Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*,...

89
Mock modular Mathieu moonshine modules Miranda C N Cheng 1* , Xi Dong 2 , John F R Duncan 3 , Sarah Harrison 2 , Shamit Kachru 2 and Timm Wrase 2 1 Introduction e investigation of moonshine connecting modular objects, sporadic groups, and 2d conformal field theories has been revitalized in recent years by the discovery of several new classes of examples. While monstrous moonshine [3, 15, 21, 30, 36, 37, 44] remains the best understood and prototypical case, a new class of umbral moonshines tying mock modular forms to automorphism groups of Niemeier lattices has recently been uncovered [13, 14] (cf. also [6]). e best studied example, and the first to be discovered, involves the group M 24 and was discovered through the study of the elliptic genus of K3 [35]. e twining functions have been constructed in [4, 31, 38, 39] and were proved to be the graded characters of an infinite-dimensional M 24 -module in [43]. Steps towards a better and deeper understanding of this mock modular moonshine can be found in [7, 8, 18, 4042, 46, 56, 57, 5961], and particularly in [9], where the importance of K3 surface geometry for all cases of umbral moonshine is elucidated. Possible connections to space- time physics in string theory have been discussed in [5, 4749, 63]. Evidence for a deep connection between monstrous and umbral moonshine has appeared in [25, 55]. Abstract We construct super vertex operator algebras which lead to modules for moonshine relations connecting the four smaller sporadic simple Mathieu groups with distin- guished mock modular forms. Starting with an orbifold of a free fermion theory, any subgroup of Co 0 that fixes a 3-dimensional subspace of its unique non-trivial 24-dimen- sional representation commutes with a certain N = 4 superconformal algebra. Simi- larly, any subgroup of Co 0 that fixes a 2-dimensional subspace of the 24-dimensional representation commutes with a certain N = 2 superconformal algebra. Through the decomposition of the corresponding twined partition functions into characters of the N = 4 (resp. N = 2 ) superconformal algebra, we arrive at mock modular forms which coincide with the graded characters of an infinite-dimensional Z-graded module for the corresponding group. The Mathieu groups are singled out amongst various other possibilities by the moonshine property: requiring the corresponding weak Jacobi forms to have certain asymptotic behaviour near cusps. Our constructions constitute the first examples of explicitly realized modules underlying moonshine phenomena relating mock modular forms to sporadic simple groups. Modules for other groups, including the sporadic groups of McLaughlin and Higman–Sims, are also discussed. Open Access © 2015 Cheng et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. RESEARCH Cheng et al. Mathematical Sciences (2015) 2:13 DOI 10.1186/s40687-015-0034-9 *Correspondence: [email protected] 1 Institute of Physics and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands Full list of author information is available at the end of the article

Transcript of Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*,...

Page 1: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Mock modular Mathieu moonshine modulesMiranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase2

1 IntroductionThe investigation of moonshine connecting modular objects, sporadic groups, and 2d conformal field theories has been revitalized in recent years by the discovery of several new classes of examples. While monstrous moonshine [3, 15, 21, 30, 36, 37, 44] remains the best understood and prototypical case, a new class of umbral moonshines tying mock modular forms to automorphism groups of Niemeier lattices has recently been uncovered [13, 14] (cf. also [6]). The best studied example, and the first to be discovered, involves the group M24 and was discovered through the study of the elliptic genus of K3 [35]. The twining functions have been constructed in [4, 31, 38, 39] and were proved to be the graded characters of an infinite-dimensional M24-module in [43]. Steps towards a better and deeper understanding of this mock modular moonshine can be found in [7, 8, 18, 40–42, 46, 56, 57, 59–61], and particularly in [9], where the importance of K3 surface geometry for all cases of umbral moonshine is elucidated. Possible connections to space-time physics in string theory have been discussed in [5, 47–49, 63]. Evidence for a deep connection between monstrous and umbral moonshine has appeared in [25, 55].

Abstract

We construct super vertex operator algebras which lead to modules for moonshine relations connecting the four smaller sporadic simple Mathieu groups with distin-guished mock modular forms. Starting with an orbifold of a free fermion theory, any subgroup of Co0 that fixes a 3-dimensional subspace of its unique non-trivial 24-dimen-sional representation commutes with a certain N = 4 superconformal algebra. Simi-larly, any subgroup of Co0 that fixes a 2-dimensional subspace of the 24-dimensional representation commutes with a certain N = 2 superconformal algebra. Through the decomposition of the corresponding twined partition functions into characters of the N = 4 (resp. N = 2) superconformal algebra, we arrive at mock modular forms which coincide with the graded characters of an infinite-dimensional Z-graded module for the corresponding group. The Mathieu groups are singled out amongst various other possibilities by the moonshine property: requiring the corresponding weak Jacobi forms to have certain asymptotic behaviour near cusps. Our constructions constitute the first examples of explicitly realized modules underlying moonshine phenomena relating mock modular forms to sporadic simple groups. Modules for other groups, including the sporadic groups of McLaughlin and Higman–Sims, are also discussed.

Open Access

© 2015 Cheng et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

RESEARCH

Cheng et al. Mathematical Sciences (2015) 2:13 DOI 10.1186/s40687-015-0034-9

*Correspondence: [email protected] 1 Institute of Physics and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The NetherlandsFull list of author information is available at the end of the article

Page 2: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 2 of 89Cheng et al. Mathematical Sciences (2015) 2:13

In none of these cases, however, has a connection to an underlying conformal field theorya (whose Hilbert space furnishes the underlying module) been established. The goal of this paper is to provide first examples of mock modular moonshine for sporadic simple groups G, where the underlying G-module can be explicitly constructed in the state space of a simple and soluble conformal field theory.

Our starting point is the Conway module sketched in [36], studied in detail in [24], and revisited recently in [27]. The original construction was in terms of a supersymmetric theory of bosons on the E8 root lattice, but this has the drawback of obscuring the true symmetries of the model. In [24], a different formulation of the same theory, as a Z2 orbifold of the theory of 24 free chiral fermions, was introduced. A priori, the theory has a Spin(24) symmetry. However, one can also view this theory as an N = 1 supercon-formal field theory. The choice of N = 1 structure breaks the Spin(24) symmetry to a subgroup. In [24] it was shown that the subgroup preserving the natural choice of N = 1 structure is precisely the Conway group Co0, a double cover of the sporadic group Co1. In [24] it was shown that this action can be used to attach a normalized principal modu-lus (i.e. normalized Hauptmodul) for a genus zero group to every element of Co0.

In this paper, we show that generalizations of the basic strategy of [24, 27] can be used to construct a wide variety of new examples of mock modular moonshine. Instead of choosing an N = 1 superconformal structure, we choose larger extended chiral alge-bras A. The subgroup of Spin(24) that commutes with a given choice can be determined by simple geometric considerations; in the cases of interest to us, it will be a subgroup that preserves point-wise a 2-plane or a 3-plane in the 24 dimensional representation of Co0, or equivalently, a subgroup that acts trivially on two or three of the free fermions in some basis. In the rest of the paper, we will use 24 to denote the unique non-trivial 24-dimensional representation of Co0, and use the term n-plane to refer to a n-dimen-sional subspace in 24.

It is natural to ask about the role in moonshine, or geometry, of n-planes in 24 for other values of n. One of the inspirations for our analysis here is the recent result of Gab-erdiel–Hohenegger–Volpato [40] which indicates the importance of 4-planes in 24 for non-linear K3 sigma models. The relationship between their results and the Co0-module considered here is studied in [25], where connections to umbral moonshine for various higher n are also established. We refer the reader to Sect. 9, or the recent articles [1, 10], for a discussion of the interesting case that n = 1.

In this work we will focus on the cases where A is an N = 4 or N = 2 superconformal algebra, though other possibilities exist. In the first case, we demonstrate that any sub-group of Co0 that preserves a 3-plane in the 24-dimensional representation can stabilise an N = 4 structure. The groups that arise are discussed in e.g. Chapter 10 of the book by Conway and Sloane [16]. They include in particular the Mathieu groups M22 and M11. In the second case, where the group need only fix a 2-plane in order to preserve an N = 2 superconformal algebra, there are again many possibilities (again, see [16]), including the larger Mathieu groups M23 and M12. Note that the larger the superconformal algebra we wish to preserve, the smaller the global symmetry group is. Corresponding to cer-tain specific choices of the N = 0, 1, 2, 4 algebras, we have the global symmetry groups Spin(24) ⊃ Co0 ⊃ M23 ⊃ M22.

Page 3: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 3 of 89Cheng et al. Mathematical Sciences (2015) 2:13

We should stress again that there are other Co0 subgroups that preserve N = 4 resp. N = 2 superconformal algebras arising from 3-planes resp. 2-planes in 24. Some exam-ples are: the group U4(3) for the former case, and the McLaughlin (McL) and Hig-man–Sims (HS) sporadic groups, and also U6(2) for the latter case. However, only for the Mathieu groups do the twined partition functions of the module display uniformly a special property, which we regard as an essential feature of the moonshine phenomena. Namely, all the mock modular forms obtained via twining by elements of the Mathieu groups are encoded in Jacobi forms that are constant in the elliptic variable, in the limit as the modular variable tends to any cusp other than the infinite one. This property also holds for the Jacobi forms of the Mathieu moonshine mentioned above, and may be regarded as a counter-part to the genus zero property of monstrous moonshine, as we explain in more detail in Sect. 8.

The importance of this property is its predictive power: it allows us to write down trace functions for the actions of Mathieu group elements with little more information than a certain fixed multiplier system, and the levels of the functions we expect to find. A priori these are just guesses, but the constructions we present here verify their validity.

This may be compared to the predictive power of the genus zero property of monstrous moonshine: if Ŵ < SL2(R) determines a genus zero quotient of the upper-half plane, and if the stabilizer of i∞ in Ŵ is generated by ±

(1 10 1

), then there is a unique Ŵ-invariant hol-

omorphic function satisfying TŴ(τ) = q−1 + O(q) as τ → i∞, for q = e2π iτ . The miracle of monstrous moonshine, and the content of the moonshine conjectures of Conway–Norton [15], is that for suitable choices of Ŵ, the function TŴ is the trace of an element of the monster on some graded infinite-dimensional module (namely, the moonshine module of [36, 37]). The optimal growth property formulated in [14] plays the analogous predictive role in umbral moonshine, and is similar to the special property we formulate for the Mathieu moonshine considered here.

