean

valu

e of

DR

CM,0

(2)

DR

CM,0 s

houl

d be

qua

ntifi

ed a

ccor

ding

to

Cha

pter

B2.

2.1.

2. I

f no

tes

t da

ta i

s av

aila

ble,

the

fol

low

ing

liter

atur

e da

ta c

an b

e us

ed f

or o

rient

atio

n pu

rpos

es, c

p. T

able

B2-

1, [5

]. Ta

ble

B2-1

: Q

uant

ifica

tion

of D

RCM

,0 fo

r diff

eren

t con

cret

e m

ixtu

res,

[5]

w/c

eqv.

1

D

RCM

,0 [m

2 /s]

cem

ent t

ype

0.35

0.

40

0.45

0.

50

0.55

0.

60

CEM

I 42

.5 R

C

EM I

42.5

R +

FA

(k =

0.5

) C

EM I

42.5

R +

SF

(k =

2.0

) C

EM II

I/B 4

2.5

n.d.

2 n.

d.2

4.4·

10-1

2 n.

d.2

8.9·

10-1

2 5.

6·10

-12

4.8·

10-1

2 1.

4·10

-12

10.0

·10-1

2 6.

9·10

-12

n.d.

2 1.

9·10

-12

15.8

·10-1

2 9.

0·10

-12

n.d.

2 2.

8·10

-12

19.7

·10-1

2 10

.9·1

0-12

5.3·

10-1

2 3.

0·10

-12

25.0

·10-1

2 14

.9·1

0-12

n.d.

2 3.

4·10

-12

1 equ

ival

ent

wat

er c

emen

t ra

tio,

here

by c

onsi

derin

g FA

(fly

ash

) or

SF

(sili

ca

fum

e) w

ith t

he r

espe

ctiv

e k-

valu

e (e

ffic

ienc

y fa

ctor

). Th

e co

nsid

ered

con

tent

s w

ere:

22

wt.-

%/c

emen

t; SF

: 5 w

t.-%

/cem

ent.

² n.

d. –

chl

orid

e m

igra

tion

coef

ficie

nt D

RC

M,0

has

not

bee

n de

term

ined

for

the

se

conc

rete

mix

es

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 63

B2.2

.1.4

Q

uant

ifica

tion

of D

RC

M,0 fo

r or

ient

atio

n pu

rpos

es

(1)

The

quan

tific

atio

n of

DR

CM,0 c

an b

e su

mm

aris

ed a

s gi

ven

belo

w.

Con

side

rabl

e at

tent

ion

has

to b

e pa

id to

the

units

, as

until

now

DR

CM,0 h

as b

een

dete

rmin

ed u

sing

the

unit

[m2 /s

]. W

hen

trans

latin

g D

RCM

,0 in

to th

e ap

prop

riate

un

it fo

r th

e de

terio

ratio

n m

odel

[m

m2 /y

ears

], a

mul

tiplic

atio

n fa

ctor

has

to b

e ap

plie

d.

DRC

M,0 [m²/s

]: no

rmal

dis

tribu

tion,

m =

va

lues

for

orie

ntat

ion

purp

ose:

Ta

ble

B2-

1

s =

m ·

0.2

(cp.

Equ

atio

n B

2.2-

1)

B2.

2.2

Tra

nsfe

r pa

ram

eter

kt a

nd a

gein

g ex

pone

nt a

B2

.2.2

.1

Gen

eral

(1

) Th

e ap

pare

nt d

iffus

ion

coef

ficie

nt D

app,

C is

sub

ject

to

cons

ider

able

sc

atte

r and

tend

s to

redu

ce w

ith in

crea

sing

exp

osur

e tim

e.

(2)

Taki

ng t

his

into

acc

ount

whe

n m

odel

ling

the

initi

atio

n pr

oces

s, a

trans

fer

para

met

er k

t in

com

bina

tion

with

a s

o-ca

lled

agei

ng e

xpon

ent

a ha

s be

en in

trodu

ced.

B2.2

.2.2

Q

uant

ifica

tion

of a

, kt a

nd t 0

Th

e st

atis

tical

qua

ntiti

es o

f th

e ag

eing

exp

onen

t w

ere

dete

rmin

ed a

s fo

llow

s, fo

r exa

mpl

e fo

r Por

tland

cem

ent c

oncr

etes

:

1. P

ublis

hed

chlo

ride

prof

iling

dat

a (D

app,

C(t i)

) of e

xist

ing

Portl

and

cem

ent

conc

rete

stru

ctur

es (c

ompa

rabl

e w

/c ra

tio, e

. g. 0

.40 ≤

w/c

≤ 0

.60)

exp

osed

in

cond

ition

s su

bmer

ged/

spla

sh/ti

dal w

ere

colle

cted

(am

ong

othe

rs a

lso

data

of

[6])

an

d pl

otte

d vs

. ex

posu

re

time

(tem

pera

ture

ad

just

ed

to

refe

renc

e te

mpe

ratu

re: T

= 2

0 °C

)

2. N

ew c

oncr

ete

mix

es (

Portl

and

cem

ent,

0.40

≤ w

/c ≤

0.6

0) o

f co

m-

para

ble

qual

ity w

ere

test

ed w

ith th

e R

CM

-met

hod

at th

e re

fere

nce

time

t 0.

3. T

he s

prea

d of

the

RC

M-te

st-r

esul

ts a

t the

age

t 0 w

as d

eter

min

ed, R

CM

-re

sults

wer

e pl

otte

d in

to th

e di

agra

mm

e of

pub

lishe

d re

sults

. 4.

A r

egre

ssio

n an

alys

is w

as p

erfo

rmed

. Th

e re

gres

sion

lin

e w

as f

orce

d (b

ound

ary)

thro

ugh

the

data

of n

ew c

oncr

etes

, det

erm

ined

at t

ime

t 0.

(1

) Th

e fu

nctio

nal r

elat

ions

hip

betw

een

expo

sure

per

iod

t and

diff

usio

n co

effic

ient

Dap

p,C

for t

hree

diff

eren

t typ

es o

f cem

ent i

s ill

ustra

ted

in

Tabl

e B

2-2.

Tab

le B

2-2

was

der

ived

for

the

exp

osur

e co

nditi

ons

”spl

ash

zone

”, ”

tidal

zon

e” a

nd ”

subm

erge

d zo

ne”,

but

as

an

assu

mpt

ion

on th

e sa

fe s

ide

it ca

n al

so b

e ap

plie

d fo

r “sp

ray

zone

” an

d “a

tmos

pher

ic z

one”

exp

osur

e, [5

].

– 64

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

The

agei

ng e

xpon

ent a

cor

resp

ondi

ng to

Equ

atio

n B

2.1-

4 an

d Ta

ble

B2-

4 ca

nnot

be

mea

sure

d by

the

rapi

d te

st m

etho

d R

CM

. RC

M re

sults

of c

oncr

etes

te

sted

at

diff

eren

t ag

es w

ill g

ive

an a

gein

g ex

pone

nt w

hich

do

not

fit t

o Eq

uatio

n 2.

1-4

and

Tabl

e B

2-4,

cp.

[11

]. A

gein

g de

term

ined

with

the

RC

M

met

hod

repr

esen

ts o

nly

a ce

rtain

por

tion

of t

he t

otal

eff

ect

(incr

ease

of

chlo

ride

pene

tratio

n re

sist

ance

due

to o

ngoi

ng h

ydra

tion

of c

oncr

ete)

Tabl

e B2

-2:

Resu

lt of

the

stat

istic

al q

uant

ifica

tion

of th

e va

riab

le a

co

ncre

te

agei

ng e

xpon

ent a

5 [-]

Port

land

cem

ent c

oncr

ete

CEM

I; 0

.40 ≤

w/c

≤ 0

.60

Bet

a (m

1 =0.3

0; s2 =

0.12

; a3 =

0.0;

b4 =

1.0)

Port

land

fly

ash

cem

ent c

oncr

ete

f ≥ 0

.20

· z; k

= 0

.50;

0.4

0 ≤

w/c

eqv. ≤

0.6

2 B

eta

(m1 =0

.60;

s2 = 0.

15; a

3 = 0.

0; b

4 = 1.

0)

Blas

t fur

nace

slag

cem

ent c

oncr

ete

CEM

III/B

; 0.4

0 ≤

w/c

≤ 0

.60

Bet

a (m

1 =0.4

5; s2 =

0.20

; a3 =

0.0;

b4 =

1.0)

1 m: m

ean

valu

e 2 s

: sta

ndar

d de

viat

ion

3 a: l

ower

bou

nd

4 b: u

pper

bou

nd

5 qua

ntifi

catio

n ca

n be

app

lied

for t

he e

xpos

ure

clas

ses:

spl

ash

zone

, tid

al z

one

and

subm

erge

d zo

ne

(2)

To c

arry

out

the

quan

tific

atio

n of

a, t

he tr

ansf

er v

aria

ble

k t w

as s

et to

k t

= 1

:

k t [-

]: co

nsta

nt, v

alue

: 1

Mat

eria

l pe

rfor

man

ce c

an a

dditi

onat

ely

be t

este

d at

a h

ighe

r de

gree

of

mat

urity

(i.e

. t 0

= 56

d o

r t 0

= 90

d)

to v

erify

the

pos

itive

age

eff

ect

of

puzz

olan

ic a

dditi

ons

on t

he p

enet

ratio

n re

sist

ance

of

conc

rete

. One

hav

e to

ke

ep in

min

d, th

at th

e tim

e de

pend

ent d

ecre

ase

of D

RC

M w

ill o

nly

repr

esen

t a

certa

in p

ortio

n (h

ydra

tion)

of t

he to

tal a

gein

g ef

fect

.

(3

) Th

e re

fere

nce

poin

t of

tim

e w

as c

hose

n to

be

t 0 =

0.07

67 y

ears

(t

0 = 2

8 d)

. t 0

[yea

rs]:

cons

tant

, val

ue: 0

.076

7

B2.

2.3

Env

iron

men

tal t

rans

fer

vari

able

ke

B2.2

.3.1

G

ener

al

(1)

The

envi

ronm

enta

l tra

nsfe

r va

riabl

e k e

has

bee

n in

trodu

ced

in o

rder

to

take

the

influ

ence

of

T rea

l on

the

diff

usio

n co

effic

ient

DEf

f,C in

to a

ccou

nt. T

he

influ

ence

of

T rea

l on

the

chl

orid

e di

ffus

ion

coef

ficie

nt i

s de

scrib

ed b

y th

e A

rrhe

nius

-equ

atio

n (E

quat

ion

B2.

2-7)

, cp.

[5]

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 65

)T1

T1(

bex

p(k

real

ref

ee

!=

(2

.2-2

)

k e:

envi

ronm

enta

l tra

nsfe

r var

iabl

e [-

] b e

: re

gres

sion

var

iabl

e [K

] T r

ef:

refe

renc

e te

mpe

ratu

re [K

] T r

eal:

tem

pera

ture

of t

he st

ruct

ural

ele

men

t or t

he a

mbi

ent a

ir [K

]

(2)

In

orde

r to

de

term

ine

the

envi

ronm

enta

l tra

nsfe

r va

riabl

e k e

m

athe

mat

ical

ly

acco

rdin

g to

Eq

uatio

n B

2.2-

7,

T rea

l, T r

ef

(sta

ndar

d te

st

tem

pera

ture

, Tre

f = 2

93 K

(20°

C))

and

the

para

met

er b

e ha

ve to

be

dete

rmin

ed.

B2.2

.3.2

R

egre

ssio

n va

riab

le b

e D

ata

was

take

n fr

om P

age

[14]

to q

uant

ify th

e re

gres

sion

var

iabl

e b e

.

(1)

The

valu

es o

f th

e re

gres

sion

var

ible

be

vary

bet

wee

n b e

= 3

500

K a

nd

b e =

550

0 K

. be c

an b

e de

scrib

ed a

s fo

llow

s, c

p. [5

]: b e

[K

]: no

rmal

dis

tribu

tion,

m

= 4

800

s =

700

B2

.2.3

.3

Tem

pera

ture

Tre

al

(1) T

he te

mpe

ratu

re o

f the

stru

ctur

al e

lem

ent o

r the

am

bien

t air

is d

escr

ibed

by

mea

ns o

f th

e va

riabl

e T r

eal.

T rea

l can

be

dete

rmin

ed b

y us

ing

avai

labl

e da

ta

from

a w

eath

er st

atio

n ne

arby

.

T rea

l [K

]: no

rmal

dis

tribu

tion,

m

=

eval

uate

d w

eath

er st

atio

n da

ta

s =

eval

uate

d w

eath

er st

atio

n da

ta

B2.2

.3.4

St

anda

rd te

st te

mpe

ratu

re T

ref

(1)

The

stan

dard

test

tem

pera

ture

Tre

f has

bee

n de

fined

as

293

K (

= 20

°C)

and

can

be c

onsi

dere

d as

con

stan

t. T r

ef [K

]: co

nsta

nt p

aram

eter

, val

ue:

293

B2.

2.4

Initi

al c

hlor

ide

cont

ent o

f the

con

cret

e C

0

(1

) Th

e ch

lorid

e co

nten

t in

the

con

cret

e is

not

onl

y ca

used

by

chlo

ride

ingr

ess

from

the

sur

face

, bu

t ca

n al

so b

e du

e to

chl

orid

e co

ntam

inat

ed

aggr

egat

es,

cem

ents

or

wat

er u

sed

for

the

conc

rete

pro

duct

ion.

Esp

ecia

lly

– 66

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

whe

n bu

ildin

g in

mar

ine

envi

ronm

ent,

the

chlo

ride

cont

ent o

f fin

e an

d co

arse

ag

greg

ates

and

wat

er c

an b

e co

nsid

erab

le.

(2) I

n co

ntra

st to

the

chlo

ride

prof

iles

resu

lting

from

chl

orid

e in

gres

s fr

om

the

surf

ace,

the

dist

ribut

ion

of th

e in

itial

chl

orid

e co

nten

t can

be

assu

med

to b

e un

iform

ove

r the

who

le c

ross

sect

ion

B2.

2.5

Con

tent

of c

hlor

ides

at t

he su

bstit

ute

surf

ace

Cs, Δ

x

B2

.2.5

.1

Gen

eral

W

hen

asse

ssin

g ex

istin

g st

ruct

ures

ex

pose

d to

a

chlo

ride

rich

envi

ronm

ent,

the

chlo

ride

conc

entra

tion

on t

he s

urfa

ce (

or t

he s

ubst

itute

su

rfac

e) m

ight

be

deriv

ed d

irect

ly fr

om c

hlor

ide

prof

iles f

rom

the

stru

ctur

e.

(1

) The

chl

orid

e co

nten

t CS

at th

e co

ncre

te s

urfa

ce a

s w

ell a

s th

e su

bstit

ute

surf

ace

cont

ent

CS,Δ

x at

a d

epth

Δx

are

varia

bles

tha

t de

pend

on

mat

eria

l pr

oper

ties a

nd o

n ge

omet

rical

and

env

ironm

enta

l con

ditio

ns.