We mention here that although the moonshine conjectures have been proven in the monstrous case by Borcherds [3], and verified in [7, 28, 43] (see also [6]) for umbral moonshine, conceptual explanations of the genus zero property of monstrous moon-shine, and of the analogous properties of umbral moonshine, and the Mathieu moon-shine studied here, remain to be determined. An approach to establishing the genus zero property of monstrous moonshine via quantum gravity is discussed in [29].

The organization of the paper is as follows. We begin in Sect. 2 with a review of the module discussed in [27]. In Sect. 3, we describe methods for endowing this module with N = 4 and N = 2 structure. In Sect. 4, we discuss what this does to the mani-fest symmetry group of the model, reducing the symmetry from Co0 to a variety of other possible groups which preserve a 3-plane (respectively 2-plane) in the 24 of Co0. In Sects. 4 and 5, we discuss the action of these Co0-subgroups on the mod-ules and compute the corresponding twining functions. We identify M23, M22, McL, HS, U6(2) and U4(3) as some of the most interesting Co0-subgroups preserving some extended superconformal algebra. In Sects. 6 and 7, we discuss in some detail the decomposition of the graded partition function of our chiral conformal field theory into characters of irreducible representations of the N = 4 and N = 2 superconfor-mal algebras. In Sect. 8, we discuss the special property we require from a moon-shine twining function, and show how this property singles out the Mathieu groups

Page 4: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 4 of 89Cheng et al. Mathematical Sciences (2015) 2:13

in our setup. We close with a discussion in Sect. 9. The appendices contain a number of tables: character tables for the various groups we discuss, tables of coefficients of the vector-valued mock modular forms that arise as our twining functions, and tables describing the decompositions of our modules into irreducible representations of the various groups.

2 The free field theoryThe chiral 2d conformal field theory that will play a starring role in this paper has two different constructions. The first is described in [37] and starts with 8 free bosons Xi compactified on the 8-dimensional torus given by the E8 root lattice, together with their Fermi superpartners ψ i. One then orbifolds by the Z2 symmetry

Note that, in more mathematical terms, a chiral 2d conformal field theory can be under-stood to mean a super vertex operator algebra (usually assumed to be simple, and of CFT-type in the sense of [23]), together with a (simple) canonically-twisted module. These two spaces are referred to as the Neveu–Schwarz (NS) and Ramond (R) sectors of the theory, respectively. The compactification of free bosons on the torus defined by a lattice L manifests, in the NS sector, as the usual lattice vertex algebra construction, and their Fermi superpartners are then realized by a Clifford module, or free fermion, super vertex algebra, where the underlying orthogonal space comes equipped with an isometric embedding of L. In the cases under consideration, there is a unique simple canonically-twisted module up to equivalence (cf. e.g. [24]), and hence a unique choice of R sector.

The orbifold procedure is described in detail in the language of vertex algebra in [24]. In what follows, a field of dimension d is a vertex operator or intertwining operator attached to a vector v in the NS or R sector, respectively, with L(0)v = dv. A current is a field of dimension 1. A field is called primary if its corresponding vector is a highest weight for the Virasoro (Lie) algebra. A ground state is an L(0)-eigenvector of minimal eigenvalue.

The E8 construction just described has manifest N = 1 supersymmetry, in the sense that the Neveu–Schwarz and Ramond algebras act naturally on the NS and R sectors, respectively. After orbifolding we obtain a c = 12 theory with no primary fields of dimension 12. The partition functions (i.e., graded dimensions) of this free field theory can easily be computed. For example, the NS sector partition function is given by

where E4 is the weight 4 Eisenstein series, being the theta series of the E8 lattice, η(τ) = q1/24

∏∞n=1(1− qn) is the Dedekind eta function, and θi are the Jacobi theta func-

tions recorded in “Appendix  A”. We have also set q = ǫ(τ ) and we use the shorthand notation e(x) = e2π ix throughout this paper.

(2.1)(Xi,ψ i) → (−Xi,−ψ i).

(2.2)ZNS,E8(τ ) =1

2

(E4(τ )θ3(τ , 0)

4

η(τ)12+ 16

θ4(τ , 0)4

θ2(τ , 0)4+ 16

θ2(τ , 0)4

θ4(τ , 0)4

)

(2.3)= q−1/2 + 0+ 276q1/2 + 2048q + 11202q3/2 + · · · ,

Page 5: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 5 of 89Cheng et al. Mathematical Sciences (2015) 2:13

One recognizes representations of the Co1 sporadic group appearing in the q-series (2.3): apart from 276, which is the minimal dimension of a faithful irreducible represen-tation (cf. [31]), one can also observe

In fact, this theory has a Co0 ∼= 2.Co1 symmetry, which we call non-manifest since the action of Co0 is not obvious from the given description. Note that we sometimes use n or Zn to denote Z/nZ depending on the context.

A better realization, for our purposes, was discussed in detail in [28] (cf. also [40]). The E8 orbifold theory is equivalent to a theory of 24 free chiral fermions �1, �2, . . . , �24, also orbifolded by the Z2 symmetry �α → −�α. This gives an alternative description of the Conway module above. The partition function from this “free fermion” point of view is more naturally written as

This is equal to (2.2) according to non-trivial identities satisfied by theta functions. Note that θ1(τ , 0) = 0.

The free fermion theory has a manifest Spin(24) symmetry, but not a manifest N = 1 supersymmetry. However, one can construct an N = 1 supercurrent as follows. There is a unique (up to scale) NS ground state, but there are 212 = 4096 linearly independent Ramond sector ground states, which may be obtained by acting on a given fixed R sector ground state with the fermion zero modes �i(0). It will be convenient to label the result-ing 4096 Ramond sector ground states by vectors s ∈ F

122 , where F2 = {−1/2, 1/2}.

We therefore have 4096 spin fields of dimension 32 which implement the flow from the NS to the R sector. Denoting these fields as Ws, one can try to find a linear combination

which will serve as an N = 1 supercurrent (i.e., field whose modes generate actions of the Neveu–Schwarz and Ramond super Lie algebras). As demonstrated in [28], and as we will review in the next section, there exists a set of values cs such that the operator product expansion of W and the stress tensor T close properly, defining actions of the Neveu–Schwarz and Ramond algebras.

Any choice of W breaks the Spin(24) symmetry, since the Ramond sector ground states split into two 2048-dimensional irreducible representation of Spin(24). It is proven in [28] that the subgroup of Spin(24) that stabilizes a suitably chosen N = 1 supercurrent is exactly the Conway group Co0. In brief, the method of [28] is to identify a certain ele-mentary abelian subgroup of order 212 in Spin(24) (which should be regarded as a copy of the extended Golay code in Spin(24)). The action of this subgroup on the Ramond sector ground states singles out a particular choice of W, with the property that it is not

(2.4)2048 = 1+ 276+ 1771,

(2.5)11202 = 1+ 276+ 299+ 1771+ 8855,

· · ·

(2.6)ZNS,fermion(τ ) =1

2

4∑

i=2

θ12i (τ , 0)

η12(τ ).

(2.7)W =

s∈F122

csWs

Page 6: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 6 of 89Cheng et al. Mathematical Sciences (2015) 2:13

annihilated by the zero mode of any dimension 1 field in the theory. It follows from this (cf. Proposition 4.8 of [28]) that the subgroup of Spin(24) that stabilizes W is a reductive algebraic group of dimension 0, and hence finite. On the other hand, one can show (cf. Proposition 4.7 of [28]) that this group contains Co0, by virtue of the choice of subgroup 212. We obtain that the full stabilizer of W in Spin(24) is Co0 by verifying (cf. Proposition 4.9 of [28]) that Co0 is a maximal subgroup, subject to being finite.

In the rest of this paper, we extend this idea as follows. Instead of choosing an N = 1 supercurrent and viewing the theory as an N = 1 super conformal field theory, we choose various other super extensions of the Virasoro algebra. We will argue that N = 4 and N = 2 superconformal presentations of the theory are in one to one correspond-ence with choices of subgroups of Co0 which fix a 3-plane (respectively, 2-plane) in the 24 dimensional representation. This leads us naturally to theories with various inter-esting symmetry groups, whose twining functions are easily computed in terms of the partition function (or elliptic genus) of the free fermion conformal field theory. These functions in turn are expressed nicely in terms of mock modular forms, and thus we establish mock modular moonshine relations for subgroups of Co0 via this family of modules.

3 The superconformal algebrasWe first discuss the largest superconformal algebra (SCA) we will consider, which gives rise to smaller global symmetry groups. We will construct an N = 4 SCA in the free fermion orbifold theory. Our strategy is to first construct the SU(2) fields, and act with them on an N = 1 supercurrent to generate the full N = 4 SCA. We consequently obtain actions of the N = 2 SCA by virtue of its embeddings in the N = 4 SCA. In this process, we break the Co0 symmetry group down to a proper subgroup as we will discuss in Sect. 4. We refer the reader to [32, 50, 52] for background on the N = 4 and N = 2 superconformal algebras.

We start with 24 real free fermions �1, �2, . . . , �24 . Picking out the first three fermions, we obtain the currents Ji:

They form an affine SU(2) algebra with level 2 as may be seen from their operator prod-uct expansion (OPE),

The next step is to pick an N = 1 supercurrent and act with Ji on it. As we reviewed in Sect. 2, an N = 1 supercurrent exists in this model and may be written as a linear com-bination of spin fields. Moreover, it may be chosen so that its stabilizer in Spin(24) is precisely Co0. We will present a very general version of the construction now, and then extend it to find the N = 4 SCA.

To write the N = 1 supercurrent explicitly, we first group the 24 real fermions into 12 complex ones and bosonize them:

(3.1)Ji = −iǫijk�j�k , i, j, k ∈ {1, 2, 3} .

(3.2)Ji(z)Jj(0) ∼1

z2δij +

i

zǫijk Jk(0) .

Page 7: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 7 of 89Cheng et al. Mathematical Sciences (2015) 2:13

In terms of the bosonic fields H = (H1, . . . ,H12), an N = 1 supercurrent W may be writ-ten as

where each component of s = (s1, s2, . . . , s12) takes the values ±1/2, and the coefficients ws belong to C. We have introduced cocycle operators cs(p) to ensure that the fields with integer spins (i.e., corresponding to even parity vectors) commute with all other operators, and the fields with half integral spins (corresponding to odd parity vectors) anticommute amongst themselves. The cocycle operators depend on the zero-mode operators p which are characterized by the commutation relation

where k = (k1, . . . , k12) is an arbitrary 12-tuple of complex numbers.The associativity and closure of the OPE of the “dressed” vertex operators

requires that

where the ǫ(k, k′) satisfy the 2-cocycle condition

Moreover, in order for Vk to have the desired (anti)commutation relation, the condition

should be imposed. An explicit description of the cocycle for a general vertex operator eik·H may be chosen as

according to [33]. In our case, M is a 12× 12 matrix that has the block form

where 14 is the 4 × 4 matrix with all entries set to 1.Generically, the OPE of W with itself is

(3.3)

ψa ≡ 2−1/2(�2a−1 + i�2a) ∼= e

iHa ,

ψa ≡ 2−1/2(�2a−1 − i�2a) ∼= e

−iHa , a = 1, 2, . . . , 12.