(2)

Mat

eria

l pro

perti

es th

at n

eed

to b

e ta

ken

into

acc

ount

are

prim

arily

the

type

of b

inde

r and

the

conc

rete

com

posi

tion

itsel

f. In

con

sequ

ence

the

chlo

ride

cont

ent C

S at

the

conc

rete

sur

face

as

wel

l as

the

subs

titut

e su

rfac

e ch

lorid

e co

nten

t C

S,Δ

x ar

e tim

e de

pend

ent

as w

ell.

How

ever

ther

e ar

e in

dica

tions

that

thes

e bu

ilt-u

p pe

riods

are

ofte

n re

lativ

ely

shor

t. Fo

r lon

g te

rm p

redi

ctio

ns th

is ti

me

depe

nden

cy is

for p

ract

ical

reas

ons

not i

nclu

ded.

(3

) The

mos

t im

porta

nt v

aria

ble

desc

ribin

g th

e en

viro

nmen

tal i

mpa

ct is

the

equi

vale

nt

chlo

ride

conc

entra

tion

of

the

ambi

ent

solu

tion.

B

esid

es,

the

geom

etry

of t

he s

truct

ural

ele

men

t and

the

dist

ance

to th

e ch

lorid

e so

urce

can

be

of s

igni

fican

ce.

(4)

All

the

varia

bles

men

tione

d ab

ove

have

a d

irect

impa

ct o

n th

e ch

lorid

e co

nten

t at t

he c

oncr

ete

surf

ace

and

on th

e su

bstit

ute

surf

ace

cont

ent C

S,Δ

x. Th

e in

form

atio

n ne

eded

to

dete

rmin

e C

S an

d C

S,Δ

x is

illu

stra

ted

in t

he f

low

cha

rt gi

ven

in F

igur

e B

2.2-

1, c

p. [5

].

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 67

Envi

ronm

enta

l par

amet

er(E

P)-C

eqv

Mat

eria

l par

amet

ers

(MP)

-Con

cret

e C

ompo

sitio

n-c

hlor

ide

-ads

orpt

ion

-isot

herm

es

Func

tiona

l cor

rela

tion

betw

een

EP a

nd M

P

Chl

orid

e sa

tura

tion

conc

entra

tion

CS,

0

Tran

sfer

func

tions

con

side

ring

the

elem

ent

‘sge

omet

ryan

dex

posu

re c

ondi

tions

-C

hlor

ide

conc

entra

tion

at th

e co

ncre

te s

urfa

ce C

S-

subs

titut

e ch

lorid

e su

rface

con

cent

ratio

n C

S,Äx

4312

Fi

gure

B2.

2-1:

Inf

orm

atio

n ne

eded

to

dete

rmin

e th

e va

riab

les

CS

and

CS,Δ

x

B2.2

.5.2

Po

tent

ial c

hlor

ide

impa

ct C

eqv

(1)

The

pote

ntia

l ch

lorid

e im

pact

dep

ends

on

the

chlo

ride

cont

ent

of t

he

chlo

ride

sour

ce.

For

mar

ine

or c

oast

al s

truc

ture

s th

e po

tent

ial

chlo

ride

impa

ct C

eqv i

s id

entic

al w

ith th

e na

tura

l chl

orid

e co

nten

t of s

ea w

ater

C0,

M, c

p.

Equa

tion

B2.

2-3.

C

eqv =

C0,

M

(B2.

2-3)

Ceq

v: po

tent

ial c

hlor

ide

impa

ct [g

/l]

C0,

M:

natu

ral c

hlor

ide

cont

ent o

f sea

wat

er [g

/l]

– 68

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

(2)

The

chlo

ride

conc

entra

tion

of c

hlor

ide

cont

amin

ated

wat

er d

ue t

o de

-ic

ing

salt

C0,

R pr

esen

ts a

sig

nific

antly

lar

ger

varia

tion

than

sea

wat

er w

ith a

co

mpa

rabl

e na

tura

l ch

lorid

e co

nten

t C

0,M

. An

adeq

uate

qua

ntifi

catio

n of

Ceq

v tu

rns

out

to b

e ve

ry c

ompl

ex, a

s fo

r st

ruct

ures

tha

t ar

e su

bjec

ted

to c

hlor

ide

impa

ct d

ue to

de-

icin

g sa

lt, th

e va

riabl

es d

escr

ibin

g th

e am

ount

of d

e-ic

ing

salt

appl

ied

are

hard

to q

uant

ify, c

p. E

quat

ion

B2.

2-4.

i,S

i,R

R,0eq

vhc

nC

C!

==

(B

2.2-

4)

C0,

R:

aver

age

chlo

ride

cont

ent o

f the

chl

orid

e co

ntam

inat

ed w

ater

[g/l]

n:

av

erag

e nu

mbe

r of s

altin

g ev

ents

per

yea

r [-]

c R,i:

aver

age

amou

nt o

f chl

orid

e sp

read

with

in o

ne sp

read

ing

even

t [g/

m²]

h S,i:

amou

nt o

f w

ater

fro

m r

ain

and

mel

ted

snow

per

spr

eadi

ng p

erio

d [l/

m²]

B2.2

.5.3

M

ater

ial p

aram

eter

s

(1

) The

follo

win

g m

ater

ial c

hara

cter

istic

s ha

ve to

be

dete

rmin

ed i

n or

der t

o ca

lcul

ate

the

chlo

ride

satu

ratio

n co

nten

t CS,

0: –

chlo

ride

adso

rptio

n is

othe

rms f

or th

e ty

pe o

f cem

ent t

o be

use

d

– co

ncre

te c

ompo

sitio

n

(2

) The

se c

hara

cter

istic

s ha

ve a

pro

noun

ced

influ

ence

on

both

the

phys

ical

an

d th

e ch

emic

al b

indi

ng c

apac

ity o

f the

mat

eria

l and

the

pore

vol

ume

that

has

to

be

satu

rate

d to

the

poi

nt w

here

the

chl

orid

e co

ncen

tratio

n in

the

por

e so

lutio

n is

bal

ance

d w

ith th

e ex

posu

re e

nviro

nmen

t.

B2.2

.5.4

C

hlor

ide

satu

ratio

n co

ncen

trat

ion

CS,

0 C

alcu

latio

n is

acc

ordi

ng T

ang

[10]

.

(1)

Onc

e th

e bi

nder

-spe

cific

chl

orid

e-ad

sorp

tion-

isot

herm

s, t

he c

oncr

ete

com

posi

tion

and

the

orde

r of m

agni

tude

of t

he im

pact

leve

l (po

tent

ial c

hlor

ide

impa

ct C

eqv. [g

/l]) a

re k

now

n, th

e ch

lorid

e sa

tura

tion

conc

entra

tion

CS,

0 can

be

calc

ulat

ed.

(2) F

igur

e B

2.2-

2 sh

ows

the

corr

elat

ion

betw

een

CS,

0 and

Ceq

v for

a P

ortla

nd

cem

ent

conc

rete

(c

= 30

0 kg

/m³,

w/c

= 0

.50)

. Fo

r C

eqv =

30

g/l,

the

chlo

ride

satu

ratio

n co

ncen

tratio

n C

S,0 w

as d

eter

min

ed to

be

CS,

0 = 2

.78

wt.-

%/c

emen

t.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 69

Fi

gure

B2.

2-2:

Sur

face

chl

orid

e co

ncen

trat

ion

CS,

0 in

dep

ende

ncy

on

Ceq

v for

a P

ortla

nd c

emen

t con

cret

e Es

peci

ally

in

expo

sure

env

ironm

ents

whe

re c

hlor

ides

are

not

con

tinuo

usly

af

fect

ing

the

stru

ctur

e tim

e de

pend

enci

es o

f C

S ar

e ob

serv

ed. T

o ge

t a

non

real

istic

vie

w,

a co

nsid

erat

ion

of a

tim

e de

pend

ent

varia

ble

CS

may

be

appr

opria

te a

s so

on a

s th

e co

rres

pond

ing

mod

ellin

g an

d qu

antif

icat

ion

is va

lidat

ed.

(3

) U

nder

a c

ontin

uous

chl

orid

e im

pact

of

cons

tant

con

cent

ratio

n, t

he

chlo

ride

satu

ratio

n co

ncen

tratio

n C

S,0

on th

e co

ncre

te s

urfa

ce is

rea

ched

ofte

n in

rel

ativ

e sh

ort

time

perio

ds c

ompa

red

to t

he d

esig

n se

rvic

e lif

e (C

S,0 =

CS)

se

e fo

r ex

ampl

e [2

2].

Bas

ed o

n th

ese

resu

lts,

the

sim

plifi

catio

n th

at t

he

varia

ble

CS i

s fr

om th

e be

ginn

ing

cons

tant

with

tim

e ca

n be

con

clud

ed e

. g. f

or

conc

rete

con

tinuo

usly

exp

osed

to s

ea w

ater

. Thi

s si

mpl

ifica

tion

is o

n th

e sa

fe

side

.

B2

.2.5

.5

Tran

sfer

func

tion Δ

x

(1

) If

stru

ctur

al e

lem

ents

are

int

erm

itten

tly e

xpos

ed t

o a

solu

tion

of

cons

tant

or

vary

ing

chlo

ride

conc

entra

tion,

tra

nsfe

r fu

nctio

ns h

ave

to b

e fo

rmul

ated

. A

st

ruct

ural

el

emen

t w

hich

is

in

term

itten

tly

load

ed

with

a

chlo

ride-

cont

amin

ated

sol

utio

n, i

nter

rupt

ed b

y dr

y pe

riods

of

air

stor

age

durin

g w

hich

the

wat

er i

n th

e co

ncre

te c

lose

to

the

surf

ace

evap

orat

es,

any

– 70

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

subs

eque

nt r

e-w

ettin

g pr

ovok

es a

pro

cess

of

capi

llary

suc

tion.

Com

pare

d to

di

ffus

ion

proc

esse

s, ca

pilla

ry a

ctio

n le

ads

to a

rapi

d tra

nspo

rt of

chl

orid

es in

to

the

conc

rete

up

to a

dep

th Δ

x w

here

the

chl

orid

es c

an a

ccum

ulat

e w

ith t

ime

until

they

cre

ate

a sa

tura

tion

conc

entra

tion

CS,Δ

x = C

S,0.

(2)

The

varia

ble Δ

x ca

n be

des

crib

ed b

y a

beta

-dis

tribu

tion.

Und

er s

plas

h-co

nditi

ons,

the

aver

age

dept

h Δ

x up

to w

hich

chl

orid

es c

an r

apid

ly p

enet

rate

ca

n be

lim

ited

to 6

.0 m

m ≤

Δx ≤

11.0

mm

.

(3)

In a

dis

tanc

e to

the

roa

d su

rfac

e la

rger

tha

n 1.

5 m

(sp

ray

zone

) th

e fo

rmat

ion

of a

con

vect

ion

zone

can

not b

e de

tect

ed a

ny m

ore,

Δx

= 0.

(4)

For

parts

of

a st

ruct

ure

whi

ch a

re c

onst

antly

sub

mer

ged

the

chlo

ride

surf

ace

conc

entra

tion

CS

is

equa

l to

the

chl

orid

e sa

tura

tion

conc

entra

tion

whi

ch is

dev

elop

ed ra

ther

spo

ntan

eous

ly. T

hus,

for t

his

spec

ial c

ase

no tr

ansf

er

func

tion

or t

rans

fer

para

met

er i

s ne

eded

. In

case

the

stru

ctur

e is

exp

osed

to

tidal

con

ditio

ns,

the

dept

h Δ

x up

to

whi

ch a

dev

iatio

n fr

om t

he d

iffus

ion

beha

viou

r acc

ordi

ng to

Fic

k’s s

olut

ion

exis

ts h

as to

be

quan

tifie

d.

(5) T

o su

mm

aris

e, fo

r the

diff

eren

t typ

es o

f exp

osur

e co

nditi

ons Δ

x ca

n be

qu

antif

ied

as fo

llow

s:

Δx

[mm

]:

beta

dis

tribu

ted

s = 5

.6

- for

spla

sh c

ondi

tions

m

= 8

.9

(spl

ash

road

env

ironm

ent,

a =

0.0

spla

sh m

arin

e en

viro

nmen

t) b

= 50

.0

Δx

[mm

]: co

nsta

nt p

aram

eter

, val

ue: 0

- f

or su

bmer

ged

mar

ine

stru

ctur

es

- for

leak

age

due

to se

awat

er

and

cons

tant

gro

und

wat

er le

vel

- for

spra

y co

nditi

ons

(spr

ay r

oad

envi

ronm

ent,

spra

y m

arin

e en

viro

nmen

t)

Δx

[mm

]:

beta

dis

tribu

ted,

m, s

, a a

nd

- for

leak

age

due

to

b to

be

dete

rmin

ed

vary

ing

grou

ndw

ater

leve

l

- for

tida

l con

ditio

ns

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 71

B2.2

.5.6

C

hlor

ide

surf

ace

cont

ent C

S res

p. su

bstit

ute

chlo

ride

su

rfac

e co

nten

t CS,Δ

x

(1

) The

chl

orid

e co

ntam

inat

ion

of a

stru

ctur

al e

lem

ent i

n th

e sp

lash

zon

e or

in

the

spr

ay z

one

incr

ease

s w

ith d

ecre

asin

g di

stan

ce t

o th

e ch

lorid

e so

urce

. Th

is h

as b

een

verif

ied

for b

oth

horiz

onta

l and

ver

tical

dis

tanc

es.

(2)

Alth

ough

C

S,Δ

x(t)

theo

retic

ally

is

a

time-

depe

nden

t va

riabl

e,

for

sim

plifi

catio

n pu

rpos

es it

is g

oing

to b

e co

nsid

ered

as

time

inde

pend

ent.

(3) F

or a

stru

ctur

e of

the

follo

win

g ch

arac

teris

tics,

– lo

catio

n: u

rban

and

rura

l are

as in

Ger

man

y

– tim

e of

exp

osur

e of

the

cons

ider

ed st

ruct

ure:

5-4

0 ye

ars

– co

ncre

te: C

EM I,

w/c

= 0

.45

up to

w/c

= 0

.60,

th

e m

axim

um c

hlor

ide

cont

ent

in t

he c

oncr

ete

Cm

ax c

an b

e de

term

ined

ac

cord

ing

to E

quat

ion

B2.

2-5,

cp.

[15]

:

()

h18

7.0

aa

ha

max

x)1

x(00

065

.0)1

xln

(05

1.0

465

.0)

x,x(

C!

+!

"+

!"

="

(B

2.2-

5)

Cm

ax:

max

imum

con

tent

of

chlo

rides

w

ithin

the

chl

orid

e pr

ofile

, [w

t.-%

/con

cret

e]

x a:

horiz

onta

l dis

tanc

e fr

om th

e ro

adsi

de [c

m]

x h:

heig

ht a

bove

road

surf

ace

[cm

]

(4)

Equa

tion

B2.

2-5

was

der

ived

em

piric

ally

for

the

con

ditio

ns g

iven

ab

ove.

For

stru

ctur

es o

f di

ffer

ent

expo

sure

or

conc

rete

mix

es,

an e

quiv

alen

t eq

uatio

n ha

s to

be d

eter

min

ed.