(3.4)W =

s∈F122

wseis·Hcs(p),

(3.5)[p, eik·H

]= keik·H,

(3.6)Vk = eik·Hck(p)

(3.7)ck(p+ k′)ck′(p) = e(k, k′)ck+k′(p),

(3.8)e(k, k′) e(k + k′, k

′′) = e(k′, k′′) ǫ(k, k′ + k′′).

(3.9)e(k, k′) = (−1)k·k′+k2k′2e(k′, k)

(3.10)ck(p) = eiπk·M·p

(3.11)M =

M4 0 014 M4 014 14 M4

, M4 =

0 0 0 01 0 0 01 1 0 0−1 1 − 1 0

,

(3.12)W (z)W (0) ∼ ww

[1

z3+ T (0)

4z

]+ wŴαβγ δw

96z�α�β�γ �δ(0),

Page 8: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 8 of 89Cheng et al. Mathematical Sciences (2015) 2:13

where we have defined

for α < β < γ < δ. The other components of Ŵαβγ δ are defined by the requirement that it is totally antisymmetrized. For W to be an N = 1 supercurrent, the last terms in (3.12) must vanish,

and the first two terms must have the correct normalization,

From now on we presume to be chosen a solution (ws) such that W is an N = 1 super-current stabilized by Co0, as described in Sect. 2.

We may now act with the SU(2) currents Ji on our N = 1 supercurrent W. In order to do this, write the SU(2) currents in (3.1) in bosonized form,

Here we have included the cocycles e±iπp1. We now extract the singular terms of the OPEs,

where Wi are slightly modified combinations of spin fields,

and where Rs ≡ (−s1,−s2, s3, . . . , s12).

(3.13)ws = w−sc−s(s),

(3.14)

Ŵαβγ δ

ss′ =(ŴαŴβŴγ Ŵδ

)ss′c−s(s

′ − s)

(−2s⌈ α

2⌉+1

)· · ·

(−2s⌈ β

2⌉

)(−2s⌈ γ

2⌉+1

)· · ·

(−2s⌈ δ

2⌉

),

(3.15)wŴαβγ δw = 0 , ∀α,β , γ , δ ∈ {1, 2, . . . , 12},

(3.16)ww =

s∈F122

w−swscs(−s) = 8.

(3.17)J1 = −1

2

(eiH1 − e−iH1

)(eiH2eiπp1 + e−iH2e−iπp1

),

(3.18)J2 =i

2

(eiH1 + e−iH1

)(eiH2eiπp1 + e−iH2e−iπp1

),

(3.19)J3 = i∂H1.

(3.20)Ji(z)W (0) ∼ − i

2zWi(0),

(3.21)W1 = −∑

s

2s2wRseis·Hcs(p),

(3.22)W2 = i∑

s

4s1s2wRseis·Hcs(p),

(3.23)W3 = i∑

s

2s1wseis·Hcs(p),

Page 9: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 9 of 89Cheng et al. Mathematical Sciences (2015) 2:13

We claim that all three Wi defined above are valid N = 1 supercurrents. This is because we may obtain, for instance, W3 from W by rotating the 1–2 plane by π, and the conditions (3.15) and (3.16), for being an N = 1 supercurrent, are invariant under SO(24) rotations. We may obtain W2 and W3 similarly. This shows that each of the Wi is an N = 1 supercurrent.

Furthermore, we can check using the identity (3.15) that the OPEs of the Wi are given by

This shows that W, Wi, and Ji, together with the stress tensor T, defined as

form an N = 4 SCA with central charge c = 12. We may recombine the four N = 1 supercurrents W, Wi into the more conventional N = 4 supercurrents

which transform according to the representation 2+ 2 of SU(2). In terms of these super-currents we obtain the standard (small) N = 4 SCA with central charge c = 12, charac-terized by the following set of OPEs:

(3.24)Wi(z)Wj(0) ∼ δij

[8

z3+ 2

zT (0)

]+ 2iǫijk

[2

z2Jk(0)+

1

z∂Jk(0)

],

(3.25)W (z)Wi(0) ∼ −2i

(2

z2+ ∂

z

)Ji(0),

(3.26)Ji(z)Wj(0) ∼i

2z(δijW + ǫijkWk).

(3.27)T = −1

2

α

�α∂�α = −1

2

a

∂Ha∂Ha,

(3.28)W±1 ≡ 2−1/2(W ± iW3) , W±

2 ≡ ±2−1/2i(W1 ± iW2),

(3.29)T (z)T (0) ∼ 6

z4+ 2

z2T (0)+ 1

z∂T (0),

(3.30)T (z)W±a (0) ∼ 3

2z2W±

a (0)+ 1

z∂W±

a (0),

(3.31)T (z)Ji(0) ∼1

z2Ji(0)+

1

z∂Ji(0),

(3.32)W+a (z)W−

b (0) ∼ δab

[8

z3+ 2

zT (0)

]− 2σ i

ab

[2

z2Ji(0)+

1

z∂Ji(0)

],

(3.33)W+a (z)W+

b (0) ∼ W−a (z)W−

b (0) ∼ 0,

(3.34)Ji(z)W+a (0) ∼ − 1

2zσ iabW

+b (0),

(3.35)Ji(z)W

−a (0) ∼ 1

2zσ i∗abW

−b (0),

Page 10: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 10 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Here σ i are the Pauli matrices.Now we can generalize our formula for the partition function (2.6) to include a grading

by the U(1) charge under the Cartan generator of the SU(2). The U(1) charge operator J0 is, by definition, twice the zero-mode of the J3 current. From this and the definition J3 = −i�1�2 = ψ1ψ1, we see that under J0 the complex fermion ψ1 has charge 2 while the other 11 complex fermions are neutral. Therefore, the U(1)-graded NS sector partition function becomes

In the above discussion, we have chosen the first three fermions out of a total of 24 to generate a set of SU(2) currents. Together with an N = 1 supercurrent they gen-erate a full N = 4 SCA. It is clear that we are free to choose any three fermions for this purpose. In fact, we could choose an arbitrary three-dimensional subspace of the 24-dimensional vector space spanned by the fermions, and obtain an N = 4 SCA. For a given N = 1 supercurrent, not all choices of 3-plane are equivalent, as we will see in Sect. 4.

Observe that we could instead have chosen to single out only two real fermions, and construct a U(1) current algebra instead of an SU(2) current algebra. Completely analo-gous manipulations then show that each such choice provides an N = 2 superconformal algebra. As a result we can equip the Co0 theory with N = 2 structure in such a way that the global symmetry group is broken to subgroups G of Co0 which stabilize 2-planes in 24.

To summarize the results of this section, we have shown how to construct an N = 1 supercurrent for the chiral conformal field theory described, in the previous section, as an orbifold of 24 free fermions. We have also shown how choices of 2- and 3-planes in the space spanned by the generating fermions give rise to actions of the N = 2 and N = 4 superconformal algebras (respectively) on the theory. As reviewed in Sect. 2, a suitable choice of N = 1 structure reduces the global symmetry of the theory to Co0. In the next section we will discuss the finite simple groups that appear when we impose the richer, N = 2 and N = 4 superconformal structures.

4 Global symmetriesEnhancing the N = 1 structure of the theory to N = 4 breaks the Co0 symmetry. We now show that for a specific choice of 3-plane in 24, resulting in a specific copy of the N = 4 SCA, the stabilising subgroup of Co0 is the sporadic group M22. Similarly, for a specific choice of 2-plane, resulting in a specific copy of the N = 2 SCA, the sta-bilising subgroup of Co0 is the sporadic group M23. This amounts to a proof that the model described in Sect. 2 results in an infinite-dimensional M22 (resp. M23)-module underlying the mock modular forms described in Sect. 6 (resp. Sect. 7) arising from its

(3.36)Ji(z)Jj(0) ∼1

z2δij +

i

zǫijk Jk(0).

(3.37)ZNS(τ , z) =1

2

4∑

i=2

θi(τ , 2z) θi(τ , 0)11

η(τ)12.

Page 11: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 11 of 89Cheng et al. Mathematical Sciences (2015) 2:13

interpretation as an N = 4 (resp. N = 2) module. More generally, we establish the mod-ules for 3- (2-)plane-fixing subgroups of the largest Mathieu group M24 by fixing a spe-cific copy of N = 4 (N = 2) SCA.

Recall that the theory regarded as an N = 0 theory (i.e., with no extension of the Virasoro action) has a Spin(24) symmetry resulting from the SO(24) rotations on the 24-dimensional space, and a suitable choice of N = 1 supercurrent breaks the Spin(24) group down to its subgroup Co0. The group Co0 is the automorphism group of the Leech lattice �Leech, and various interesting subgroups of Co0 can be identified as stabilizers of suitably chosen lattice vectors in �Leech. To study the automorphism group of the mod-ule when fixing more structure—more supersymmetries in this case—it will therefore be useful to describe the enhanced supersymmetries in terms of Leech lattice vectors.

In Chapter 10 of [16] it is shown that if we choose an appropriate tetrahedron in the Leech lattice, whose edges have lengths squared 16× (2, 2, 2, 2, 3, 3) in the normali-sation described below, the subgroup of Co0 that leaves all vertices of the tetrahedron invariant is M22. To be more precise, let eγ, for γ ∈ {1, 2, . . . , 24}, be an orthonormal basis of R24, and choose a copy G of the extended binary Golay code in P({1, . . . , 24}). Then we may realize �Leech as the lattice generated by the vectors 2

∑γ∈C eγ for

C ∈ G together with −4e1 +∑24

γ=1 eγ. (One can show that all 24 vectors of the form −4eα +

∑24γ=1 eγ are in �Leech.) Define the tetrahedron T{α,β} to be that whose four verti-

ces are O = 0, Xα = 4eα +∑24

γ=1 eγ, Xβ = 4eβ +∑24

γ=1 eγ and Pαβ = 4eα + 4eβ, for any α,β ∈ {1, 2, . . . , 24} with α �= β. For every such T{α,β}, the subgroup fixing every vertex is a copy of M22, a sporadic simple group of order 27 · 32 · 5 · 7 · 11 = 443, 520 and the subgroup of M24 fixing eα and eβ.