(5) F

or s

truct

ures

und

er s

plas

h co

nditi

ons,

CS,Δ

x is

defin

ed a

s th

e m

axim

um

chlo

ride

cont

ent

Cm

ax. A

s te

sts

yiel

ded

that

for

con

cret

e at

a h

eigh

t of

mor

e th

an 1

.50

m a

bove

the

roa

d (s

pray

zon

e) n

o Δ

x de

velo

ps,

Cm

ax e

qual

s th

e ch

lorid

e co

nten

t at t

he c

oncr

ete

surf

ace

CS.

For t

hese

exp

osur

es C

S,Δ

x res

p. C

S ca

n be

qua

ntifi

ed a

s fo

llow

s:

CS,Δ

x res

p. C

S [w

t.-%

/cem

ent]:

no

rmal

dis

tribu

tion,

m =

cp.

Equ

atio

n B

2.2-

10 o

r equ

ival

ent

s = 0

.75

m

– 72

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

For

subm

erge

d st

ruct

ures

, the

sur

face

con

tent

CS

is e

qual

to

the

chlo

ride

satu

ratio

n co

nten

t CS,

0

B

2.2.

6 C

ritic

al c

hlor

ide

cont

ent C

crit

(1) I

n th

is c

onte

xt, t

he c

ritic

al c

hlor

ide

cont

ent C

crit i

s def

ined

as

follo

ws:

“The

to

tal

chlo

ride

cont

ent

whi

ch

lead

s to

the

de

pass

ivat

ion

of

the

rein

forc

emen

t sur

face

and

initi

atio

n of

iron

dis

solu

tion,

irre

spec

tive

of w

heth

er

it le

ads t

o vi

sibl

e co

rros

ion

dam

age

on th

e co

ncre

te su

rfac

e.”

This

val

ue is

reco

mm

ende

d fo

r ord

inar

y m

ild s

teel

. If a

noth

er s

teel

qua

lity

is u

sed

(e. g

. sta

inle

ss s

teel

), m

ean

valu

e, s

tand

ard

devi

atio

n, lo

wer

and

upp

er

boun

dary

of C

crit u

sual

ly a

re o

n a

high

er le

vel.

(2

) The

low

er b

ound

ary

of th

e va

riabl

e C

crit

has

been

spe

cifie

d as

CCr

it,m

in =

0.

20 w

t.-%

/cem

ent.

As

the

low

er b

ound

ary

is k

now

n an

d di

ffer

s fro

m 0

, it

seem

s ad

visa

ble

to u

se a

rest

ricte

d di

strib

utio

n fo

r the

des

crip

tion

of th

e cr

itica

l ch

lorid

e co

nten

t cau

sing

cor

rosio

n. A

bet

a-di

strib

utio

n w

ith a

low

er b

ound

ary

of

CCr

it,m

in =

0.2

0 w

t.-%

/cem

ent

yiel

ds a

suf

ficie

ntly

goo

d de

scrip

tion

of t

he t

est

resu

lts, c

p. [1

6]. T

he m

ean

valu

e of

Ccr

it. w

as s

et to

CCr

it,m

= 0

.60

wt.-

%/c

.

(3) T

he c

ritic

al c

hlor

ide

cont

ent C

Crit.

can

be

quan

tifie

d as

follo

ws:

C

Crit

[wt.-

%/c

emen

t]:

beta

dis

tribu

ted,

m

=

0.6

s =

0.15

a

= 0.

2 b

= 2.

0

B3

Full

prob

abili

stic

des

ign

met

hod

for

fros

t ind

uced

inte

rnal

dam

age

– un

crac

ked

conc

rete

B

3.1

Lim

it st

ate

equa

tion

for

the

fros

t dam

age

of a

uni

t cel

l

(1

) A

ful

l pro

babi

listic

des

ign

appr

oach

for

the

mod

ellin

g of

fro

st in

duce

d in

tern

al d

amag

e of

unc

rack

ed c

oncr

ete

has

been

dev

elop

ed w

ithin

a s

erie

s of

re

sear

ch p

roje

ct. I

t is

bas

ed o

n th

e lim

it-st

ate

Equa

tion

B3.

1-1,

in

whi

ch t

he

criti

cal d

egre

e of

sat

urat

ion

S CR

is c

ompa

red

to th

e ac

tual

deg

ree

of s

atur

atio

n S A

CT(t)

at a

cer

tain

poi

nt o

f tim

e t,

durin

g a

certa

in ta

rget

serv

ice

life

t SL.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 73

()

)t

(tS

S)

t(t

S,S

gSL

AC

TC

RSL

AC

TC

R<

!=

<

(B3.

1-1)

S CR:

cr

itica

l deg

ree

of sa

tura

tion

[-],

cp. B

3.2.

1 t SL

: de

sign

serv

ice

life

[yea

rs],

cp. B

3.2.

2

S ACT

(t):

actu

al d

egre

e of

satu

ratio

n at

the

time

t [-]

, cp.

B3.

2.3

t: tim

e [y

ears

]

(2)

Equa

tion

B3.

1-1

is b

ased

on

wat

er a

bsor

ptio

n in

to th

e ai

r-vo

id s

yste

m

as th

e pr

evai

ling

trans

port

mec

hani

sm w

ithin

the

conc

rete

. It i

s as

sum

ed th

at

the

criti

cal

degr

ee o

f sa

tura

tion

thro

ugh

the

mat

eria

l is

a c

onst

ant

mat

eria

l pr

oper

ty,

alth

ough

the

crit

ical

deg

ree

of s

atur

atio

n fo

r a

conc

rete

dur

ing

serv

ice

life

may

be

a fu

nctio

n of

num

erou

s var

iabl

es.

B3.

2 Q

uant

ifica

tion

of p

aram

eter

s

B

3.2.

1 C

ritic

al d

egre

e of

satu

ratio

n S C

R

B3.2

.1.1

G

ener

al

The

criti

cal

degr

ee o

f sa

tura

tion

S CR

for

a pa

rticu

lar

conc

rete

can

not

be

estim

ated

fro

m S

CR f

or a

noth

er c

oncr

ete.

The

abs

olut

e le

vels

of

S CR

for

diff

eren

t co

ncre

te c

anno

t be

com

pare

d. S

CR c

an o

nly

be c

ompa

red

to t

he

actu

al d

egre

e of

satu

ratio

n S A

CT fo

r the

sam

e co

ncre

te.

(1

) The

crit

ical

deg

ree

of s

atur

atio

n S C

R is

det

erm

ined

from

a la

bora

tory

test

fo

r the

act

ual c

oncr

ete

In th

e te

st a

ser

ies

of s

peci

men

s ar

e va

cuum

sat

urat

ed a

nd d

ried

to v

ario

us

degr

ees

of s

atur

atio

n be

twee

n 0.

7 an

d 1.

0. T

he s

peci

men

s ar

e se

aled

and

fr

ozen

, on

ce o

r w

ith s

ever

al f

reez

e-th

aw c

ycle

s. T

he d

ynam

ic E

-mod

ulus

is

dete

rmin

ed

for

each

sp

ecim

en

befo

re

and

afte

r th

e fr

eeze

-thaw

cy

cles

. A

ltern

ativ

ely,

the

dila

tatio

n du

ring

one

free

ze-th

aw c

ycle

is m

easu

red

for

the

serie

s of

spe

cim

ens

with

diff

eren

t deg

rees

of

satu

ratio

n. F

rom

the

chan

ges

in

E-m

odul

us o

r di

lata

tion

as a

fun

ctio

n of

deg

ree

of s

atur

atio

n, t

he c

ritic

al

degr

ee o

f sa

tura

tion

is d

eter

min

ed, w

here

the

fros

t dam

age

star

ts to

occ

ur, c

p.

Figu

re B

3.2-

1.

– 74

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

Fi

gure

B3.

2-1:

Exa

mpl

e of

det

erm

inat

ion

of t

he c

ritic

al d

egre

e of

sa

tura

tion

by

mea

suri

ng

the

chan

ge

in

dyna

mic

E-

mod

ulus

afte

r 7 o

r 76

free

ze-th

aw c

ycle

s,[1

7]

(2)

The

conc

rete

com

posi

tion,

inc

ludi

ng t

he a

ir-vo

id s

yste

m,

is c

hose

n du

ring

the

desi

gn p

hase

. D

ue t

o co

nstru

ctio

n pr

actic

es t

he a

ctua

l co

ncre

te

com

posi

tion

does

var

y an

d th

eref

ore

has

to b

e co

nsid

ered

as

a st

ocha

stic

va

riabl

e ra

ther

tha

n a

cons

tant

val

ue. T

he f

ollo

win

g di

strib

utio

n ty

pes

are

in

prin

cipl

e ap

prop

riate

for t

he d

escr

iptio

n of

the

crit

ical

deg

ree

of s

atur

atio

n an

d its

var

iabi

lity:

Nor

mal

dis

tribu

tion

– B

eta-

dist

ribut

ion

– W

eibu

ll(m

in)-

dist

ribut

ion

– Lo

gnor

mal

dis

tribu

tion

– N

evill

e di

strib

utio

n

B3.2

.1.2

Q

uant

ifica

tion

of S

CR

(1) d

istri

butio

n fu

nctio

n:

Nor

mal

dis

tribu

tion

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 75

See

Cha

pter

B1.

2.2.

B3.

2.2

Des

ign

serv

ice

life

t SL

B3.

2.3

Act

ual d

egre

e of

satu

ratio

n S A

CT

B3.2

.3.1

G

ener

al

(1)

The

envi

ronm

enta

l ac

tion

S ACT

con

side

rs t

he w

ater

abs

orpt

ion

of t

he

conc

rete

, inc

ludi

ng th

e w

ater

abs

orpt

ion

in th

e ai

r-vo

id s

yste

m.

(2) T

he e

nviro

nmen

tal a

ctio

n S A

CT c

an b

e de

scrib

ed b

y m

eans

of E

quat

ion

B3.

2-1:

d eq

nSL

ACT

te

S)

t(t

S!

+=

<

(B3.

2-1)

t eq:

equi

vale

nt ti

me

of w

etne

ss [d

ays]

, cf.

B3.

2.3.

2

S n, e

, d:

mat

eria

l par

amet

ers,

expo

nent

s, re

spec

tivel

y, c

p. B

3.2.

3.3

B3.2

.3.2

Eq

uiva

lent

tim

e of

suct

ion

t eq

(1)

The

equi

vale

nt t

ime

of s

uctio

n is

com

plet

ely

depe

nden

t on

the

mic

ro

clim

ate

at th

e co

ncre

te s

urfa

ce, s

ee F

igur

e 3.

2-2.

Dec

isiv

e pa

ram

eter

s ar

e ho

w

the

surf

ace

is e

xpos

ed t

o ra

in o

r sp

lash

, the

fre

quen

cy a

nd d

urat

ion

and

the

cond

ition

s fo

r dry

ing.

Tab

le B

3-1

give

s pr

ovis

iona

l tim

es o

f w

etne

ss fo

r som

e im

porta

nt c

ases

. Ta

ble

B3-1

: Pr

ovis

iona

l equ

ival

ent t

imes

of w

etne

ss, [

17]

Expo

sure

Eq

uiva

lent

tim

e of

wet

ness

C

omm

ents

Subm

erge

d su

rfac

e t SL

Hor

izon

tal s

urfa

ce

4 m

onth

s Su

rfac

es, w

et d

urin

g a

win

ter

Ver

tical

surf

ace1

1 w

eek

Rai

n ex

pose

d su

rfac

es th

at c

an d

ry o

ut

1 Orie

ntat

ion

agai

nst p

reva

iling

driv

ing

rain

dire

ctio

n an

d su

nshi

ne m

ust b

e co

nsid

ered

.

– 76

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

(2)

Fi

gure

B3.

2-2:

The

ac

tual

m

oist

ure

leve

l in

un

it ce

lls

with

in

the

stru

ctur

e is

diff

eren

t in

diff

eren

t ce

lls d

epen

ding

on

thei

r lo

catio

n an

d it

vari

es o

ver

time.

(a)

Hyd

raul

ic

stru

ctur

e co

nsta

ntly

suc

king

wat

er. (

b) F

açad

e el

emen

t pe

riod

ical

ly e

xpos

ed to

rain

, [17

]

B3.2

.3.3

M

ater

ial p

aram

eter

s Sn,

e an

d d

(1)

The

mat

eria

l pa

ram

eter

s S n

, e

and

d de

scrib

es t

he w

ater

abs

orpt

ion

char

acte

ristic

s of

the

con

cret

e w

hen

expo

sed

to w

ater

. Th

e pa

ram

eter

s ar

e de

term

ined

for t

he a

ctua

l con

cret

e w

ith a

long

term

cap

illar

y su

ctio

n te

st

S n is

the

degr

ee o

f sat

urat

ion

at th

e kn

ick

poin

t in

a √t

-sca

le d

iagr

am.

Para

met

ers

e an

d d

desc

ribes

the

slo

pe o

f th

e w

ater

abs

orpt

ion

afte

r th

e kn

ick

poin

t, in

a lo

g-sc

ale

diag

ram

.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 77

Fi

gure

B3.

2-3:

Res

ults

fr

om

a te

st

of

shor

t an

d lo

ng

term

w

ater

ab

sorp

tion,

[17]

B3.

2.4

Los

s of m

echa

nica

l pro

pert

ies d

ue to

inte

rnal

fr

ost d

amag

e

B3

.2.4

.1

Gen

eral

(1

) Fo

r th

e m

odel

intro

duce

d ab

ove,

the

cons

eque

nces

of

inte

rnal

fro

st

dam

age

is i

nclu

ded

in th

e tra

ditio

nal

desi

gn p

roce

ss, w

ith c

hang

es

of m

echa

nica

l mat

eria

l pro

perti

es, s

uch

as e

last

ic m

odul

us, s

treng

th

and

bond

stre

ngth

bet

wee

n co

ncre

te a

nd re

info

rcem

ent.

– 78

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

B4

Full

prob

abili

stic

des

ign

met

hod

for

salt-

fros

t ind

uced

surf

ace

scal

ing

– un

crac

ked

conc

rete

B

4.1

Lim

it st

ate

equa

tion

for

the

salt-

fros

t in

duce

d su

rfac

e sc

alin

g

(1

) A

ful

l pr

obab

ilist

ic d

esig

n ap

proa

ch f

or t

he m

odel

ling

of s

alt-f

rost

in

duce

d su

rfac

e sc

alin

g of

unc

rack

ed c

oncr

ete

is b

ased

on

the

limit-

stat

e Eq

uatio

n B

4.1-

1, i

n w

hich

the

con

cret

e te

mpe

ratu

re T

(t) i

s co

mpa

red

to t

he

scal

ing

resi

stan

ce T

R(t)

at a

cer

tain

poi

nt o

f tim

e t,

durin

g a

certa

in d

esig

n se

rvic

e lif

e t SL

.

()

),..)

t(T),T(

RH

(T

)C

l,

tt(T

)t

(tT,T

gR

SLSL

R!

"=

<

(B4.

1-1)

T(t):

co

ncre

te te

mpe

ratu

re [K

], cp

. B4.

2.1

t SL:

desi

gn se

rvic

e lif

e [y

ears

], cp

. B4.

2.2

T R(t)

: cr

itica

l fre

ezin

g te

mpe

ratu

re f

or s

calin

g to

occ

ur a

t the

tim

e t [

-],

cp. B

4.2.

3

t tim

e [y

ears

]

(2

) Eq

uatio

n B

4.1-

1 is

bas

ed o

n th

e as

sum

ptio

n th

at s

calin

g oc

curs

in th

e sa

me

mom

ent a

s th

e co

ncre

te s

urfa

ce te

mpe

ratu

re fa

lls b

elow

a c

erta

in, c

ritic

al

leve

l, th

e sc

alin

g re

sist

ance

TR.

It i

s as

sum

ed th

at th

is c

ritic

al le

vel o

f sc

alin

g re

sist

ance

cha

nges

with

age

, dep

endi

ng o

n ex

posu

re a

nd ty

pe o

f con

cret

e.

B

4.2

Qua

ntifi

catio

n of

par

amet

ers

B4.

2.1

Scal

ing

resi

stan

ce T

R (T

he c

ritic

al fr

eezi

ng

tem

pera

ture

for

scal

ing

to o

ccur

) Th

e sc

alin

g te

st is

per

form

ed a

t thr

ee te

mpe

ratu

re le

vels

.

(1)

The

criti

cal

free

zing

tem

pera

ture

for

sca

ling

to o

ccur

, th

e sc

alin

g re

sist

ance

TR,

is d

eter

min

ed fr

om a

labo

rato

ry te

st fo

r the

act

ual c

oncr

ete,

at a

n ag

e of

28

days

. The

acc

epte

d de

gree

of s

calin

g m

ust b

e de

fined

bef

ore

the

test

.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 79

(2)

The

conc

rete

com

posi

tion,

inc

ludi

ng t

he a

ir-vo

id s

yste

m,

is

chos

en

durin

g th

e de

sign

pha

se.

Due

to

cons

truct

ion

prac

tices

the

act

ual

conc

rete

co

mpo

sitio

n do

es v

ary

and

ther

efor

e ha

s to

be

cons

ider

ed a

s a

stoc

hast

ic

varia

ble

rath

er t

han

a co

nsta

nt v

alue

. The

fol

low

ing

dist

ribut

ion

type

s ar

e in

pr

inci

ple

appr

opria

te f

or t

he d

escr

iptio

n of

th

e sc

alin

g re

sist

ance

and

its

va

riabi

lity:

Nor

mal

dis

tribu

tion

– B

eta-

dist

ribut

ion

– W

eibu

ll(m

in)-

dist

ribut

ion

– Lo

gnor

mal

dis

tribu

tion

– N

evill

e di

strib

utio

n

The

scal

ing

resi

stan

ce T

R w

ill c

hang

e w

ith a

ge a

nd e

xpos

ure.

Thi

s ch

ange

w

ith ti

me

will

be

diff

eren

t for

diff

eren

t typ

es o

f con

cret

e, c

p. F

igur

e B

4.2-

1.

Fi

gure

B4.

2-1:

Pri

ncip

le s

ketc

h of

the

con

cret

e te

mpe

ratu

re (

“loa

d”),

vert

ical

sc

ale

with

ne

gativ

e te

mpe

ratu

res

upw

ards

, du

ring

thr

ee w

inte

rs,

com

pare

d to

the

tru

e sc

alin

g re

sist

ance

(“re

sist

ance

”) a

s a

func

tion

of ti

me

for

thre

e di

ffere

nt c

oncr

etes

, [18

]

– 80

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

See

Cha

pter

B1.

2.2.

B4.

2.2

Des

ign

serv

ice

life

t SL

B4.

2.3

Act

ual c

oncr

ete

tem

pera

ture

T(t

)

B4

.2.3

.1

Gen

eral

(1

) Th

e en

viro

nmen

tal a

ctio

n T(

t), th

e ac

tual

con

cret

e te

mpe

ratu

re m

ainl

y du

ring

clea

r w

inte

r ni

ghts

, co

nsid

ers

the

air

tem

pera

ture

, co

nvec

tion

due

to

win

d an

d th

e lo

ng w

ave

radi

atio

n du

ring

clea

r ni

ghts

. The

dec

isiv

e co

ncre

te

tem

pera

ture

is fo

r nig

hts o

nly

whe

n sa

lt is

pre

sent

at t

he c

oncr

ete

surf

ace.

(2)

The

envi

ronm

enta

l act

ion,

the

conc

rete

sur

face

tem

pera

ture

T(t)

can

be

desc

ribed

by

mea

ns o

f Equ

atio

n B

4.2-

1:

()

air

sky

cvr

rai

rSL

TT

T)

tT(

t!

"+

"

"+

=<

(B

4.2-

1)

T air:

ai

r tem

pera

ture

[K],

cp. B

4.2.

3.2

αr:

surf

ace

heat

co

nduc

tanc

e du

e to

ra

diat

ion

[W/(m

2 K)]

, cp

. B

4.2.

3.3

αcv

: su

rfac

e he

at

cond

ucta

nce

due

to

conv

ectio

n[W

/(m2 K

)],

cp.

B4.

2.3.

3

T sky

: co

rres

pond

ing

tem

pera

ture

of s

pace

[K],

cp. B

4.2.

3.4

B4.2

.3.2

A

ir te

mpe

ratu

re T

air

(1) D

ata

of th

e ne

ares

t wea

ther

sta

tion

may

be

used

as

an in

put f

or T

air.

For

quan

tific

atio

n, th

e ex

trem

e w

eath

er s

tatio

n da

ta (c

old,

cle

ar w

inte

r nig

hts)

has

to

be

eval

uate

d.

(2)

For

Euro

pean

clim

ate

cond

ition

s, a

norm

al d

istri

butio

n is

in

gene

ral

appr

opria

te to

des

crib

e T a

ir.

B4.2

.3.3

Su

rfac

e he

at c

ondu

ctan

ce α

r and

αcv

(1

) Th

e su

rfac

e he

at c

ondu

ctan

ce α

r for

rad

iatio

n de

pend

s on

the

conc

rete

su

rfac

e te

mpe

ratu

re a

nd t

he c

orre

spon

ding

tem

pera

ture

of

spac

e an

d th

e em

issi

vity

ε o

f the

con

cret

e su

rfac

e.

fib B

ulle

tin 3

4: M

odel

Cod

e fo

r Ser

vice

Life

Des

ign

– 81

()

2TT

43

air

sky

r

!"#

$#=

%

[

W/(m

2 K)]

(B

4.2-

2)

whe

re σ

=

5.67

·10-8

[W/(m

2 K4 )]

(th

e St

efan

-Bol

zman

n nu

mbe

r).

For

conc

rete

the

emis

sivi

ty ε

= 0

.9

(2)

The

surf

ace

heat

con

duct

ance

αcv

for

con

vect

ion

depe

nds

on th

e w

ind

velo

city

clo

se t

o th

e co

ncre

te s

urfa

ce. F

or c

ases

with

win

d sp

eed

u be

low

5

m/s

, a v

alue

can

be

αcv

= 6

+ 4

·u

[W

/(m2 K

)]

(B4.

2-3)

B4

.2.3

.4

Cor

resp

ondi

ng sk

y te

mpe

ratu

re T

sky

(1)

The

corr

espo

ndin

g te

mpe

ratu

re o

f th

e sk

y fo

r th

e lo

ng-w

ave

radi

atio

n fr

om a

con

cret

e su

rfac

e de

pend

s on

the

orie

ntat

ion

of th

e su

rfac

e, c

loud

ines

s an

d “s

hado

ws”

from

oth

er b

uild

ings

, cp.

Fig

ure

B4.

2-2.

– 82

Anne

x B:

Ful

l pro

babi

listic

des

ign

met

hods

Fi

gure

B4.

2-2:

The

cor

resp

ondi

ng sk

y te

mpe

ratu

re fo

r diff

eren

t su

rfac

es, d

epen

ding

on

the

air t

empe

ratu

re.

(2

) Th

e co

rres

pond

ing

tem

pera

ture

of

the

sky

for

the

long

-wav

e ra

diat

ion

from

a

conc

rete

su

rfac

e in

Fi

gure

B

4.2-

2 ca

n be

es

timat

ed

from

Eq

uatio

n B

4.2-

4.

! "! #$

%%

&

%%

&

=

sky

clou

dya

for

Tsk

ycl

ear

surf

aces

verti

cal

for

5T

1.1sk

ycl

ear

surf

aces

horiz

onta

lfo

r14

T2.1

T

air

airair

sky

(B

4.2-

4)

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 83

Ann

ex C

(inf

orm

ativ

e)

Part

ial f

acto

r m

etho

ds

C

1 Pa

rtia

l fac

tor

met

hod

for

carb

onat

ion

indu

ced

corr

osio

n - u

ncra

cked

con

cret

e

C1.

1 L

imit

stat

e eq

uatio

n in

clud

ing

part

ial f

acto

rs

for

the

depa

ssiv

atio

n of

the

rein

forc

emen

t sy

mbo

ls u

sed

for

part

ial f

acto

r met

hod

desi

gnsy

mbo

ls u

sed

in

curr

ent p

ract

ice

min

c

!c

nom

cca

rbon

atio

n de

pth

x c,m

(t)x c

,d(t)

, ad

!a

nom

a

rein

forc

emen

t ste

elconc

rete

sur

face

5% fr

actil

e

Fi

gure

C1.

1-1:

Sym

bols

use

d in

cur

rent

pra

ctic

e (le

ft ha

nd si

de) a

nd

used

with

in th

e pa

rtia

l fac

tor m

etho

d de

sign

(rig

ht

hand

side

)

min

c:

min

imum

con

cret

e co

ver [

mm

] no

m c

: no

min

al c

oncr

ete

cove

r [m

m]

Δc:

m

argi

n be

twee

n m

inim

um a

nd n

omin

al c

oncr

ete

cove

r [m

m]

x c,m

(t)

mea

n va

lue

of th

e ca

rbon

atio

n de

pth

at th

e tim

e t [

mm

] x c

,d(t)

de

sign

val

ue o

f the

car

bona

tion

dept

h at

the

time

t [m

m]

(1

) Th

e pa

rtial

fac

tor

met

hod

for

carb

onat

ion

indu

ced

corr

osio

n in

un

crac

ked

conc

rete

in

trodu

ced

in

this

ch

apte

r is

ba

sed

on

the

full

prob

abili

stic

des

ign

appr

oach

pre

sent

ed in

Cha

pter

B1,

Ann

ex B

.

– 84

Anne

x C

: Pa

rtial

fact

or m

etho

ds

a d:

desi

gn v

alue

of t

he c

oncr

ete

cove

r [m

m]

Δa:

sa

fety

mar

gin

of th

e co

ncre

te c

over

[mm

] no

m a

: no

min

al c

oncr

ete

cove

r [m

m]

(2

) The

aim

of t

he p

artia

l fac

tor m

etho

d is

to e

nabl

e a

dura

bilit

y de

sign

for

carb

onat

ion

indu

ced

corr

osio

n th

at c

an b

e ca

rrie

d ou

t as

a si

mpl

e ca

lcul

atio

n w

ithou

t add

ition

al c

onsi

dera

tions

con

cern

ing

the

prob

abili

stic

dis

tribu

tions

of

inpu

t par

amet

ers.

To d

eter

min

e th

e pa

rtial

saf

ety

fact

ors

acco

rdin

g IS

O 2

394

the

gove

rnin

g va

riabl

es h

ave

to d

eter

min

ed.

For

this

rea

son

a pa

ram

eter

stu

dy i

nclu

ding

th

ree

diff

eren

t de

sign

exa

mpl

es w

as c

arrie

d ou

t by

mea

ns o

f th

e so

ftwar

e pa

ckag

e ST

RU

REL

, [1

2].

The

influ

ence

of

all

varia

bles

on

the

calc

ulat

ed

relia

bilit

y fo

r car

bona

tion

indu

ced

corr

osio

n is

giv

en b

y th

e co

rres

pond

ing α

i va

lue.

Fig

ure

C1.

1-2

show

s th

e re

sult.

Det

erm

inat

ion

of

Par

tial

Saf

ety

Fac

tors

acc

. IS

O 2

394:

-d

eter

min

e g

ove

rnin

g lo

ad a

nd

res

ista

nce

var

iab

les

for

dif

fere

nt

exp

osu

res:

1) a

= 4

0 m

m, R

AC

C,0

-1=

6 00

0R

Hre

al=

75%

, tc

= 4d

2)a

= 60

mm

, RA

CC

,0-1

= 14

000

RH

real

= 65

%, t

c=

4d3)

a =

50 m

m, R

AC

C,0

-1=

12 0

00R

Hre

al=

70%

, tc

= 7d

RH

real

aR

Hre

alR

Hre

al

RA

CC

,0-1

RA

CC

,0-1

RA

CC

,0-1

k t

k tk t

CS

CS

CS

aa

RH

real

aR

Hre

alR

Hre

al

RA

CC

,0-1

RA

CC

,0-1

RA

CC

,0-1

k t

k tk t

CS

CS

CS

aa

Fi

gure

C1.

1-2:

αi v

alue

s for

the

vari

able

s to

calc

ulat

e th

e lim

it st

ate

of

depa

ssiv

atio

n du

e to

car

bona

tion

(3

) A

stru

ctur

al e

lem

ent m

eets

the

requ

irem

ents

con

cern

ing

its d

urab

ility

w

ith re

spec

t to

carb

onat

ion

indu

ced

corr

osio

n if

limit

stat

e Eq

uatio

n C

1.1-

1 is

fu

lfille

d:

a d –

xc,

d(t SL

) ≥ 0

(C

1.1-

1)

()

SLSL

dS,

dt,R

1k

AC

C,0

,dt,

dc,

de,

dc,

tW

tC

ãR

(kk

k2

)(

x!

!!

+!

!!

!!

="

SLt

(C1.

1-2)

a d

: de

sign

val

ue o

f the

con

cret

e co

ver [

mm

], cp

. Cha

pter

B1.

2.1

a d =

nom

a - Δ

a =

nom

c - Δ

a (C

1.1-

3)

nom

c: n

omin

al c

oncr

ete

cove

r [m

m]

nom

a: n

omin

al c

oncr

ete

cove

r [m

m]

Δa:

sa

fety

mar

gin

of th

e co

ncre

te c

over

[mm

]

Δa

= 10

mm

t SL:

desi

gn se

rvic

e lif

e [y

ears

], cp

. Cha

pter

B1.

2.2

x c,d(t S

L) d

esig

n va

lue

of th

e ca

rbon

atio

n de

pth

at th

e tim

e t SL

[mm

]

k e,d:

desi

gn v

alue

of t

he e

nviro

nmen

tal f

unct

ion

[-],

cp. C

hapt

er B

1.2.

3

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 85

It ca

n be

see

n th

at th

e th

ree

gove

rnin

g pa

ram

eter

s of

Equ

atio

n B

1.1-

2 ar

e th

e fo

llow

ing:

1. R

Hre

al (k

e) 2.

a

3. R

ACC

,0-1

Fo

r th

ese

thre

e pa

ram

eter

s pa

rtial

saf

ety

fact

ors γ R

H, γ R

and

the

saf

ety

mar

gin Δ

a ar

e in

trodu

ced.