From the above discussion, it is clear that given {α,β}, a copy of M22 stabilises the real span of eα, eβ and

∑24γ=1 eγ. Given a suitable choice of the N = 1 superconformal alge-

bra, this copy of R3 in 24 then determines, up to rotations, the three fermions, denoted �1,2,3, from which the SU(2) current algebra was built in Sect. 3. By definition then, a copy of M22 leaves the N = 4 superconformal algebra invariant.

A natural question is: what is the symmetry group G that fixes a given choice of N = 2 superconformal structure? Given the above description of the M22 action, we can choose the R2 ⊂ R3 generated by eα and

∑24γ=1 eγ and use the two free fermions lying in the R2

to construct the N = 2 sub-algebra of the N = 4 SCA. Specifically, the U(1) action is rotation of the R2. From the above discussion, it is not hard to see that there is a copy of M23 fixing eα and

∑24γ=1 eγ and hence stabilising the N = 2 structure. Recall that M23

is a sporadic simple group of order 27 · 32 · 5 · 7 · 11 · 23 = 10, 200, 960. In terms of the Leech lattice, it corresponds to the fact that the stabiliser of the triangle in �Leech whose edges have lengths squared 16× (6, 3, 2), with vertices chosen to be O, Xα and 2

∑24γ=1 eγ

, is a copy of M23 inside the copy of Co0 stabilising �Leech.This furnishes a proof that the theory described in Sect. 2 leads to modules for M22

and M23 which explicitly realize the mock modular forms to be defined in Sects. 6 and 7.We should mention that by stabilizing different choices of geometric structure, other

than the tetrahedron and triangle just discussed, leading to M22 and M23, respectively, we can determine other global symmetry groups G. Indeed, our method constructs a G-module with N = 4 (N = 2) superconformal symmetry for any subgroup G < Co0

Page 12: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 12 of 89Cheng et al. Mathematical Sciences (2015) 2:13

which fixes a 3-plane (2-plane) in 24. Since, as we will see in Sect. 6 (Sect. 7), such mod-ules furnish assignments of mock modular forms to the elements of their global symme-try groups, it is an interesting question to classify the global symmetry groups G < Co0 that can arise. We conclude this section with a discussion of some of these possibilities. Certainly a full classification is beyond the scope of this work, so we restrict our atten-tion (mostly) to sporadic simple examples.

Indeed, the Conway group Co0 is a rich source of sporadic simple groups, for no less than 12 of the 26 sporadic simple groups are involved in Co0 (cf. [17]), in the sense that they may be obtained by taking quotients of subgroups of Co0. Of these 12, all but 3 are actually realised as subgroups, and 6 of these 9 sporadic simple groups appear as sub-groups of Co0 fixing (at least) a 2-plane in 24. These six 2-plane fixing groups are the smaller Mathieu groups, M23, M22, M12 and M11, the Higman–Sims group HS, and the McLaughlin group McL. Some 2-planes they fix are described explicitly in Chapter 10 of [16].N = 4 modulesFrom the character tables (cf. [17]) of the six sporadic 2-plane fixing subgroups of Co0

it is clear that M22 and M11 are the only examples that fix a 3-plane. Even though M11 is not a subgroup of M22, it turns out that the mock modular forms attached to M11 by our N = 4 construction (and the analysis of Sect. 6) are a proper subset of those attached to M22, since the conjugacy classes of Co0 appearing in a 3-plane-fixing subgroup M11 are a proper subset of those appearing in a subgroup M22. For this reason we focus on M22 when discussing mock modular forms attached to sporadic simple groups via the N = 4 construction in this work.

If we expand our attention to simple, not necessarily sporadic subgroups of Co0, then there is one example which is larger than M22 (which has order 443,520). Namely, the group U4(3), with order 3,265,920, can arise as the stabilizer of a suitably chosen 3-plane in the 24 of Co0 [16]. The U4(3) characters are presented in Appendix Table  20, the coefficients in the associated (twined) vector valued mock modular forms in Appendix Tables  3 and 4, and the decomposition of the module into irreducible representations of the group in Appendix Tables 26 and 27.

As we shall see in Sect. 8, the Jacobi forms attached to M22 (and therefore also those attached to M11) by the N = 4 construction are distinguished in that they satisfy a nat-ural analogue of the genus zero condition of monstrous moonshine. By contrast, this property does not hold for all the Jacobi forms arising from U4(3). This is the main rea-son for our focus on M22 in the context of N = 4 supersymmetry (Appendix Tables 1, 2, 5, 6, 15).N = 2 modulesWe have focused on the example of M23, with order 10,200,960, in this section. Since

M22 and M11 are subgroups of M23 we do not consider them further in the context of N = 2 structures. Of the remaining sporadic simple 2-plane-fixing subgroups of Co0, the largest is the McLaughlin group McL, which is actually considerably larger than M23, having order 898,128,000. Its characters are presented in Appendix Table 21, the coefficients of the (twined) mock modular forms in Appendix Tables 7 and 8, and the decomposition of the module into irreducible representations of the group in Appendix Tables 33, 34, 35, 36, 37, 38.

Page 13: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 13 of 89Cheng et al. Mathematical Sciences (2015) 2:13

The next largest example, also larger than M23, is the Higman–Sims group HS, with order 44,352,000. Its characters are presented in Appendix Table 22, the coefficients of the (twined) mock modular forms in Appendix Tables 9 and 10, and the decomposition of the module into irreducible representations of the group in Appendix Tables 39, 40, 41, 42, 43, 44.

If we expand our attention to simple groups fixing a 2-plane in 24 then there is one example larger than McL. Namely, the group U6(2), of order 9,196,830,720, fixes any tri-angle in 24 whose three sides are vectors of minimal length in the Leech lattice. The characters of U6(2) are given in Appendix Tables  17, 18, 19, the coefficients of the (twined) mock modular forms in Appendix Tables 11, 12, 13, 14, and the decomposition of the module into irreducible representations of the group in Appendix Tables 45, 46, 47, 48, 49, 50, 51, 52, 53, 54.

In direct analogy with the case of N = 4 structure, it will develop in Sect. 8 that the Jacobi forms attached to M12 and M23 satisfy a natural analogue of the genus zero condi-tion of monstrous moonshine, and, contrastingly, this property fails in general for the modular forms arising from the other, non-Mathieu, 2-plane-fixing simple groups men-tioned above. For these reasons, and since M12 is relatively small, we focus on M23 in our discussion of N = 2 supersymmetry.

5 Twining the moduleIn the last sections, we have described how to equip the orbifolded free fermion the-ory with N = 4 and N = 2 superconformal structures. In this section we will use the Ramond sector of our theory to attach two variable formal power series—the g-twined graded R sector partition function, cf. (5.10)—to each element g ∈ Co0 that preserves at least a 2-plane in 24.

Let us denote the Ramond sector by V, and let us choose a U(1) charge operator J0. This will be twice the Cartan generator of the SU(2) in the N = 4 case, or the single U(1) generator in the case of N = 2 SCA. Then it is natural to define the Ramond-sector U(1)-graded partition function, or elliptic genus,

where we have introduced a chemical potential for the J0 charges and set y = e(z) for z ∈ C. Also, we define (−1)F as an operator on V by requiring that it act as Id on the untwisted free fermion contribution to V, and as −Id on the twisted fermion contribution.

As is expected for 2d conformal field theories with N ≥ 2 supersymmetry, the elliptic genus (5.1) transforms as a Jacobi form of weight 0, index m = c

6 and level 1.

(5.1)Z(τ , z) = T rV (−1)FqL0−c/24yJ0

(5.2)= 1

2

1

η12(τ )

4∑

i=2

(−1)i+1θi(τ , 2z)θ11i (τ , 0)

(5.3)= 1

2

E4(τ )θ41 (τ , z)

η12(τ )+ 8

4∑

i=2

(θi(τ , z)

θi(τ , 0)

)4

,

Page 14: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 14 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Explicitly, and since c = 12 in our case, this means that Z|2(�,µ) = Z for all �,µ ∈ Z, and Z|0,2γ = Z for all γ ∈ SL2(Z), where the elliptic and modular slash operators are defined by

respectively, for �,µ ∈ Z and γ =(a bc d

)∈ SL2(Z). (A Jacobi form of level N is only

required to satisfy φ|k ,mγ = φ for γ in the congruence subgroup Ŵ0(N ) (cf. (6.24)).)As we have seen in Sect. 2, the two different ways of writing this function, (5.2) and

(5.3), are intuitively connected more closely with the free fermion and E8 root lattice descriptions of the theory, respectively. Of course, the U(1)-graded NS sector partition function (3.37) is related to the above, graded Ramond sector partition function by a spectral flow transformation

There is a natural way in which one can twine the above function under certain sub-groups of Co0. From the previous discussions, we see that the representation 24 plays a central role in the way various subgroups of Co0 act on the model. Let’s denote by ℓg ,k and ℓg ,k, for k = 1, . . . 12, the 12 complex conjugate pairs of eigenvalues of g ∈ Co0 when acting on 24. This information is conveniently encoded in the so-called Frame shape of g, given by

satisfying ∑

n Lnmn = 24, through the fact that the 12 pairs {ℓg ,k , ℓg ,k} are precisely the 24 roots solving the equation

As discussed in Sects. 3 and 4, in order to preserve at least N = 2 superconformal symmetry and hence be able to twine the graded R-sector partition function (5.1), the subgroup G must leave at least a 2-dimensional subspace in 24 pointwise invariant. In the graded partition function this corresponds to leaving the factor θi(τ , 2z) in (5.2) invariant. As a result, for every conjugacy class [g] of such a group G we can choose ℓg ,1 = ℓg ,1 = 1. It is easy to see that when acting on the untwisted free fermions of the theory, contributing the terms involving θi with i = 3, 4 in (5.2), the group element g sim-ply replaces θ11i (τ , 0) with

where e(ρg ,k) = ℓg ,k.

(5.4)(φ|m(�,µ))(τ , z) = e(m(�2τ + 2�z))φ(τ , z + �τ + µ),

(φ|k ,mγ )(τ , z) = e(−m cz2

cτ+d)(cτ + d)−kφ

(aτ+bcτ+d

, zcτ+d

),

(5.5)ZNS(τ , z) = q1/2y−2Z(τ , z − τ+12 ).

�g =∏

n

Lnmn , 1 ≤ L1 < L2 < L3 · · · , and mn ∈ Z,mn �= 0,

n

(xLn − 1)mn = 0.