The

parti

al s

afet

y fa

ctor

s gi

ven

in th

is p

arag

raph

are

to b

e co

nsid

ered

as

prel

imin

ary

and

will

pro

babl

y be

cha

nged

. The

y ar

e lin

ked

to a

ser

vice

life

of

t SL =

50

year

s and

to a

relia

bilit

y in

dex

of β

= 1

.3.

ee

e

gf

f

ref

RH

k re

al,

de

,

10

0

RH

1

10

0

RH

1

k

!!!!!! "#

$$$$$$ %&

! "#$ %&

'

!! "#$$ %&

()

'

=

(C1.

1-4)

RH

real

,k: c

hara

cter

istic

val

ue o

f re

lativ

e hu

mid

ity o

f th

e ca

rbon

ated

lay

er

[%],

cp. C

hapt

er B

1.2.

3, h

ere:

mea

n va

lue

of R

Hre

al

RH

ref:

refe

renc

e re

lativ

e hu

mid

ity [%

], cp

. Cha

pter

B1.

2.3

RH

ref =

65

%

f e:

expo

nent

[-],c

p. C

hapt

er B

1.2.

3 f e

= 5.

0

g e:

expo

nent

[-],c

p. C

hapt

er B

1.2.

3

g e =

2.5

γ RH:

parti

al sa

fety

fact

or fo

r the

rela

tive

hum

idity

RH

real

[-],

γ R

H =

1.3

k c,d:

desi

gn v

alue

of

the

exec

utio

n tra

nsfe

r pa

ram

eter

[-]

, cp.

Cha

pter

B

1.2.

4 an

d Ta

ble

C1-

1, h

ere:

mea

n va

lue

of k

c

Tabl

e C

1-1:

Ex

ecut

ion

tran

sfer

par

amet

er k

c,d f

or d

iffer

ent c

urin

g pe

riod

s tc

curin

g pe

riod

d c [d

] 1

2 3

4 5

6 7

8 9

10

11

12

13

14

k c,d

3.

00

2.03

1.

61

1.37

1.

20

1.09

1.

00

0.92

0.

86

0.81

0.

77

0.73

0.

70

0.67

k t,d:

desi

gn v

alue

of

the

regr

essi

on p

aram

eter

[-]

, cp

. C

hapt

er

B1.

2.5,

her

e: m

ean

valu

e of

kt;

k t,d =

1.2

5

RA

CC,

0,k-1

: ch

arac

teris

tic

valu

e of

th

e in

vers

e ef

fect

ive

carb

onat

ion

resi

stan

ce

of

conc

rete

[(

mm²/y

ears

)/(kg

/m³)]

, cp

. C

hapt

er B

1.2.

5; h

ere:

mea

n va

lue

of R

AC

C,0-1

– 86

Anne

x C

: Pa

rtial

fact

or m

etho

ds

γ R:

parti

al s

afet

y fa

ctor

for

the

inv

erse

car

bona

tion

resi

stan

ce o

f co

ncre

te R

ACC

,0,k

-1 [-

] γ R

= 1

.5

ε t,d:

desi

gn v

alue

of t

he e

rror

term

, cp.

Cha

pter

B1.

2.5,

her

e: m

ean

valu

e of

εt, ε t

,d =

315

.5

CS,

d: de

sign

val

ue o

f th

e C

O2-

conc

entra

tion

[kg/

m³],

cp.

B1.

2.6,

he

re: m

ean

valu

e of

CS;

CS,

d = 0

.000

82

W(t)

: w

eath

er fu

nctio

n [-

], cp

. Cha

pter

B1.

2.7

and

Equa

tion

C1.

1-4

2To

W)

(p

0

dw

,b

SR

ttW

!

" #$% &'

=

(C1.

1-5)

t 0:

time

of re

fere

nce

[yea

rs],

t 0 =

0.07

67

ToW

tim

e of

wet

ness

[-],

cp. E

quat

ion

C1.

1-5

days

with

rain

fall

h Nd ≥

2.5

mm

per

yea

r To

W =

36

5 (C

1.1-

6)

p SR:

pr

obab

ility

of d

rivin

g ra

in [-

] b w

,d:

desi

gn v

alue

of t

he e

xpon

ent o

f reg

ress

ion

[-],

here

: mea

n va

lue

of b

W; b

W,d =

0.4

46

As s

oon

as u

ltim

ate

limit

stat

es (U

LS) a

re a

sses

sed,

the

prop

agat

ion

perio

d ha

s to

be

take

n in

to a

ccou

nt,

othe

r re

sist

ance

var

iabl

es b

ecom

e do

min

ant,

e. g

. an

add

ed s

acrif

icia

l cr

oss

sect

ion

and

a hi

gher

rel

iabi

lity

is r

equi

red

(ULS

-leve

l).

(5

) Th

e pa

rtial

saf

ety

fact

ors γ R

and

γRH

and

the

saf

ety

mar

gin Δ

a ha

ve

been

qua

ntifi

ed fo

r a

SLS

relia

bilit

y of

β =

1.3

with

resp

ect t

o th

e lim

it st

ate

“dep

assi

vatio

n of

rei

nfor

cem

ent d

ue to

car

bona

tion,

SLS

”. I

f a

high

er r

elia

-bi

lity

is d

esire

d, th

e pa

rtial

saf

ety

fact

ors h

ave

to b

e m

odifi

ed a

ccor

ding

ly.

(6)

The

parti

al

fact

or

met

hod

incl

udes

si

mpl

ifica

tions

of

th

e fu

ll pr

obab

ilist

ic a

ppro

ach

on t

he s

afe

side

. Th

eref

ore,

the

use

of

the

full

prob

abili

stic

met

hod

can

lead

to

mor

e ec

onom

ical

sol

utio

ns, b

ut i

t re

quire

s co

nsid

erab

ly l

arge

r ex

pens

es f

or t

he q

uant

ifica

tion

of t

he i

nput

par

amet

ers

and

the

calc

ulat

ion

itsel

f.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 87

C1.

2 E

xam

ple

The

follo

win

g in

put

data

with

reg

ard

to e

nviro

nmen

t, co

ncre

te d

iffus

ion

char

acte

ristic

s, an

d cu

ring

was

col

lect

ed.

Tabl

e C

1-2:

In

put d

ata,

par

tial s

afet

y fa

ctor

app

roac

h

W

ith th

ese

data

, equ

atio

n (C

1.1-

2) c

an b

e so

lved

:

()

()

227.01.0

SLSL

4

2.5

5

5

SLd,c

0.44

6

t0.

0767

t10

2.831

5.5

4500

5.11.

2561.1

100

65-1

100

3.180

-12

)(t

x

!

"

## $%&& '( !

!

###### $%

&&&&&& '(

!!

+!

!!

!

##### $%

&&&&& '(

# $%& '(

## $%&& '(

!!

=

W

ith th

e tim

e de

pend

ent d

esig

n va

lue

of th

e ca

rbon

atio

n de

pth

x c,d(t S

L) th

e no

min

al c

oncr

ete

cove

r nom

a c

an b

e ca

lcul

ated

, cp.

Fig

ure

C1.

2-1.

Para

met

er

Uni

t In

put d

ata

RH

real

,k

[% re

l. hu

mid

ity]

80

! RH

[-]

1.3

k c,d

[-

] 1.

61

RA

CC

,0,k

-1

[(m

m?/y

ear)

/(kg/

m?)]

45

00

! R

[-]

1.5

CS,

d [k

g/m

?] 8.

2 " 1

0-4

t SL

[yea

rs]

1-50

(par

amet

er st

udy)

p S

R

[-]

0.1

ToW

[-

] 0.

27

#a

[mm

] 10

– 88

Anne

x C

: Pa

rtial

fact

or m

etho

ds

0

10

20

30

40

50

01

02

03

04

05

0

Tim

e of

exp

osur

e in

[yea

rs]

Required nominal cover nom a in [mm]

Figu

re C

1.2-

1: R

equi

red

nom

inal

con

cret

e co

ver

nom

a w

ith ti

me

of

expo

sure

, exp

osur

e ca

rbon

atio

n, m

iddl

e Eu

rope

an

clim

ate,

cyc

lic w

et a

nd d

ry, e

xpos

ed to

dri

ving

rain

(v

ertic

al re

info

rced

con

cret

e fa

ssad

e), C

EM I

-co

ncre

te, w

/c =

0.6

0

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 89

C2

Part

ial f

acto

r m

etho

d fo

r fr

ost i

nduc

ed

dam

age

- unc

rack

ed c

oncr

ete

(1)

The

parti

al f

acto

r m

etho

d fo

r fr

ost

indu

ced

dam

age

in u

ncra

cked

co

ncre

te i

ntro

duce

d in

thi

s ch

apte

r is

bas

ed o

n th

e fu

ll pr

obab

ilist

ic d

esig

n ap

proa

ch p

rese

nted

in C

hapt

er B

3, A

nnex

B.

(2) T

he a

im o

f the

par

tial f

acto

r met

hod

is to

ena

ble

a du

rabi

lity

desi

gn fo

r fr

ost i

nduc

ed d

amag

e th

at c

an b

e ca

rrie

d ou

t as

a si

mpl

e ca

lcul

atio

n w

ithou

t ad

ditio

nal

cons

ider

atio

ns c

once

rnin

g th

e pr

obab

ilist

ic d

istri

butio

ns o

f in

put

para

met

ers.

(2) T

he fo

llow

ing

limit

stat

e fu

nctio

n ne

eds t

o be

fulfi

lled:

()

0)

St

tS(

SS

ACT

SLd,

ACT

crd,

CR!

"+

<#

"#

(C

1.2-

1)

S CR

,d:

desi

gn v

alue

of t

he c

ritic

al d

egre

e of

satu

ratio

n [-

]

S ACT

,d(t

< t SL

): de

sign

val

ue o

f the

act

ual d

egre

e of

satu

ratio

n at

tim

e t [

-]

t SL:

serv

ice

life

[yea

rs]

ΔS C

R:

mar

gin

of th

e cr

itica

l deg

ree

of sa

tura

tion

[-]

ΔS A

CT:

mar

gin

of th

e cr

itica

l deg

ree

of sa

tura

tion

[-]

– 90

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

Ann

ex R

(inf

orm

ativ

e)

Rel

iabi

lity

man

agem

ent:

from

SL

S to

UL

S

R1

Gen

eral

R

1.1

Acc

ordi

ng t

o Tu

utti

[19]

the

pro

cess

of

rein

forc

emen

t co

rros

ion

can

be

roug

hly

divi

ded

into

two

time

perio

ds, c

p. F

igur

e R

1.1-

1:

– In

itiat

ion

perio

d –

Prop

agat

ion

perio

d

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 91

Fi

gure

R1.

1-1:

Det

erio

ratio

n pr

oces

s of

rei

nfor

cem

ent

corr

osio

n an

d de

finiti

on o

f lim

it st

ates

for

basi

c sc

hem

e of

the

serv

ice

life

desi

gn

– 92

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

The

initi

atio

n pe

riod

is d

efin

ed a

s th

e tim

e un

til t

he r

einf

orce

men

t be

com

es d

epas

siva

ted

eith

er b

y ca

rbon

atio

n or

by

pene

tratio

n of

chl

orid

es.

This

per

iod

does

not

har

m t

he c

oncr

ete

and/

or t

he r

einf

orce

men

t its

elf.

As

soon

as

the

conc

rete

at t

he d

epth

of s

teel

(out

er r

einf

orce

men

t) is

car

bona

ted

or c

onta

inin

g a

certa

in a

mou

nt o

f fr

ee c

hlor

ides

the

rei

nfor

cem

ent

beco

mes

de

pass

ivat

ed. T

he e

nd o

f the

initi

atio

n pe

riod

is re

ache

d an

d co

rros

ion

(und

er

certa

in c

ircum

stan

ces)

is p

ossi

ble,

cp.

Fig

ure

R1.

1-1.

Dur

ing

the

prop

agat

ion

perio

d th

e re

info

rcem

ent

itsel

f is

aff

ecte

d w

hich

m

ay l

ead

to d

eter

iora

tion

of t

he c

oncr

ete

as w

ell.

In c

ase

of e

xpan

ding

co

rros

ion

prod

ucts

of t

he re

info

rcem

ent c

rack

s al

ong

the

rein

forc

ing

elem

ent

are

prov

oked

whi

ch s

ubse

quen

tly l

eads

to

spal

ling

of t

he c

oncr

ete

cove

r. Fi

nally

the

loss

of c

ross

sec

tion

of th

e re

info

rcem

ent m

ay le

ad to

redu

ctio

n of

th

e lo

ad b

earin

g ca

paci

ty. U

LS is

def

ined

by

the

rele

vant

failu

re m

ode

of th

e se

ctio

n an

d m

ay b

e re

ache

d by

cra

ckin

g or

spa

lling

(fai

lure

of a

ncho

rage

) or

by in

adm

issi

ble

loss

of c

ross

sec

tion.

Thi

s ha

s be

en a

lso

illus

trate

d rig

ht h

and

side

in F

igur

e R

1.1-

1.

For

the

asse

ssm

ent o

f a

stru

ctur

e to

war

ds a

cer

tain

eve

nt (

limit

stat

e) th

e re

spec

tive

time

perio

ds c

an b

e ad

ded

up a

nd c

ompa

red

with

the

time

perio

d of

inte

rest

, whi

ch is

in m

ost c

ases

the

serv

ice

life

t SL, c

p. E

quat

ion

R1.

1-1.

t SL

= t i

ni +

t pro

p,i

(R1.

1-1)

t SL:

serv

ice

life

[yea

rs]

t ini:

time

perio

d of

initi

atio

n [y

ears

] t pr

op,i:

time

perio

d of

pro

paga

tion

till

the

treat

ed e

vent

i(c

rack

ing,

sp

allin

g, c

olla

pse)

occ

urs [

year

s]

R

2 R

elia

bilit

y m

anag

emen

t

It

is a

ssum

ed,

that

the

usu

al d

esig

n of

rei

nfor

ced

and

pre-

stre

ssed

st

ruct

ures

is m

ade

in th

at w

ay, t

hat t

he U

LS re

quire

men

ts o

f Ann

ex A

, Tab

le

A2-

2 ar

e fu

lfille

d ex

actly

. C

orro

sion

of

rein

forc

emen

t (p

re-s

tress

ing

stee

l)

and/

or d

eter

iora

tion

of c

oncr

ete

(bon

d fa

ilure

, lac

k of

suf

ficie

nt c

ompr

essi

ve

cros

s sec

tion,

will

dec

reas

e th

e re

liabi

lity.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 93

Fi

gure

R1.

1-1:

Den

sity

fu

nctio

n of

in

itial

an

d re

sidu

al

(afte

r co

rros

ion)

rein

forc

emen

t cro

ss se

ctio

n

If c

orro

sion

of r

einf

orce

men

t can

not

be

excl

uded

at a

ULS

relia

bilit

y an

d in

spec

tion/

mai

nten

ance

/repa

ir th

at m

eans

“in

terv

entio

n” c

an n

ot b

e ex

ecut

ed,

in e

very

cas

e th

is w

ill l

ead

to t

he n

eed

of e

xtra

rei

nfor

cem

ent

(sac

rific

ial

cros

s se

ctio

n) a

nd, d

epen

ding

on

the

expe

cted

failu

re m

ode,

spe

cial

det

ailin

g in

ord

er to

avo

id b

ond

failu

re w

ithin

the

bond

ing

zone

.

The

dim

ensi

on o

f th

is e

xtra

cro

ss s

ectio

n w

hich

influ

ence

s th

e le

ngth

of

the

prop

agat

ion

perio

d de

cisi

vely

hi

ghly

de

pend

s on

th

e re

liabi

lity

depa

ssiv

atio

n is

ex

clud

ed.

The

leng

th

of

the

perio

d un

til

the

even

t de

pass

ivat

ion

occu

rs

(initi

atio

n pe

riod)

is

de

cisi

vely

in

fluen

ced

by

the

conc

rete

qua

lity

and

the

mag

nitu

de o

f co

ncre

te c

over

. A

s bo

th p

erio

ds

parti

cipa

tes

to th

e se

rvic

e lif

e bo

th in

fluen

cing

var

iabl

es (e

xtra

rein

forc

emen

t on

the

one

han

d si

de a

nd c

oncr

ete

qual

ity a

nd c

oncr

ete

cove

r on

the

oth

er

side

) ca

n be

trad

ed o

ff. T

hat m

eans

, the

hig

her

the

relia

bilit

y w

ith r

egar

d to

de

pass

ivat

ion

the

low

er th

e ne

ed o

f ext

ra re

info

rcem

ent.

– 94

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

In e

very

cas

e, w

ithou

t any

exc

eptio

n, to

bal

ance

the

effe

ct o

f cor

rosi

on th

e ex

tra c

ross

sec

tion

is e

qual

to th

e co

rrod

ed p

art o

f the

initi

al c

ross

sec

tion,

cp.

Fi

gure

R1.

1-1,

ΔA

S,Co

rr.

How

ever

in

som

e ca

ses

it is

not

suf

ficie

nt t

o ba

lanc

e on

ly t

he e

ffec

t of

co

rros

ion.

If s

palli

ng is

con

side

red

as a

n U

LS (A

nnex

A, T

able

A3-

1, R

OC

1),

besi

de b

alan

cing

the

eff

ect

of c

orro

sion

spa

lling

hav

e to

be

avoi

ded.

Thi

s ha

ve to

be

done

by

rest

rictin

g th

e al

low

able

tota

l los

s of

cro

ss s

ectio

n an

d th

e pe

rmis

sibl

e m

axim

um e

xtra

cro

ss s

ectio

n, r

espe

ctiv

ely.

Thi

s in

evita

bly

lead

s to

a r

estri

ctio

n of

the

prop

agat

ion

perio

d. C

onse

quen

tly th

e in

itiat

ion

perio

d ha

ve t

o be

pro

long

ed,

that

mea

ns d

epas

siva

tion

have

to

be a

void

ed o

n a

high

er re

liabi

lity

leve

l to

avoi

d U

LS a

t the

requ

ired

relia

bilit

y.

In th

e fo

llow

ing

a pr

oced

ure

is d

escr

ibed

how

to q

uant

ify th

e ne

eded

ext

ra

rein

forc

emen

t.

The

proc

edur

e is

as f

ollo

ws:

In

a f

irst s

tep

the

leng

th o

f an

initi

atio

n pe

riod

is c

alcu

late

d on

bas

is o

f a

spec

ific

data

set

. Th

e in

itiat

ion

perio

d w

as s

et t

o be

ove

r as

soo

n th

e m

inim

um S

LS re

liabi

lity

of A

nnex

A, T

able

A2-

2 is

not

fulfi

lled

anym

ore.

C

omm

on a

gree

d m

odel

s to

des

crib

e th

e pr

opag

atio

n pe

riod

do n

ot e

xist

. To

gap

this

pro

blem

a D

elph

ic ro

und

was

org

aniz

ed b

y th

e Ta

skgr

oup

5.6

and

expe

rts a

ll ov

er th

e w

orld

gav

e th

eir

opin

ion

on e

xpec

ted

pene

tratio

n de

pths

an

d pr

opag

atio

n pe

riods

in a

spec

ific

carb

onat

ion

envi

ronm

ent.

This

dat

a w

as e

valu

ated

in a

sec

ond

step

. In

a th

ird s

tep

the

need

ed e

xtra

cr

oss

sect

ion

was

det

erm

ined

whi

ch i

s ne

eded

to

ensu

re t

he r

equi

red

ULS

re

liabi

lity

(her

e: fa

ilure

mod

e ac

cord

ing

to A

nnex

A, T

able

A3-

1, R

OC

3).

R

3 In

itiat

ion

Peri

od

R3.

1 M

odel

to c

alcu

late

the

initi

atio

n pe

riod

t ini

(E

xpos

ition

XC

4)

The

pred

icte

d de

pth

of c

arbo

natio

n at

the

end

of s

ervi

ce li

fe x

c(tSL

) has

to

be c

ompa

red

with

the

conc

rete

cov

er a

in o

rder

to o

btai

n a

pred

ictio

n ab

out

the

relia

bilit

y in

cas

e of

car

bona

tion

indu

ced

corr

osio

n. T

his

lead

s to

the

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 95

– fo

llow

ing

limit

stat

e eq

uatio

n fo

r the

initi

atio

n pe

riod:

Firs

t Not

atio

n fo

r L

imit

Stat

e: D

epas

siva

tion

()

()

SLc

SLc

tx

a)

tx

g(a,

!=

(R

3.1-

1)

()

SLSL

St

1 AC

C,0

tc

et

Wt

C)

åR

(kk

k2

a!

!!

+!

!!

!"

="

a:

conc

rete

cov

er [m

m]

x c(t S

L):

carb

onat

ion

dept

h at

the

end

of se

rvic

e lif

e t SL

[mm

]

By

conv

ertin

g Eq

uatio

n R

3.1-

1 to

com

pare

the

tim

e pe

riod

of i

nitia

tion

with

the

serv

ice

life

acco

rdin

g to

Equ

atio

n R

1.1-

1 th

e fo

llow

ing

nota

tion

can

be u

sed,

cp.

Eq

uatio

n R

3.1-

2.

(The

firs

t an

d th

e se

cond

not

atio

n ar

e eq

uiva

lent

.) Se

cond

Not

atio

n fo

r L

imit

Stat

e: D

epas

siva

tion

()

SLin

iSL

ini

tt

t,t

g!

=

(R3.

1-2)

()

SL

1w

21

w2 0

2S

t1

AC

C,0

tc

et

ta

Rk

kk

2!

"" #$

%% &'(

(+

((

((

="" #$

%% &'

!(

(!

t ini:

time

perio

d of

initi

atio

n du

e to

car

bona

tion

[yea

rs]

t SL:

serv

ice

life

[yea

rs]

R3.

2 E

valu

atio

n of

the

initi

atio

n pe

riod

t ini

(E

xpos

ition

XC

4)

To c

alcu

late

the

rel

iabi

lity

agai

nst

depa

ssiv

atio

n of

rei

nfor

cem

ent

for

chos

en e

nviro

nmen

tal c

ondi

tions

and

mat

eria

l pro

perti

es (R

AC

C,0-1

; a) t

he li

mit

stat

e (e

ither

Equ

atio

n R

3.1-

1 or

Equ

atio

n R

3.1-

2) h

as to

be

eval

uate

d. H

ereb

y th

e va

riabl

es d

escr

ibin

g th

e en

viro

nmen

tal c

ondi

tions

hav

e be

en q

uant

ified

in

acco

rdan

ce t

o th

e ex

posi

tion

clas

s X

C4.

The

mat

eria

l pr

oper

ties

have

bee

n ch

osen

in s

uch

a w

ay, t

hat t

he re

liabi

lity

inde

x lin

ked

to d

epas

siva

tion

of th

e re

info

rcem

ent

afte

r 50

ye

ars

of

expo

sure

re

ache

s β d

epas

sivat

ion =

1.3

. A

n

– 96

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

illus

trativ

e ov

ervi

ew o

f al

l qu

antif

ied

varia

bles

is

give

n in

Tab

le R

3-1.

The

ev

alua

tion

of t

he l

imit

stat

e fu

nctio

n ca

n be

car

ried

out

with

com

pute

r pr

ogra

ms

like

e.g.

[12]

.

Tabl

e R3

-1:

Ove

rvie

w

of

quan

tifie

d va

riab

les

to

desc

ribe

th

e du

ratio

n of

the

initi

atio

n pe

riod

for t

he e

xpos

ition

XC

4

Var

iabl

e U

nit

Dis

tribu

tion

Mea

n V

alue

St

anda

rd

Dev

iatio

n R

Hre

al (k

c) [%

] be

ta d

istri

butio

n m

= 8

0; s

= 1

0 a

= 40

; b =

100

R

h ref

(kc)

[%]

cons

tant

65

-

[-

] co

nsta

nt

2.5

-

1

[-

] co

nsta

nt

5.0

- b c

(kc)

[-]

norm

al d

istri

butio

n -0

.567

0.

024

2 t c

(kc)

[d]

norm

al d

istri

butio

n 4

- 3

k t

[-]

norm

al d

istri

butio

n 1.

25

0.35

4 R

AC

C,0

-1

[(m²/s

)/(kg

/m³)]

([

(mm²/y

ears

)/(kg

/m³)]

) no

rmal

dis

tribu

tion

23 ·

10-1

1

(7,3

00)

8 · 1

0-11

(2,5

00)

5 ε t

[(m²/s

)/(kg

/m³)]

([

(mm²/y

ears

)/(kg

/m³)]

) no

rmal

dis

tribu

tion

1.0

· 10-1

1

(315

.5)

0.15

· 10

-11

(48)

6

Cs

[kg/

m³]

norm

al d

istri

butio

n 8.

2 · 1

0-4

1.0

· 10-4

7

t [y

ears

] co

nsta

nt

50

- To

W (W

) [-

] co

nsta

nt

0.2

[-]

b w (W

) [-

] no

rmal

dis

tribu

tion

0.44

6 0.

163

p SR (W

) [-

] co

nsta

nt

0.1

-

8

t 0 (W

) [y

ears

] co

nsta

nt

0.07

67

- 9

a [m

m]

norm

al d

istri

butio

n 25

8

Furth

erm

ore

for

dem

onst

ratio

n re

ason

s al

so a

par

amet

er s

tudy

ove

r th

e in

itiat

ion

perio

d t in

i, w

ith q

uant

ities

for

the

req

uire

d va

riabl

es a

s gi

ven

in

Tabl

e R

3-1

has

been

car

ried

out

with

[12

]. Th

e pa

ram

eter

stu

dy o

ver

the

varia

ble

t ini c

ame

up w

ith th

e re

sult

as o

utlin

ed in

Fig

ure

R3.

2-1.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 97

Fi

gure

R3.

2-1:

Cum

ulat

ive

freq

uenc

y of

t in

i as

a

resu

lt of

th

e pa

ram

eter

stu

dy o

ver

the

dura

tion

of t

he i

nitia

tion

peri

od (v

aria

bles

acc

ordi

ng to

Tab

le R

3-1)

R4

Prop

agat

ion

Peri

od

R4.

1 L

imit

Stat

e

To

des

crib

e th

e lim

it st

ates

link

ed to

the

prop

agat

ion

perio

d ac

cord

ing

to

Equa

tion

R1.

1-1

the

follo

win

g Eq

uatio

n R

4.1-

1 ca

n be

eva

luat

ed in

term

s of

g

(…) <

0.

Lim

it St

ate

Equ

atio

n B

ased

on

Seco

nd N

otat

ion

()

SLi

prop

,in

iSL

ipr

op,

ini

tt

tt,

t,t

g!

+=

(R

4.1-

1)

– 98

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

with

:

()

!! "#$$ %&

'(

('

!! "#

$$ %&(

(+

((

((

=1

w2

1

w2 0

2S

t1

AC

C,0

tc

ein

it

aC

åR

kk

k2

t

t ini:

dura

tion

of in

itiat

ion

perio

d du

e to

car

bona

tion

[yea

rs]

t prop

,i: du

ratio

n of

pro

paga

tion

perio

d til

l the

trea

ted

even

t i (s

palli

ng,

crac

king

, col

laps

e) o

ccur

s [y

ears

]

t SL:

serv

ice

life

[yea

rs]

R

4.2

Eva

luat

ion

of t p

rop,

crac

k an

d t p

rop,

spal

l

W

ithin

a c

arrie

d ou

t “D

elph

ic O

racl

e” e

xper

ts g

ave

expe

rienc

e ba

sed

estim

atio

ns a

bout

the

dura

tion

of th

e of

pro

paga

tion

perio

d til

l the

eve

nt o

f cr

acki

ng a

nd s

palli

ng w

ithin

giv

en e

xpos

ure

cond

ition

s. W

here

as th

e st

art o

f th

e es

timat

ed p

ropa

gatio

n pe

riod

has

been

def

ined

as

the

poin

t in

tim

e in

w

hich

the

rei

nfor

cem

ent

beco

mes

dep

assi

vate

d. F

urth

erm

ore

the

follo

win

g co

nditi

ons h

ad to

be

cons

ider

ed:

–ex

posu

re c

lass

acc

ordi

ng to

the

defin

ition

of E

N 2

06, p

rEN

199

2-1-

1 –

conc

rete

cov

er a

ccor

ding

to p

rEN

199

2-1-

1, T

able

4.4

, stru

ctur

al c

lass

3.

A

s th

e av

erag

e ye

arly

tem

pera

ture

diff

ered

on

whi

ch th

e es

timat

ions

hav

e be

en b

ased

the

raw

dat

a ha

d to

be

adap

ted.

In th

e pr

esen

ted

case

all

data

has

be

en tr

ansf

orm

ed to

a re

fere

nce

tem

pera

ture

of T

ref =

20°

C =

293

K u

sing

the

Arr

heni

us-e

quat

ion

in c

orre

spon

denc

e to

[20]

, cp.

Equ

atio

n R

4.2-

1.

()

()

iT

iPr

opre

fPr

opk

Tt

Tt

=

(R4.

2-1)

!! "#$$ %&

'(

=

ire

f

i

T1T1

bT

e

1k

t prop

(Tre

f):

dura

tion

of p

ropa

gatio

n pe

riod

till

the

treat

ed e

vent

ba

sed

on re

fere

nce

tem

pera

ture

Tre

f [ye

ars]

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 99

t prop

(Ti):

du

ratio

n of

pro

paga

tion

perio

d til

l th

e tre

ated

eve

nt

base

d on

tem

pera

ture

Ti [

year

s]

k Ti:

trans

fer v

aria

ble

to c

onsi

der t

he in

fluen

ce o

f tem

pera

ture

on

the

dura

tion

prop

agat

ion

perio

d [-

]

T ref

: re

fere

nce

tem

pera

ture

, her

e: 2

93 [K

] T i

: te

mpe

ratu

re

on

whi

ch

the

estim

atio

n ab

out

the

prop

agat

ion

perio

d ha

s bee

n ba

sed

[K]

b:

regr

essi

on p

aram

eter

, her

e: 4

300

[K]

By

treat

ing

the

estim

ated

min

imum

val

ues

of th

e ex

perts

as

1 %

qua

ntile

s, th

e m

ean

valu

es a

s 50

% q

uant

iles

and

the

max

imum

val

ues

as 9

9 %

qu

antil

es th

e fo

llow

ing

cum

ulat

ive

freq

uenc

ies

for t

he e

stim

ated

pro

paga

tion

perio

ds c

an b

e dr

awn,

cp.

Fig

ure

R4.

2-1.