(5.6)12∏

k=2

θi(τ , ρg ,k)

Page 15: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 15 of 89Cheng et al. Mathematical Sciences (2015) 2:13

When trying to do the same for the contribution from the twisted fermions, contribut-ing the term involving θ2 in (5.2), however, we see that the above simple consideration suffers from an ambiguity. This can be seen from the fact that θ2(τ , ρ) = −θ2(τ , ρ + 1), and hence the answer cannot be determined simply by looking at the g-eigenvalues on 24. This of course is a reflection of the fact that the global symmetry group, with no superconformal structure imposed, is Spin(24), which is a 2-fold cover of SO(24). As a result, to specify the twining of the twisted fermion contribution, we also need to know the action of G on the faithful 212-dimensional representation of Spin(24) spanned by Ramond sector ground states in the free fermion theory (cf. Sect. 2), henceforth denoted 4096, which decomposes as 4096 = 1+ 276+ 1771+ 24 + 2024 in terms of the irre-ducible representations of Co0.

Note that, according to the orbifold construction, just “half” of the Ramond sec-tor ground states in the free fermion theory will contribute to the Ramond sector V of the orbifold theory under consideration. In terms of the Co0 action, the two “halves” are 24 + 2024, where Co0 acts faithfully, and 1+ 276+ 1771, where the action factors through Co1 = Co0/2. In practice, both choices give rise to equivalent theories (i.e., iso-morphic super vertex operator algebras, cf. [24, 27]), but they are inequivalent as Co0-modules. For us, the ground states represented by 24 + 2024 lie in the R sector, V, and the 1 in 1+ 276+ 1771 represents the Co0-invariant N = 1 supercurrent in the NS sec-tor of our orbifold theory.

The above discussion serves to remind us that there is, really, a vanishing term

in (5.2), which, for certain g ∈ Co0, will make a non-vanishing contribution to the g-twined version of (5.1). It vanishes when g = e is the identity because the Ramond sec-tor ground states in the free fermion theory come in pairs with opposite eigenvalues for (−1)F. Moreover, exchanging the pair corresponds to complex conjugation ψa ↔ ψa, for a = 1, . . . , 12, of the complex fermions. Recall that one of the complex fermions, denoted ψ1 in (3.19), was used to construct the U(1) charge operator J0, and we are inter-ested in the graded partition function where we introduce a chemical potential z for this operator. Because exchanging ψ1 ↔ ψ1 also induces a flip of U(1) charges, captured by z ↔ −z, the contribution of the first complex fermion does not vanish, corresponding to the fact that the identity

only forces θ1(τ , z) to vanish at z ∈ Z. Consequently, the g-twining of (5.7) makes a non-zero contribution to the g-twining of (5.2) if and only if ρg ,k �∈ Z for all k = 2, . . . , 12. In other words, it is non-zero only when the cyclic group generated by g fixes nothing but a 2-plane.

By inspection we find that, among the groups we consider, such group elements must be in the conjugacy classes 23AB ⊂ M23, 6AB, 12AB, 12DE, 18AB ⊂ U6(2), 15AB, 30AB ⊂ McL, or 20AB ⊂HS. The pairs of these conjugacy classes corresponding to the letters A and B (or D and E) are mutually inverse, and so their respective traces,

(5.7)0 = 1

2

1

η12(τ )θ1(τ , 2z)θ

111 (τ , 0)

(5.8)θ1(τ , z) = θ1(τ , z + 2) = −θ1(τ ,−z)

Page 16: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 16 of 89Cheng et al. Mathematical Sciences (2015) 2:13

on any representation, are related by complex conjugation. In terms of our construction, choosing one over the other is the same as choosing what one labels ψ1 and ψ1, and the same as choosing an orientation on the 2-plane fixed by the group element in 24. As a result, from (5.8) we see that the θ1 term in the partition functions twined by these con-jugate A (D) and B (E) classes come with an opposite sign.

Let us work with the principal branch of the logarithm, and choose ρg ,k ∈ [0, 1/2] in (5.6). Then, by direct computation—we must compute directly, for the choice of labels for mutually inverse conjugacy classes is not natural—we find that the signs in (5.10) are

and ǫg ,1 = −1 for the inverse classes, 23B ⊂ M23, 20B ⊂ HS,&c.Putting these different contributions together, we conclude that for every [g] ⊂ G

where G is a subgroup of Co0 preserving (at least) a 2-plane in 24, the corresponding g-twined U(1)-graded R sector partition function reads

where

and where the ǫg ,1 are as determined in the preceding paragraph.In this section we have introduced the g-twined U(1)-graded Ramond sector partition

function, or g-twined elliptic genus of our theory, Zg, for any g ∈ Co0 fixing a 2-plane in 24. We have also derived an explicit formula (5.10) for Zg, in terms of the Frame shapes �g and values T r4096g. This Frame shape and trace value data is collected, for g ∈ G, for various G ⊂ Co0, in “Appendix B”. In Sects. 6 and 7 we will see how the above twin-ing leads to the mock modular forms playing the role of the McKay–Thompson series in these new examples of mock modular moonshine.

6 The N = 4 decompositionsFrom the discussion in Sect. 3 it is clear that the orbifold theory discussed in Sect. 2 can be equipped with N = 4 superconformal structure. In this section we will study the decomposition of the Ramond sector V into irreducible representations of the N = 4

(5.9)lǫg ,1 = 1 for g in

23A ⊂ M23,20A ⊂ HS,15A ∪ 30A ⊂ McL,12A ∪ 12D ∪ 6B ∪ 18B ⊂ U6(2),

(5.10)Zg (τ , z) = T rV g(−1)FqL0−c/24yJ0

(5.11)= 1

2

1

η(τ)12

4∑

i=1

(−1)i+1ǫg ,i θi(τ , 2z)

12∏

k=2

θi(τ , ρg ,k),

(5.12)ǫg ,2 ={

T r4096g

212∏12

k=1 cos(πρg ,k )∈ {−1, 1} when

∏12k=1 cos(πρg ,k) �= 0

0 when∏12

k=1 cos(πρg ,k) = 0

(5.13)ǫg ,3 = ǫg ,4 = 1,

Page 17: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 17 of 89Cheng et al. Mathematical Sciences (2015) 2:13

SCA and see how the decomposition leads to mock modular forms relevant for the M22 moonshine which we will discuss in Sect. 8.

Recall (cf. [32]) that the N = 4 superconformal algebra contains subalgebras isomor-phic to the affine SU(2) and Virasoro Lie algebras. In a unitary representation the former of these acts with level m− 1, for some integer m > 1, and the latter with central charge c = 6(m− 1).

The unitary irreducible highest weight representations vN=4m;h,j are labeled by the

eigenvalues of L0 and 12 J30 acting on the highest weight state, which we denote by h

and j, respectively. Cf. [33, 34]. The superconformal algebra has two types of high-est weight Ramond sector representations: the massless (or BPS) representations with h = c

24 = m−14 and j ∈ {0, 12 , . . . ,

m−12 }, and the massive (or non-BPS) representations

with h > m−14 and j ∈ { 12 , 1, . . . ,

m−12 }. Their graded characters, defined as

are given by

and

in the massless and massive cases, respectively, [34]. In the above formulas, the function µm;j(τ , z) is defined by setting

and �1,1 is a meromorphic Jacobi form (cf. Sect.  8 of [19] for more on meromorphic Jacobi forms) of weight 1 and index 1 given by

Finally, we have used the theta functions

defined for all 2m ∈ Z>0 and r −m ∈ Z, and satisfying

Note that the vector-valued theta function θm = (θm,r), r −m ∈ Z/2mZ, is a vector-val-ued Jacobi form of weight 1/2 and index m satisfying

(6.1)chN=4m;h,j (τ , z) = trvN=4

m;h,j

((−1)J

30 yJ

30 qL0−c/24

),

(6.2)chN=4m;h,j (τ , z) = (�1,1(τ , z))

−1µm;j(τ , z)

(6.3)chN=4m;h,j (τ , z) = (�1,1(τ , z))

−1 qh−c24−

j2

m(θm,2j(τ , z)− θm,−2j(τ , z)

)

(6.4)µm;j(τ , z) = (−1)1+2j∑

k∈Zqmk2y2mk (yq

k)−2j + (yqk)−2j+1 + · · · + (yqk)1+2j

1− yqk,

(6.5)�1,1(τ , z) = −iθ1(τ , 2z) η(τ )

3

(θ1(τ , z))2= y+ 1

y− 1− (y2 − y−2)q + · · · .

(6.6)θm,r(τ , z) =∑

k=r (mod 2m)

e( k2 ) qk2/4myk ,

θm,r(τ , z) = θm,r+2m(τ , z) = e(m) θm,−r(τ ,−z).

Page 18: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 18 of 89Cheng et al. Mathematical Sciences (2015) 2:13

where the Sθ and Tθ matrices are 2m× 2m matrices with entries

We will take m ∈ Z for the rest of this section. When we consider N = 2 decomposi-tions in the next section, we will use the theta function with half-integral indices.

From the above discussion, it is clear that the graded partition function of a module for the c = 6(m− 1) N = 4 SCA admits the following decomposition

Furthermore, from the identity

we arrive at

where

The rest of the components of F (m) = (F(m)r ), r ∈ Z/2mZ, are defined by setting

(6.7)

θm(τ , z) =√

1

2m

√i

τe(−m

τz2)Sθ .θm(− 1

τ, zτ)

= Tθ .θm(τ + 1, z)

= θm(τ , z + 1) = e(m(τ + 2z + 1))θm(τ , z + τ ),

(6.8)(Sθ )r,r′ = e( rr′

2m )e(−r+r′2 ), (Tθ )r,r′ = e(− r2

4m ) δr,r′ .

(6.9)ZN=4,m =

n≥0,0≤r≤m−1r �=0 when n>0

c′r(n− r2

4m ) chN=4m;m−1

4 +n, r2(τ , z).

µm; r2 = (−1)r(r + 1)µm;0 + (−1)n−1r∑

n=1

n q−(r−n+1)2

4m (θm,r−n+1 − θm,−(r−n+1))

(6.10)ZN=4,m = (�1,1(τ , z))−1

c0 µm;0(τ , z)+

r∈Z/2mZ

F (m)r (τ ) θm,r(τ , z)

,

(6.11)F (m)r (τ ) =

∞∑

n=0

cr

(n− r2

4m

)qn−

r2

4m , 1 ≤ r ≤ m− 1,

(6.12)c0 =m−1∑

r=0

(−1)r (r + 1) c′r(− r2

4m

),

(6.13)cr

�n− r2

4m

�=

�m−1r′=r (−1)r

′−r(r′ + 1− r) c′r′�− r′2

4m

�, n = 0

c′r�n− r2

4m

�, n > 0.