The

cum

ulat

ive

freq

uenc

ies

in

Figu

re R

4.2-

1 ta

ke th

e pr

opag

atio

n pe

riod

base

d on

the

refe

renc

e te

mpe

ratu

re

of T

= 2

93 K

(20°

C) i

nto

acco

unt.

– 10

0 –

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

Figu

re R

4.2-

1: C

umul

ativ

e fr

eque

ncie

s of

the

est

imat

ed p

ropa

gatio

n pe

riod

link

ed to

the

even

t of c

rack

ing

and

spal

ling

Th

e ev

alua

tion

base

d on

mea

n va

lues

for e

ach

of th

e tre

ated

qua

ntile

(cp.

Fi

gure

R4.

2-1)

cam

e to

the

follo

win

g re

sult

for a

qua

ntifi

catio

n of

t pro

p,i li

nked

to

the

even

ts o

f cra

ckin

g an

d sp

allin

g, c

p. F

igur

e R

4.2-

2.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 10

1 –

Fi

gure

R4.

2-2:

Cum

ulat

ive

freq

uenc

y of

the

eva

luat

ed v

aria

bles

tpr

op,i

linke

d to

th

e ev

ent

of

crac

king

an

d sp

allin

g (T

= 2

93 K

)

R4.

3 E

valu

atio

n of

tpr

op,c

olla

pse

(Rec

alcu

latio

n of

V

Cor

r)

C

orro

sion

of

rein

forc

emen

t be

com

es c

ritic

al,

if re

quire

d U

LS r

elia

bilit

y ca

n no

t be

verif

ied

at a

leve

l, w

hich

is r

equi

red

acco

rdin

g to

Tab

le A

2-2

of

Ann

ex

A.

Ass

umed

, th

at

the

stru

ctur

al

desi

gn

of

rein

forc

ed

conc

rete

st

ruct

ures

is

mad

e m

ore

or l

ess

exac

tly o

n a

ULS

rel

iabi

lity,

cor

rosi

on o

f re

info

rcem

ent w

ill re

duce

a s

uffic

ient

ULS

-rel

iabi

lity

to a

n in

suff

icie

nt le

vel.

In c

ase

of n

o in

spec

tion/

mai

nten

ance

/repa

ir ex

tra r

einf

orce

men

t is

req

uire

d w

hich

can

cor

rode

. Th

is e

xtra

cro

ss s

ectio

n ha

s to

be

deriv

ed f

rom

the

co

rros

ion

pene

tratio

n de

pth

one

have

to e

xpec

t dur

ing

serv

ice

life.

In

ord

er to

ver

ify th

e re

quire

d re

liabi

lity

for t

he e

vent

of c

olla

pse

the

limit

– 10

2 –

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

stat

e as

gi

ven

in

Equa

tion

R4.

1-1

has

to

be

eval

uate

d fo

r th

e ev

ent

i = c

olla

pse.

Fo

llow

ing

the

appr

oach

des

crib

ed a

bove

the

dur

atio

n of

the

pro

paga

tion

perio

d lin

ked

to th

e ev

ent o

f co

llaps

e ha

s to

be

dete

rmin

ed. T

he c

alcu

latio

n ha

s be

en c

arrie

d ou

t by

usi

ng t

he f

ollo

win

g si

mpl

ified

mod

el, c

p. E

quat

ion

R4.

3-1.

corr

colla

pse

crit,

colla

pse

prop

,v

xt

=

(R4.

3-1)

t prop

,col

laps

e: du

ratio

n of

pro

paga

tion

perio

d til

l th

e ev

ent

of c

olla

pse

[yea

rs]

x crit

,col

laps

e: pe

netra

tion

dept

h of

the

rei

nfor

cem

ent

linke

d to

cor

rosi

on

lead

ing

to c

olla

pse

[µm

]

v cor

r: co

rros

ion

rate

[µm

/yea

rs]

By

usin

g th

e in

form

atio

n of

the

“Del

phic

Ora

cle”

(es

timat

ed m

ean

valu

e of

pen

etra

tion

dept

h til

l the

trea

ted

even

t and

the

resp

ectiv

e m

ean

valu

e of

the

dura

tion

of t

he p

ropa

gatio

n pe

riod)

an

appr

oxim

ate

valu

e fo

r th

e co

rros

ion

rate

can

be

deriv

ed in

a s

imila

r w

ay a

s in

dica

ted

by E

quat

ion

R4.

3-1.

In

the

cons

ider

ed c

ase

the

mea

n va

lue

of c

alcu

late

d co

rros

ion

rate

s lin

ked

to t

he

even

t of

cra

ckin

g an

d sp

allin

g ha

s be

en c

alcu

late

d (3

8 µ

m/a

) by

tak

ing

a te

mpe

ratu

re o

f T

= 29

3 K

(20

°C)

into

acc

ount

. Fu

rther

mor

e it

has

been

as

sum

ed t

hat

the

corr

osio

n de

pth

is a

log

norm

al d

istri

bute

d va

riabl

e w

ith a

va

riatio

n of

app

roxi

mat

ely

50 %

.

In

adv

ance

pen

etra

tion

dept

hs x

crit,

colla

pse

(in m

agni

tude

of

25 %

los

s of

cr

oss

sect

ion,

cp.

Ann

ex A

, Ta

ble

A3-

1, R

OC

3) h

ave

been

set

as

cons

tant

pa

ram

eter

s in

dep

ende

ncy

of t

he r

einf

orce

men

t di

amet

er a

s 1,

000

µm

(fo

r di

amet

er 1

2 m

m)

or 2

,000

µm

(fo

r di

amet

er 2

5 m

m).

This

was

mad

e to

en

able

a c

alcu

latio

n of

cor

resp

ondi

ng p

ropa

gatio

n pe

riods

(tpr

op,co

llaps

e).

A p

aram

eter

stu

dy o

ver

the

varia

ble

t prop

,col

laps

e (pr

opag

atio

n pe

riod

till t

he

even

t of c

olla

pse)

has

bee

n ca

rrie

d ou

t with

the

with

Com

rel a

nd S

tatre

l, bo

th

belo

ngin

g to

the

softw

are

pack

age

Stru

rel [

12].

The

resu

lt of

this

eva

luat

ion

is o

utlin

ed in

Fig

ure

R4.

3-1,

her

eby

cons

ider

ing

a cr

itica

l pen

etra

tion

dept

h of

1,0

00 µ

m a

nd 2

,000

µm

.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 10

3 –

Fi

gure

R4.

3-1:

Par

amet

er

stud

y ov

er

t prop

,col

laps

e (d

urat

ion

of

the

prop

agat

ion

peri

od t

ill t

he e

vent

of

colla

pse)

for

a

pene

trat

ion

dept

h of

x c

rit,c

olla

pse =

1,0

00

µm

an

d x c

rit,c

olla

pse =

2,0

00 µ

m

– 10

4 –

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

R5

Eva

luat

ion

of L

imit

Stat

es

Cal

cula

tion

no. 1

(“D

elph

ic O

racl

e”, T

= 2

93°K

, βde

pass

ivat

ion =

1.3

)

With

ass

umpt

ions

for

the

inp

ut d

ata

to m

odel

the

ini

tiatio

n pe

riod

acco

rdin

g to

Tab

le R

3-1

and

info

rmat

ion

conc

erni

ng th

e pr

opag

atio

n pe

riod

deriv

ed fr

om th

e “D

elph

ic O

racl

e” th

e fo

llow

ing

relia

bilit

ies

afte

r 50

year

s of

ex

posu

re (

targ

et s

ervi

ce l

ife)

have

bee

n ca

lcul

ated

by

eval

uatio

n of

the

re

spec

tive

limit

stat

e eq

uatio

ns a

nd ta

king

a te

mpe

ratu

re o

f T =

293

K (2

0°C

) in

to a

ccou

nt, c

p. T

able

R5-

1.

Tabl

e R5

-1:

Eval

uate

d re

liabi

lity

indi

ces

for

the

expo

sitio

n XC

4,

star

ting

from

a r

elia

bilit

y in

dex

of β

depa

ssiv

atio

n = 1

.3

(ref

eren

ce te

mpe

ratu

re o

f T =

293

K)

Lim

it St

ate

resp

ectiv

e tim

e pe

riod

for t

he

treat

ed e

vent

dist

r. m

[y

ears

] s

[yea

rs]

Info

rmat

ion

deriv

ed fr

om β

for

t SL =

50

year

s

depa

ssiv

atio

n of

re

info

rcem

ent

t ini

LogN

57

0 11

50

Mod

el w

ith q

uant

ified

in

put v

aria

bles

acc

ordi

ng

to T

able

1

1.3*

crac

king

of

conc

rete

t pr

op,c

rack

Lo

gN

4.5

1.5

Del

phic

Ora

cle

1.4

spal

ling

of

conc

rete

t pr

op,sp

all

LogN

9.

0 2.

5 D

elph

ic O

racl

e 1.

4

t prop

,col

laps

e 32

16

1.

8 co

llaps

e of

the

stru

ctur

al p

arts

t pr

op,c

olla

pse

LogN

52

20

corr

osio

n ra

te c

alcu

late

d ba

sed

on in

form

atio

n fr

om D

elph

ic O

racl

e an

d es

timat

ion

for x

crit,

colla

pse

2.4

*ini

tial r

elia

bilit

y in

dex

( mat

eria

l var

iabl

es h

ave

been

qua

ntifi

ed w

ith th

e ai

m to

reac

h th

is re

liabi

lity

inde

x) Acc

ordi

ng to

ISO

239

4 a

min

imum

targ

et re

liabi

lity

inde

x fo

r an

ultim

ate

limit

stat

e, s

uch

as c

olla

pse,

of β c

olla

pse =

3.1

is

requ

ired,

in

othe

r st

anda

rds

relia

bilit

ies

betw

een

3.7

and

4.4,

cp.

Ann

ex A

, Tab

le A

2-2

are

requ

ired.

As

the

corr

osio

n in

duce

d re

duct

ion

of r

einf

orce

men

t is

one

of v

ario

us u

ncer

tain

re

sist

ance

var

iabl

es, p

roba

bly

the

mos

t dom

inan

t res

ista

nce

varia

ble,

the

extra

de

pth

has t

o be

des

igne

d on

a re

liabi

lity

leve

l of a

ppro

x. β

ULS

,cor

r = 0

.8⋅β

colla

pse.

For

the

befo

reha

nd a

ssum

ed e

xtra

dep

ths

x crit

= 1

,000

µm

(re

info

rcem

ent

diam

eter

12

mm

) an

d 2,

000

µm

(f

or

diam

eter

25

mm

) th

e ca

lcul

ated

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 10

5 – re

liabi

litie

s w

ere

1.8

and

2.4

resp

ectiv

ely.

The

cal

cula

ted

relia

bilit

ies

of

β ULS

,cor

r = 2

.4

(cor

resp

onds

to

β c

olla

pse =

3.0

), an

d 1.

8 (c

orre

spon

ds

to

β col

laps

e = 2

.3) a

re n

ot su

ffic

ient

, cp.

Tab

le R

3-1.

Cal

cula

tion

no. 2

(“D

elph

ic O

racl

e”, T

= 2

93°K

, βU

LS,

corr

= 3

.1)

In o

rder

to

mee

t th

e Ta

ble

A2-

2 re

quire

men

ts (

RC

1: β

colla

pse =

3.7

, RC

2:

β col

laps

e = 4

.2)

a re

liabi

lity

of β U

LS,c

orr =

0.8⋅β

colla

pse o

f ap

prox

imat

ely

β ULS

,cor

r = 3

.1 h

ave

to b

e co

nfirm

ed.

Due

to

the

calc

ulat

ed r

elia

bilit

y in

dex

with

in “

calc

ulat

ion

no. 1

” w

hich

wer

e as

sess

ed t

o be

not

suf

ficie

nt, f

urth

er

calc

ulat

ions

hav

e be

en c

arrie

d ou

t ai

min

g to

mee

t th

e re

quire

men

t fo

r th

e ev

ent o

f col

laps

e. T

his

mea

ns, f

or th

ese

calc

ulat

ions

the

mat

eria

l var

iabl

es (a

, R

AC

C,0-1

, cp.

Tab

le R

5-2)

hav

e be

en q

uant

ified

in s

uch

a w

ay, t

hat a

t the

end

of

serv

ice

life

the

calc

ulat

ed re

liabi

lity

inde

x β c

olla

pse fu

lfills

the

requ

irem

ent.

Tabl

e R5

-2:

Ove

rvie

w o

f cha

nged

mat

eria

l var

iabl

es c

ompa

red

to T

able

R3

-1 q

uant

ified

var

iabl

es (a

ll ot

her v

aria

bles

are

unv

arie

d)

Var

iabl

e U

nit

Dis

tribu

tion

Mea

n V

alue

St

anda

rd

Dev

iatio

n

4 R

AC

C,0

-1

[(m²/s

)/(kg

/m³)]

([(

mm²/y

ears

)/(kg

/m³)]

) no

rmal

dis

tribu

tion

13 ·

10-1

1

(4,1

00)

5 · 1

0-11

(1,6

00)

9 a

[mm

] no

rmal

dis

tribu

tion

30

8

The

eval

uatio

n of

lim

it st

ate

base

d re

liabi

lity

indi

ces

show

s, th

at b

y ch

oosi

ng th

e m

ater

ial p

rope

rties

is s

uch

a w

ay, t

hat a

t the

end

of s

ervi

ce li

fe a

re

liabi

lity

inde

x lin

ked

to t

he e

vent

of

colla

pse

of β

ULS

,cor

r = 3

.1 i

s re

ache

d w

ithin

a c

limat

e w

ith a

mea

n te

mpe

ratu

re o

f T

= 20

°C,

the

subs

eque

nt

relia

bilit

y ag

ains

t dep

assi

vatio

n is

βde

pass

ivat

ion =

2.2

, cp.

Fig

ure

R6-

1.

Cal

cula

tion

no. 3

(“D

elph

ic O

racl

e” T

= 2

83°K

, βde

pass

ivat

ion =

1.3

)

In o

rder

to d

emon

stra

te th

e in

fluen

ce o

f th

e te

mpe

ratu

re o

n th

e co

rros

ion

rate

and

hen

ce o

n th

e ca

lcul

ated

rel

iabi

lity

indi

ces

furth

er c

alcu

latio

ns h

ave

been

car

ried

out t

akin

g a

mea

n te

mpe

ratu

re o

f T =

283

K (1

0°C

) int

o ac

coun

t, w

hich

is a

goo

d es

timat

ion

for

the

mea

n te

mpe

ratu

re f

or e

.g. G

erm

any.

The

m

ater

ial p

rope

rties

hav

e be

en c

hose

n in

suc

h a

way

, tha

t the

relia

bilit

y in

dex

linke

d to

dep

assi

vatio

n of

the

rei

nfor

cem

ent

afte

r 50

yea

rs o

f ex

posu

re

reac

hes β

depa

ssiv

atio

n = 1

.3, c

p. T

able

R3-

1.