(6.14)F (m)r (τ ) = −F

(m)−r (τ ) = F

(m)r+2m(τ ).

Page 19: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 19 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Recall that µm;0(τ , z) = −f(m)0 (τ , z)+ f

(m)0 (τ ,−z), a specialisation of the Appell–Lerch

sum

studied in [64], has the following relation to the modular group SL2(Z): let the (non-holomorphic) completion of µm;0(τ , z) be

Then µm;0 transforms like a Jacobi form of weight 1 and index m for SL2(Z)⋉ Z2. Here Sm = (Sm,r) is the vector-valued cusp form for SL2(Z) whose components are given by the unary theta functions

For later use, note that the theta series Sm,r(τ ) is defined for all 2m ∈ Z and r −m ∈ Z/2mZ.

The way in which the functions Z(m) and µm;0 transform under the Jacobi group shows that the non-holomorphic function

∑r∈Z/2mZ

F(m)r (τ ) θm,r(τ , z) transforms as a Jacobi

form of weight 1 and index m under SL2(Z)⋉ Z2, where

In other words, F (m) = (F(m)r ), r ∈ Z/2mZ is a vector-valued mock modular form with a

vector-valued shadow c0 Sm, whose r-th component is given by Sm,r(τ ), with the multi-plier for SL2(Z) given by the inverse of the multiplier system of Sm (cf. (6.8)).

Now we are ready to apply the above discussion to the U(1)-graded Ramond sector partition function of the theory, discussed in Sect. 5. Recall that in this case we have c = 12, so m = 3 in (6.2) and (6.3). The N = 4 decomposition of (5.1) gives

(6.15)f (m)u (τ , z) =

k∈Z

qmk2y2mk

1− yqke(−u)

(6.16)

µm;0(τ , τ , z) = µm;0(τ , z)− e

(− 1

8

)1√2m

×∑

r∈Z/2mZ

θm,r(τ , z)

∫i∞

−τ

(τ ′ + τ )−1/2Sm,r(−τ ′) dτ ′ .

Sm,r(τ ) =∑

k=r (mod 2m)

e(k2

)k qk

2/4m = 1

2π i

∂zθm,r(τ , z)|z=0.

F (m)r (τ ) = F (m)

r (τ )+ c0e(− 1

8

) 1√2m

∫ i∞

−τ

(τ ′ + τ )−1/2Sm,r(−τ ′) dτ ′.

(6.17)

Z(τ , z) = 21 chN=4

3; 12,0+ ch

N=4

3; 12,1+

(560 ch

N=4

3; 32, 12

+ 8470 chN=4

3; 52, 12

+ 70576 chN=4

3; 72, 12

+ · · ·

)

+

(210 ch

N=4

3; 32,1+ 4444 ch

N=4

3; 52,1+ 42560 ch

N=4

3; 72,1+ · · ·

)

(6.18)= (�1,1(τ , z))−1

24µ3;0(τ , z)+

r∈Z/6Zhr(τ )θ3,r(τ , z)

Page 20: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 20 of 89Cheng et al. Mathematical Sciences (2015) 2:13

where . . . stand for terms with expansion �−11,1 q

αyβ with α − β2/12 > 3. More Fou-rier coefficients of the functions hr(τ ) are recorded in “Appendix C”, where h = hg for [g] = 1A. Note that all the graded multiplicities c′r(n− r2

12 ) appear to be non-negative. Of course, this is guaranteed by the fact that V is a module for the N = 4 SCA as shown in Sect. 3. In particular, the Fourier coefficients of hr(τ ) appear to be all non-negative apart from that of the polar term −2q−1/12 in h1.

From the above discussion we see that h = (hr), for r ∈ Z/6Z, is a weight 1/2 vector-valued mock modular form for SL2(Z) with 6 components (but just 2 linearly independ-ent components, since h0 = h3 = 0, h−1 = −h1, and h−2 = −h2), with shadow given by 24 S3, and multiplier system inverse to that of S3.

This is to be contrasted with the elliptic genus of a generic non-chiral super conformal field theory. For example, the sigma model of a K3 surface has c = 6, and the elliptic genus is given by

where . . . stand for terms with expansion �−11,1 q

αyβ with α − β2/8 > 3. In this case, the coefficient multiplying the massless character chN=4

2; 14 ,12 is negative, arising from the Witten

index of the right-moving massless multiplets paired with the representation vN=42; 14 ,

12

of the left-moving N = 4 SCA.

In Sect. 3 we have shown that the theory under consideration, as a module for the N = 4 SCA, admits a faithful action via automorphisms by a group G, as long as G is a subgroup of Co0 fixing at least a 3-plane. For any such g ∈ G, the g-twined graded parti-tion function Zg (τ , z) is given by (5.10), and from the fact that the action of g commutes with the N = 4 SCA, we expect Zg (τ , z) to admit a decomposition

Moreover, the coefficients of

must be characters of the G-module

(6.19)

EG(τ , z;K3) = TrHRR(−1)FL+FRy

J0qL0−c/24

qL0−c/24

= 20 chN=4

2; 14,0− 2 ch

N=4

2; 14, 12

+(90 ch

N=4

2; 54, 12

+ 462 chN=4

2; 94, 12

+ 1540 chN=4

2; 134, 12

+ · · ·)

(6.20)= (�1,1(τ , z))

−1{24µ2;0(τ , z)+ (θ2,1(τ , z)− θ2,−1(τ , z))

× (−2q−1/8 + 90q7/8 + 462q15/8 + 1540q23/8 + · · · )},

(6.21)Zg (τ , z) = (�1,1(τ , z))−1

(Tr24g) µ3;0(τ , z)+

r∈Z/6Zhg ,r(τ )θ3,r(τ , z)

.

(6.22)hg ,r(τ ) = arq−r2/12 +

∞∑

n=1

(TrVGr,ng) qn−r2/12

(6.23)VG =⊕

r=1,2

∞⊕

n=1

VGr,n

Page 21: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 21 of 89Cheng et al. Mathematical Sciences (2015) 2:13

arising from the orbifold theory discussed in Sect. 2.Indeed, the multiplicities of the N = 4 multiplets in the decomposition (6.17) are sug-

gestive of the following group theoretic interpretationb: the 21 h = 1/2, j = 0 massless representations transform as the 21-dimensional irreducible representation of M22, and similarly, the 560 h = 3/2, j = 1/2 massive representations transform as χ10 + χ11 (see “Appendix B”), or “280+ 280”, under M22, etc.

We have explicitly computed the first 30 or so coefficients of each q-series hg ,r(τ ) for all conjugacy classes [g] of G, for G = M22 and G = U4(3). These can be found in the tables in “Appendix C”. Subsequently, we compute the first 30 or so G-modules VG

r,n in terms of their decompositions into irreducible representations. They can be found in the tables in “Appendix D”.

Finally we would like to discuss the mock modular property of the functions hg = (hg ,r). Recall that the Hecke congruence subgroups of SL2(Z) are defined as

We expect Zg to be a weak Jacobi form of weight zero and index 2 (possibly with multi-plier) for the group Ŵ0(og )⋉ Z2, where og is the order of the group element g ∈ G. This can be verified explicitly from the expression (5.10). Repeating the similar arguments as above, we conclude that each vector-valued function hg is a vector-valued mock modular form of weight 1/2 with shadow (Tr24g)S3 for the congruence subgroup Ŵ0(og ). Note that (Tr24g) �= 0 for all g ∈ M22 which are the cases of our main interest. For these cases the multiplier of hg is again given by the inverse of the multiplier system of S3, now restricted to Ŵ0(og ).

In this section we have analyzed the decomposition of the Ramond sector of our orbi-fold theory into irreducible modules for the N = 4 SCA, and we have demonstrated that the generating functions of irreducible N = 4 SCA module multiplicities furnish a vector-valued mock modular form. We have also demonstrated that these multiplici-ties are dimensions of modules for subgroups G < Co0 that point-wise fix a 3-plane in 24, and we have analyzed the modularity of the resulting, g-twined multiplicity generat-ing functions, for g ∈ G. We have verified that each such g-twining results in a vector-valued mock modular form with a specified shadow function. In the next section we will present directly analogous considerations for N = 2 superconformal structures arising from 2-planes in 24.

7 The N = 2 decompositionsAs discussed in Sect. 4, the theory presented in Sect. 2 can be regarded as a module for an N = 2 SCA as well as for an N = 4 SCA. Moreover, for every subgroup G < Co0 fixing a 2-plane there is an N = 2 SCA commuting with the action of G on the theory. As a result, and as we will now demonstrate, the decomposition of the partition func-tion (5.10) twined by elements of G into N = 2 characters leads to sets of vector-valued mock modular forms, now of weight 1 / 2 and index 3 / 2, which are the graded charac-ters of an infinite-dimensional G-module inherited from the Co0-module structure on V (cf. Sect. 5).

(6.24)Ŵ0(N ) ={(

a bc d

)∈ SL2(Z) | c=0 mod N

}.

Page 22: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 22 of 89Cheng et al. Mathematical Sciences (2015) 2:13

To see what these (vector-valued) mock modular forms hg = (hg ,j) are, let us start by recalling the characters of the irreducible representations of the N = 2 SCA. For the SCA with central charge c = 3(2ℓ+ 1) = 3c, the unitary irreducible high-est weight representations vN=2

ℓ;h,Q are labeled by the two quantum numbers h and Q which are the eigenvalues of L0 and J0, respectively, when acting on the highest weight state [22, 51]. Just as in the N = 4 case, there are two types of Ramond sector high-est weight representations: the massless (or BPS) representations with h = c

24 = c8 and

Q ∈ {− c2 + 1,− c

2 + 2, . . . , c2 − 1, c2 }, and the massive (or non-BPS) representations with h > c

8 and Q ∈ {− c2 + 1,− c

2 + 2, . . . , c2 − 2, c2 − 1, c2 }, Q �= 0. From now on we will con-centrate on the case when ℓ is half-integral, and hence c and c are even.