– 10

6 –

Anne

x R:

Rel

iabi

lity

man

agem

ent:

from

SLS

to U

LS

The

eval

uatio

n of

lim

it st

ate

base

d re

liabi

lity

indi

ces

show

a s

igni

fican

t in

crea

se o

f rel

iabi

lity

indi

ces

com

pare

d to

the

corr

espo

ndin

g ca

lcul

atio

n w

ith

a te

mpe

ratu

re o

f T =

293

K. B

y st

artin

g w

ith a

lim

it st

ate

base

d re

liabi

lity

for

the

even

t of

dep

assi

vatio

n of

βde

pass

ivat

ion =

1.3

and

tak

ing

the

low

er m

ean

tem

pera

ture

int

o ac

coun

t fo

r th

e ev

ent

of c

olla

pse

a re

liabi

lity

inde

x of

β U

LS,c

orr =

3.1

(xcr

it,co

llaps

e = 2

,000

µm

) has

bee

n ca

lcul

ated

, cp.

Fig

ure

R6-

1

Cal

cula

tion

no. 4

(Dur

aCre

te, T

= 2

93°K

, βde

pass

ivat

ion =

1.3

)

For

orie

ntat

ion

purp

oses

add

ition

al c

alcu

latio

n ha

ve b

een

carr

ied

out

base

d on

cor

rosi

on r

ates

as

give

n w

ithin

[6]

. The

se e

xpos

ure

base

d da

ta h

as

been

co

llect

ed

in

sout

hern

Eu

rope

w

ithin

in

in

situ

co

nditi

ons

(mea

n te

mpe

ratu

re o

f app

roxi

mat

ely

20°C

). Th

e tim

e pe

riod

linke

d to

the

eve

nt o

f co

llaps

e ha

s be

en m

odel

led

acco

rdin

g to

Equ

atio

n R

4.3-

1, w

here

at t

he s

ame

estim

atio

n fo

r th

e cr

itica

l pe

netra

tion

dept

h as

in

the

othe

r ca

lcul

atio

n ex

ampl

es h

as b

een

used

(x

crit,

colla

pse =

2,00

0 µ

m).

By

usin

g th

is i

nfor

mat

ion

the

resp

ectiv

e re

liabi

lity

inde

x lin

ked

to t

he

even

t of

col

laps

e ca

n be

eva

luat

ed a

ccor

ding

to.

Equ

atio

n R

4.1-

1, h

ereb

y ta

king

the

mat

eria

l and

env

ironm

enta

l var

iabl

es fr

om T

able

R3-

1 in

to a

ccou

nt

to d

escr

ibe

the

initi

atio

n pe

riod.

By

star

ting

with

a li

mit

stat

e ba

sed

relia

bilit

y fo

r th

e ev

ent

of d

epas

siva

tion

of β

depa

ssiv

atio

n = 1

.3 a

nd t

akin

g th

e ex

posu

re

base

d co

rros

ion

rate

acc

ordi

ng [3

] int

o ac

coun

t the

cal

cula

ted

relia

bilit

y in

dex

β ULS

,cor

r sig

nific

antly

incr

ease

d (β

ULS

,cor

r = 3

.8),

cp. F

igur

e R

6- 1

.

R6

Con

clus

ions

St

arte

d w

ith

a gi

ven

relia

bilit

y β S

LS =

1.3

, th

e ev

alua

tion

of

the

corr

espo

ndin

g re

liabi

lity

indi

ces β S

LS to

βU

LS is

bas

ed o

n in

form

atio

n fr

om th

e “D

elph

ic O

racl

e” c

onsi

derin

g un

favo

urab

le c

ondi

tions

(sm

all c

oncr

ete

cove

r)

linke

d to

det

erio

ratio

n of

rein

forc

emen

t cau

sed

by c

orro

sion

.

The

calc

ulat

ed r

elia

bilit

ies

for

the

even

ts c

rack

ing

and

spal

ling

are

in th

e ra

nge

of 1

.3 to

1.8

(cp.

Fig

ure

R6-

1),

depe

ndin

g on

the

tem

pera

ture

reg

ime,

th

e in

fluen

ce o

f VCo

rr is

from

min

or im

porta

nce.

The

calc

ulat

ed r

elia

bilit

ies

of β

ULS

are

in

the

rang

e of

2.2

and

3.8

(cp

.

fib B

ulle

tin 3

4: M

odel

cod

e fo

r Ser

vice

Life

Des

ign

– 10

7 – Fi

gure

R6-

1),

tem

pera

ture

and

cor

rosi

on ra

te V

Corr a

re fr

om h

igh

impo

rtanc

e.

Fi

gure

R6-

1:

Eval

uate

d re

liabi

lity

indi

ces a

t the

end

of s

ervi

ce li

fe

linke

d to

the

limit

stat

es o

f dep

assi

vatio

n of

re

info

rcem

ent,

crac

king

and

spal

ling

of c

oncr

ete

cove

r an

d co

llaps

e of

the

stru

ctur

e. 4

cal

cula

tions

hav

e be

en

carr

ied

out c

onsi

deri

ng d

iffer

ent b

ound

ary

cond

ition

s (x

crit,

colla

pse

has

bee

n co

nsid

ered

as 2

,000

µm

)

Th

at

mea

ns,

a st

ruct

ure

of

robu

stne

ss

clas

s 3

(RO

C3)

ex

pose

d to

ca

rbon

atio

n an

d m

iddl

e Eu

rope

an a

vera

ge te

mpe

ratu

res

may

als

o be

ass

esse

d as

suf

ficie

nt d

urab

le w

ith r

egar

d to

ULS

-eve

nts

if m

inim

um r

equi

rem

ents

w

ith r

egar

d to

SLS

(de

pass

ivat

ion)

are

ful

fille

d. A

s so

on a

s th

e st

ruct

ure

is

clas

sifie

d to

RO

C2

or R

OC

1 an

d/or

the

stru

ctur

e is

exp

osed

to

high

er

tem

pera

ture

s (e

.g. s

outh

Eur

ope)

, hig

her

relia

bilit

ies

with

rega

rd to

the

even

t de

pass

ivat

ion

shou

ld b

e re

quire

d.

fib Bulletin 34: Model code for Service Life Design 109

References

[1] Baroghel-Bouny, V. et al.: Concrete design for structures with predefined service life – Durability control with respect to reinforcement corrosion and alkali-silica reaction. State-of-the-art and guide for the implementation of a performance-type and predictive approach based upon durability indicators (in French), Documents Scientifiques et Techniques de l’Association Francaise de Génie Civil (AFGC, Paris, July 2004), 252 p.

[2] www.duranetwork.com

[3] DuraCrete – Probabilistic Performance Based Durability Design of Concrete Structures: Statistical Quantification of the Variables in the Limit State Functions. Report No.: BE 95-1347, pp. 62-63, 2000.

[4] DARTS – Durable and Reliable Tunnel Structures: Deterioration Modelling, European Commission, Growths 2000, Contract G1RD-CT-2000-00467, Project GrD1-25633, 2004.

[5] DARTS – Durable and Reliable Tunnel Structures: Data, European Commission, Growths 2000, Contract G1RD-CT-2000-00467, Project GrD1-25633, 2004.

[6] Bamforth P. B.: “Enhancing reinforced concrete durability”, Technical Report no 61: 2004, published by the Concrete Society, www.concrete.org.uk.

[7] Ehrenberg, A.; Geiseler, J.: Ökologische Eigenschaften von Hochofenzement : Lebenswegphase Produktion: Energiebedarf, CO2-Emission und Treibhauseffekt. - In: Beton-Informationen 37 (1997), Nr. 4, S. 51-63 (in German).

[8] Collepardi M.; Marcialis, A.; Turriziani, R.: 1972, Penetration of Chloride Ions into Cement Pastes and Concretes, J.Am.Cer.Soc., Vol.55, 534-535.

[9] Maage M., Helland S.; Poulsen E.; Vennesland Ø. and Carlsen J.E.: "Service Life Prediction of Existing Concrete Structures Exposed to Marine Environment." ACI Materials Journal, Vol. 93, No. 6, Nov.-Dec. 1996.

[10] Tang, L.: Chloride Penetration Profiles and Diffusivity in Concrete under Different Exposure Conditions. Gothenburg: Chalmers University of Technology, 1997. - Publication P-97:3.

[11] Nilsson, L.-O.; Carcasses, M.: "Models for chloride ingress into concrete-a critical analysis". Report on task 4.1, EU project "ChlorTest" G6RD-CT-2002-0085, Building Materials, Lund Institute of Technology.

[12] RCP Consulting: STRUREL, A Structural Reliability Analysis Program System. RCP Consulting, Munich, 1995.

[13] Tang, L.: Final evaluation of test methods, WP 5 report, EU Project “ChlorTest”: Resistance of concrete to chloride ingress – From laboratory tests to in-field performance. G6RD-CT-2002-0085, 2005.

[14] Page, C.L. ; Short, N.R. ; El Tarras, A.: Diffusion of Chloride Ions in Hardened Cement Pastes. In: Cement and Concrete Research 11 (1981), No. 3, pp. 395-406.

[15] Lay, S.: Abschätzung der Wahrscheinlichkeit tausalzinduzierter Bewehrungskorrosion - Baustein eines Systems zum Lebenszyklusmanagement von Stahlbetonbauwerken, Link: http://mediatum.ub.tum.de/mediatum/content/below/index.xml, Dissertation, TU München, 2006 (in German).

[16] Breit, W.: Untersuchungen zum kritischen korrosionsauslösenden Chloridgehalt für Stahl in Beton. In: Schriftenreihe Aachener Beiträge zur Bauforschung, Institut für Bauforschung der RWTH Aachen, Nr. 8, Dissertation, 1997 (in German).

[17] Fagerlund, G.: (2004) A service life model for internal frost damage in concrete, report TVBM-3119, Div of Building Materials, Lund Institute of Technology, Lund, Sweden.

110 References

[18] Petersson, P.-E.: (2004) A service life model for scaling resistance of concrete – reflections. Contribution to fib task group 5.6, Lund, October 2004.

[19] Tuutti, K.: Corrosion of Steel in Concrete. Stockholm: Swedish Cement and Concrete Research Institute. In: CBI Research No. Fo 4:82, 1982.

[20] Raupach, M.: Zur chloridinduzierten Makroelementkorrosion von Stahl in Beton. Heft 433 der Schriftenreihe des DAfStb, Beuth Verlag, 1992, Dissertation (in German).

[21] NT Build 492 11.99. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments.

[22] Polder, R.B.; Rooij, M.R. de: Durability of marine concrete structures – field investigations and modelling, HERON, Vol. 50 (3), 133-143, 2005.

fib Bulletins published since 1998 N° Title 1 Structural Concrete

Textbook on Behaviour, Design and Performance Vol. 1: Introduction - Design Process – Materials Manual - textbook (244 pages, ISBN 2-88394-041-X, July 1999)

2 Structural Concrete Textbook on Behaviour, Design and Performance Vol. 2: Basis of Design Manual - textbook (324 pages, ISBN 2-88394-042-8, July 1999)

3 Structural Concrete Textbook on Behaviour, Design and Performance Vol. 3: Durability - Design for Fire Resistance - Member Design - Maintenance, Assessment and Repair - Practical aspects Manual - textbook (292 pages, ISBN 2-88394-043-6, December 1999)

4 Lightweight aggregate concrete: Extracts from codes and standards State-of-the-art report (46 pages, ISBN 2-88394-044-4, August 1999) Original edition out-of-print; available as photocopy only

5 Protective systems against hazards: Nature and extent of the problem Technical report (64 pages, ISBN 2-88394-045-2, October 1999)

6 Special design considerations for precast prestressed hollow core floors Guide to good practice (180 pages, ISBN 2-88394-046-0, January 2000)

7 Corrugated plastic ducts for internal bonded post-tensioning Technical report (50 pages, ISBN 2-88394-047-9, January 2000)

8 Lightweight aggregate concrete Part 1 – Recommended extensions to Model Code 90 Part 2 – Identification of research needs Part 3 – Application of lightweight aggregate concrete Guide (part 1), technical report (part 2) and state-of-the-art report (part 3) (118 pages, ISBN 2-88394-048-7, May 2000)

9 Guidance for good bridge design Part 1 – Introduction Part 2 – Design and construction aspects Guide to good practice (190 pages, ISBN 2-88394-049-5, July 2000)

10 Bond of reinforcement in concrete State-of-art report (434 pages, ISBN 2-88394-050-9, August 2000)

11 Factory applied corrosion protection of prestressing steel State-of-art report (20 pages, ISBN 2-88394-051-7, January 2001)

12 Punching of structural concrete slabs Technical report (314 pages, ISBN 2-88394-052-5, August 2001)

13 Nuclear containments State-of-art report (130 pages, 1 CD, ISBN 2-88394-053-3, September 2001)

14 Externally bonded FRP reinforcement for RC structures Technical report (138 pages, ISBN 2-88394-054-1, October 2001)

15 Durability of post-tensioning tendons Technical report (284 pages, ISBN 2-88394-055-X, November 2001)

N° Title 16 Design Examples

for the 1996 FIP recommendations Practical design of structural concrete Technical report (198 pages, ISBN 2-88394-056-8, January 2002)

17 Management, maintenance and strengthening of concrete structures Technical report (180 pages, ISBN 2-88394-057-6, April 2002)

18 Recycling of offshore concrete structures State-of-art report (33 pages, ISBN 2-88394-058-4, April 2002)

19 Precast concrete in mixed construction State-of-art report (68 pages, ISBN 2-88394-059-2, April 2002)

20 Grouting of tendons in prestressed concrete Guide to good practice (52 pages, ISBN 2-88394-060-6, July 2002)

21 Environmental issues in prefabrication State-of-art report (56 pages, ISBN 2-88394-061-4, March 2003)

22 Monitoring and safety evaluation of existing concrete structures State-of-art report (304 pages, ISBN 2-88394-062-2, May 2003)

23 Environmental effects of concrete State-of-art report (68 pages, ISBN 2-88394-063-0, June 2003)

24 Seismic assessment and retrofit of reinforced concrete buildings State-of-art report (312 pages, ISBN 2-88394-064-9, August 2003)

25 Displacement-based seismic design of reinforced concrete buildings State-of-art report (196 pages, ISBN 2-88394-065-7, August 2003)

26 Influence of material and processing on stress corrosion cracking of prestressing steel - case studies Technical report (44 pages, ISBN 2-88394-066-5, October 2003)

27 Seismic design of precast concrete building structures State-of-art report (262 pages, ISBN 2-88394-067-3, January 2004)

28 Environmental design State-of-art report (86 pages, ISBN 2-88394-068-1, February 2004)

Directory 2004 (132 pages, July 2004)

29 Precast concrete bridges State-of-art report (83 pages, ISBN 2-88394-069-X, November 2004)

30 Acceptance of stay cable systems using prestressing steels Recommendation (80 pages, ISBN 2-88394-070-3, January 2005)

31 Post-tensioning in buildings Technical report (116 pages, ISBN 2-88394-071-1, February 2005)

32 Guidelines for the design of footbridges Guide to good practice (160 pages, ISBN 2-88394-072-X, November 2005)

33 Durability of post-tensioning tendons Recommendation (74 pages, ISBN 2-88394-073-8, December 2005)

34 Model Code for Service Life Design Model Code (116 pages, ISBN 2-88394-074-6, February 2006)

Abstracts for fib Bulletins, lists of available CEB Bulletins and FIP Reports, and a publications order

form are given on the fib website at www.fib-international.org/publications.