The graded characters, defined as

are given by

for the massive representations, and

for the massless representations (with Q �= c2). The character chN=2

ℓ;c/24,Q(τ , z) for Q = c2

is given in (7.5). In the above formula, we have used the Appell–Lerch sum (6.15) and defined

Note that the above characters transform according to the rule

under charge conjugation.From the relation between the massless and massive characters

(7.1)chN=2ℓ;h,Q(τ , z) = trvN=2

ℓ;h,Q

((−1)J

30 yJ

30 qL0−c/24

),

(7.2)chN=2

ℓ;h,Q(τ , z) = e( ℓ2 )(�1,− 12(τ , z))−1qh−

c24−

j2

4ℓ θℓ,j(τ , z),

j = sgn(Q) (|Q| − 1/2),

(7.3)ch

N=2ℓ;c/24,Q(τ , z) = e

(ℓ+Q+1/2

2

)(�

1,− 12

(τ , z))−1 yQ+ 12 f (ℓ)u (τ , z + u),

u = 12+ (1+2Q)τ

4ℓ,

�1,− 12= −i

η(τ)3

θ1(τ , z)= 1

y1/2 − y−1/2+ q (y1/2 − y−1/2)+O(q2).

chN=2ℓ;c/24,Q(τ , z) = chN=2

ℓ;c/24,−Q(τ ,−z)

(7.4)

chN=2ℓ;c/24,Q + chN=2

ℓ;c/24,−Q = q−n|Q|−1∑

k=0

(−1)k(chN=2

ℓ,n+c/24,Q−k + chN=2ℓ,n+c/24,k−Q

)

+ 2(−1)QchN=2ℓ;c/24,0, n > 0, |Q| ≤ ℓ,

(7.5)

chN=2

ℓ;c/24, c2= q−n

chN=2

ℓ;n+c/24, c2+

c2−1�

k=1

(−1)k�chN=2

ℓ,n+c/24, c2−k+ chN=2

ℓ,n+c/24,k− c2

+ (−1)c2 chN=2

ℓ;c/24,0,

Page 23: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 23 of 89Cheng et al. Mathematical Sciences (2015) 2:13

as well as the charge conjugation symmetry of the theory, we expect the U(1)-graded Ramond sector partition function of a theory that is invariant under charge conjugation to admit a decomposition

when the N = 2 SCA has even central charge, c = 3(2ℓ+ 1). In the last equation, we have defined

and

Similar to the case of massless N = 4 characters, through its relation to the Appell–Lerch sum, µℓ;0 admits a completion which transforms as a weight one, half-integral index Jac-obi form under the Jacobi group. More precisely, define µℓ;0 by replacing µm;0 with µℓ;0 and the integer m with the half-integral ℓ in (6.16). Then µℓ;0 transforms like a Jacobi form of weight 1 and index ℓ under the group SL2(Z)⋉ Z2. Following the same computation as in the previous section, we hence conclude that F (ℓ) = (F

(ℓ)j ), where j − 1/2 ∈ Z/2ℓZ, is

a vector-valued mock modular form with a vector-valued shadow C0 Sℓ = C0(Sℓ,j(τ )).Now we are ready to apply the above discussion to the U(1)-graded R sector partition

function of the orbifold theory of Sect. 2. The N = 2 decomposition gives

(7.6)

ZN=2,ℓ = C

′0 ch

N=2ℓ; c

24,0(τ , z)+

n≥0

C′ℓ

(n− ℓ

4

)ch

N=2

ℓ; c

24+n,ℓ+ 1

2

(τ , z) < error−

+∑

n≥0,j∈{ 12, 32,...,ℓ−1}

C′j

(n− j

2

4ℓ

)(ch

N=2

ℓ; c

24+n,j+ 1

2

(τ , z)+ chN=2

ℓ; c

24+n,−

(j+ 1

2

)(τ , z)

)

(7.7)= e�ℓ2

�(�1,− 1

2)−1

C0 µℓ;0(τ , z)+

j−ℓ∈Z/2ℓZF(ℓ)j (τ )θℓ,j(τ , z)

µℓ;0 = e( 14 ) y1/2f (ℓ)u (τ ,u+ z), u = 1

2+ τ

4ℓ,

(7.8)F(ℓ)j (τ ) = F

(ℓ)−j (τ ) = F

(ℓ)j+2ℓ(τ ) =

n≥0

Cj

(n− j2

4ℓ

)qn−

j2

4ℓ ,

(7.9)C0 = C ′0 + 2

j∈{ 12 ,32 ,...,ℓ}

(−1)j+12C ′

j

(− j2

4ℓ

),

(7.10)Cj

�n− j2

4ℓ

�=

�ℓ−jk=0(−1)kC ′

j+k

�− (j+k)2

4ℓ

�n = 0

C ′j

�n− j2

4ℓ

�n > 0.

(7.11)

Z(τ , z) = 23 chN=232; 12,0+ ch

N=232; 12,2+

(770

(ch

N=232; 32,1+ ch

N=232; 32,−1

)

+13915

(ch

N=232; 52,1+ ch

N=232; 52,−1

)+ · · ·

)

+(231 ch

N=232; 32,2+ 5796 ch

N=232; 52,2+ . . .

)

Page 24: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 24 of 89Cheng et al. Mathematical Sciences (2015) 2:13

where . . . denote the terms with expansion �−1

1,− 12

qαyβ with α − β2/6 > 2. Again, we observe that all the multiplicities of the representations with characters chN=2

32 ;h,Q

appear to be non-negative, consistent with our construction of V as an N = 2 SCA module.

In general, from the previous sections we have seen that the graded partition func-tion twined by any element g of a subgroup G of Co0 should admit a decomposition into N = 2 characters. We write

Moreover, from the discussion in Sect. 2 we have seen that

and the coefficients of these functions

are given by characters of a G-module

which descends from the orbifold theory in Sect. 2. In particular, for any n, the G-mod-ule V G

−1/2,n is the dual of V G1/2,n. From the above discussion, we conclude that hg = (hg ,j)

is a vector-valued mock modular form for Ŵ0(og ) with shadow (Tr24g)S3/2. Recall that (Tr24g) �= 0 for all g ∈ M22 which are the cases of our main interest. For these case the multiplier of hg is given by the inverse of the multiplier system of S3/2, restricted to Ŵ0(og ).

To summarize, we have analyzed the decomposition of the Ramond sector of our orbi-fold theory into irreducible modules for the N = 2 SCA in this section, and we have demonstrated that the generating functions of irreducible N = 2 SCA module multi-plicities also furnish a vector-valued mock modular form. We have demonstrated that these multiplicities are dimensions of modules for subgroups G < Co0 that point-wise fix a 2-plane in 24, and we have observed that the resulting, g-twined multiplicity gen-erating functions, for g ∈ G, are vector-valued mock modular forms with a certain extra symmetry, relating the components labelled by ±1/2 by complex conjugation.

8 Mathieu moonshineIn the previous sections we have seen that the orbifold theory described in Sect. 2 leads to infinite-dimensional G-modules underlying a set of vector-valued mock modular

(7.12)

= e(34

)�−1

1,− 12

(24 µ 3

2 ;0+

(−q−

124 + 770 q

2324 + 13915 q

4724 + c . . .

)(θ 32 ,

12+ θ 3

2 ,−12

)

+ (q−38 + 231 q

58 + 5796q

138 + · · · ) θ 3

2 ,32

)

(7.13)Zg (τ , z) = e( 34 )�−1

1,− 12

(Tr24g) µ 3

2 ;0(τ , z)+

j∈{1/2,−1/2,3/2}hg ,j(τ )θ 3

2 ,j

.

(7.14)hg ,1/2(τ ) = hg ,−1/2(−τ ),

(7.15)hg ,j(τ ) = ajq−j2/6 +

∞∑

n=1

(TrV Gr,ng) qn−j2/6

(7.16)V G =⊕

j=−1/2,1/2,3/2

∞⊕

n=1

V Gj,n

Page 25: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 25 of 89Cheng et al. Mathematical Sciences (2015) 2:13

forms from its N = 4 (N = 2) structures for any subgroup G of Co0 fixing at least a 3-plane (2-plane) in 24. In this section we will discuss a natural property of the vector-valued mock modular forms that distinguishes subgroups of M24 from other 3-plane (2-plane) fixing subgroups. These considerations lead to mock modular Mathieu moon-shine involving distinguished vector-valued mock modular forms of weight 1 / 2.

Recall the celebrated genus zero condition of monstrous moonshine, which states that the monstrous McKay–Thompson series are Hauptmoduls with only a polar term q−1 at the cusp represented by i∞, and no poles at any other cusps. To be more pre-cise, denote by Tg (τ ) =

∑n≥−1 q

ntrV

♮ng the graded character of the moonshine module

V ♮ =⊕

n≥−1 V♮n of Frenkel–Lepowsky–Meurman [37]. Then Tg (τ ) is a function invari-

ant under the action of a particular Ŵg < SL2(R) (specified in [15]), such that

Similarly, in Mathieu moonshine [35], it follows from the results of [7] that if g ∈ M24 and Zg denotes the g-twined K3 elliptic genus then

(cf. (5.4)) for some cg , cg ,γ ∈ C. In other words, the τ → i∞ limit of Zg |0,1γ is a z-inde-pendent constant whenever γ is not in the invariance group Ŵg. (Note that Ŵg is always a subgroup of SL2(Z) for g ∈ M24).

A natural question is therefore: among the subgroups of Co0 fixing 2- or 3-planes for which we have constructed a module in this work, for which of these do the associated modular objects satisfy a condition analogous to the preceding cases of moonshine described above? We will see presently that the Mathieu groups M23, M22, M12 and M11 are distinguished in our setting, in that the graded characters of their respective modules yield weight zero weak Jacobi forms satisfying the conditions

for some cg , cg ,γ ∈ C. On the other hand, all the other groups mentioned in Sect. 4 con-tain elements g for which the condition (ii) in (8.3) is not satisfied. Thus the conditions (8.3) single out the Mathieu groups as the sporadic simple subgroups of Co0 with this moonshine property. The constructions we have presented in this paper provide con-crete realizations of the underlying mock modular Mathieu moonshine modules.

Note that the conditions (8.3) impose restrictions on the degrees of the poles (if any) of the mock modular forms hg, hg (cf. Sects. 6, 7) at all cusps. In fact, for the case that G is a copy of M22 or M11 preserving N = 4 supersymmetry, the corresponding mock modular forms hg only have poles at the infinite cusp. This property also holds for the mock modular forms attached to M24 via N = 4 decomposition of the twined K3 ellip-tic genera of Mathieu moonshine, satisfying (8.2), as was demonstrated in [7]. In more

(8.1)(i) qTg (τ ) = O(1) as τ → i∞, and

(ii) Tg (γ τ) = O(1) as τ → i∞whenever γ ∈ SL2(Z) and γ∞ �∈ Ŵg∞.

(8.2)(i) Zg (τ , z) = cg + y+ y−1 as τ → i∞, and

(ii) Zg |0,1γ (τ , z) = cg ,γ as τ → i∞ whenever γ ∈ SL2(Z) and γ∞ �∈ Ŵg∞,

(8.3)(i) Zg (τ , z) = cg + y2 + y−2 as τ → i∞, and

(ii) Zg |0,2γ (τ , z) = cg ,γ as τ → i∞ whenever γ ∈ SL2(Z) and γ∞ �∈ Ŵg∞,

Page 26: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 26 of 89Cheng et al. Mathematical Sciences (2015) 2:13

physical terms, (8.2) and (8.3) can be interpreted as the condition that the elliptic genus of any cyclic orbifold of the theory receives no contributions from U(1)-charged ground states in twisted sectors.

To investigate the behaviour of Zg at cusps other than i∞, we first note that for any positve integer N,

where

and ǫi,N = ǫi when 2|N , and

otherwise. The above expressions can be derived from the transformation laws of Jacobi theta functions under SL2(Z).

Near the infinite cusp, τ → i∞, the different contributions have the following leading behaviour:

with

Zg |0,2( 1 0N 1

)(τ , z) = e

(N

12∑

ℓ=1

ρ2ℓ

2

)4∑

i=1

ǫi,N (−1)i+1�i,N (τ , z),

(8.4)�i,N (τ , z) =θi(τ , 2z)

η12(τ )

12∏

k=2

e

(ρ2kN

2

)θi(τ , ρk + Nρkτ ),

(8.5)

ǫ1,N = −ǫ1ǫ2,N = −ǫ3 = −1

ǫ3,N = −ǫ2ǫ4,N = −ǫ4 = −1

(8.6)

�1,N (τ , z) = e

�12+

12�

k=1

( 12− ρk)⌊Nρk⌋ − ρk

2

�qfN ,1(�g )/2(y− y−1) [1+O(q1/og )]

�2,N (τ , z) = e

�12�

k=1

−ρk⌊Nρk⌋ − ρk2

�qfN ,1(�g )/2(y+ y−1) [1+ O(q1/og )]

�3,N (τ , z) = e

�−

12�

k=1

ρk⌊ 12 + Nρk⌋�qfN ,2(�g )/2

�1+ q1/2(y2 + y−2)

×

12�

k=2

�1+ e(−ρk) q

⌊ 12+Nρk⌋+

12−Nρk

� ⌊ 12+Nρk⌋�

n=1

�1+ e(ρk)q

12+Nρk−n

× [1+ O(q1/og )]

�4,N (τ , z) = e

�−

12�

k=1

( 12+ ρk)⌊ 12 + Nρk⌋

�qfN ,2(�g )/2

�1− q1/2(y2 + y−2)

×

12�

k=2

�1− e(−ρk) q

⌊ 12+Nρk⌋+

12−Nρk

� ⌊ 12+Nρk⌋�

n=1

�1− e(ρk) q

12+Nρk−n

× [1+ O(q1/og )]

(8.7)fN ,1(�g ) = −1+12∑

k=1

(Nρk − 1/2)2 + ⌊Nρk⌋(1+ ⌊Nρk⌋ − 2Nρk) ,

Page 27: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 27 of 89Cheng et al. Mathematical Sciences (2015) 2:13

where ⌊x⌋ denotes the largest integer that is not greater than x.Comparing with the second condition in (8.3), we see that it is satisfied for γ =

( 1 0N 1

)

if and only if the �g satisfies

together with

for the case ǫ3,N ǫ4,N ǫ( 12∑12

k=1⌊ 12Nρk⌋) = 1, and

for the case ǫ3,N ǫ4,N ǫ( 12∑12

k=1⌊ 12Nρk⌋) = −1.Now we are left to check explicitly the condition (ii) in (8.3) for the various 2- and 3-plane

preserving subgroups discussed in Sect. 4. First, recall that, for n a positive integer, each cusp of Ŵ0(n) is represented by a rational number of the form u / v where u and v are coprime positive integers, v a divisor of n, and u  /  v is equivalent u′/v′ if and only if v = v′, and u = u′ mod (v, n/v). (note that the infinite cusp is also represented by 1  / n.) Via direct computation using the data of the eigenvalues of g ∈ Co0 acting on 24, we note that among all the groups we have considered in Sect. 4, the groups U4(3), U6(2) and McL all contain a conjugacy classe with Frame shape �g = 39/13, and HS has a conjugacy class with Frame shape �g = 55/11. One can explicitly check that f1,1(�g ) = 0 for these classes and hence the corresponding twining Zg |0,2

(1 01 1

)(τ , z) has a non-vanishing coefficient for q0y1 as

τ → i∞. (Note that the cusp at τ = 1 is not equivalent to the cusp at i∞ in these cases.) This excludes the groups U4(3), U6(2), McL and HS as candidates for moonshine satisfying (8.3).

For the subgroups of M24, a simple analysis of the cusp representatives of Ŵg = Ŵ(og ) shows that it is sufficient to verify (8.3) for γ =

( 1 0N 1

) for all N|n and N < n. For these

cases, we explicitly verify that (8.9)–(8.11) are satisfied and hence the moonshine condi-tion (8.3) is met.

We therefore conclude that we have established mock modular moonshine for all but the largest of the sporadic simple Mathieu groups, together with explicit constructions of the corresponding modules. Moreoever, the corresponding twined graded characters are mock modular forms arising from Jacobi forms satisfying the distinguishing condi-tions (8.3), which we may recognise as furnishing a natural analogue of the powerful principal modulus property (a.k.a. genus zero property) of monstrous moonshine.

The reader will note that many of the numbers which occur as dimensions of irreduc-ible representations of M23 also occur as dimensions of irreducible representations for M24. Indeed, looking at the Tables in “Appendix C”, one is tempted to guess that there is an alternative construction, or hidden symmetry in our model, which yields an M24

-module with the same graded dimensions. In fact, the procedure we have explained for computing twinings can be carried out for any element of M24, regarded as a subgroup

(8.8)fN ,2(�g ) = −1+12∑

k=1

N 2ρ2k − ⌊ 12 + Nρk⌋(2Nρk − ⌊ 12 + Nρk⌋) ,

(8.9)fN ,1(�g ) > 0,

(8.10)fN ,2(�g ) > −1,fN ,2(�g )

2+

∣∣∣∣1

2+ ⌊Nρk⌋ − Nρk

∣∣∣∣ ≥ 0

(8.11)fN ,2(�g ) ≥ 0

Page 28: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 28 of 89Cheng et al. Mathematical Sciences (2015) 2:13

of Co0, for any such element fixes a 2-space in 24. However, there is no 2-space that is fixed by every element of a given copy of M24, and explicit computations reveal that any M24-module structure on the module we have constructed would have to involve virtual representations. This indicates that there is no direct extension to M24 of the Mathieu moonshine modules we have considered here, despite the prominent role M24 plays in incorporating the different groups of moonshine in the current setting. Nevertheless, there is a certain modification of our method for which M24 is now known to play a lead-ing role. We refer the reader to the next, and final section for a description of this.

9 DiscussionIn this paper we have demonstrated that, starting with the free field Co0 module of [24], one can construct explicit examples of modules for various subgroups G ⊂ Co0 which underlie certain mock modular forms. In particular, subgroups which preserve a 3-plane (respectively 2-plane) in the 24 give rise to N = 4 (N = 2) modules with G symmetry. This gives completely explicit examples of mock modular moonshine for the smaller Mathieu groups, where the modules are known, and where the twining functions are distinguished in a manner directly similar to Mathieu moonshine. Other examples, including modules for the sporadic groups McL and HS, are also described.

There are several future directions. We considered here the N = 2 and N = 4 extended chiral algebras, and the subgroups of Co0 that they preserve. Other extended chiral algebras may also yield interesting results. For instance, supersymmetric sigma models with target a Spin(7) manifold give rise to an extended chiral algebra [58], whose representations were studied in [45]. It is an extension of the N = 1 superconformal algebra where instead of adding a U(1) current (which extends the theory to an N = 2 superconformal theory), one chooses an additional Ising factor. Conjectural characters for the unitary, irreducible representations of this algebra were worked out in [2], where it was shown that there is a suggestive relation between the decomposition of the ellip-tic genus of a Spin(7) manifold into these characters and irreducible representations of finite groups. This connection was made precise in [12], where it was shown that the same c = 12 theory can be viewed as an SCFT with extended N = 1 symmetry, and thus yields theories with global symmetry groups M24, Co2, and Co3. The partition function twined by these symmetries, when decomposed into characters of the Spin(7) algebra, gives rise to two-component vector-valued mock modular forms encoding infinite-dimensional modules for the corresponding sporadic groups.

The motivation that led, eventually, to the present study was actually to find connec-tions between geometrical target manifolds associated to c = 12 conformal field theo-ries, and sporadic groups. The elliptic genera of Calabi-Yau fourfolds were computed in [54], for instance; their structure is reminiscent of some of the modules we have seen here, and we intend to further explore and describe some of these connections in a future publication. Likewise, hyperkähler fourfolds, as well as the Spin(7) manifolds mentioned above, provide a wide class of geometries where an analogue of the connec-tions between M24 and K3 may be sought.

Last but not least, there are suggestive connections between the trace functions in moonshine modules, and certain special properties of the underlying conformal field theory. Both the CFT appearing in monstrous moonshine and the Co0 module that

Page 29: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 29 of 89Cheng et al. Mathematical Sciences (2015) 2:13

played a starring role in this paper appear to play special roles also in AdS3 quantum gravity, where they are candidates for CFT duals to pure (super)gravity [62]. The genus zero property of the twining functions in monstrous moonshine can be reformulated as a condition that these class functions should be expressed as Rademacher sums based on a fixed polar part [7, 29]; this latter description then applies uniformly to monstrous moonshine and Mathieu moonshine.

In this paper we demonstrate that a similar criterion also applies to our mock modu-lar Mathieu moonshines. In particular, we have shown that the Jacobi forms relevant for Mathieu moonshine display a specific asymptotic behaviour near non-infinite cusps, which, in physical terms, can be interpreted as a condition on orbifolds of the theory. Pursuing a deeper understanding of this property constitutes an enticing direction for the future.

10 EndnoteaSee however the recent work [26] which constructs the super vertex operator algebra

underlying the X = E38 case of umbral moonshine.

bThe observation that the decomposition into N = 4 characters of (a multiple of ) the function Z(τ , z) returns positive integers that are suggestive of representations of the Mathieu group M22 was first communicated privately by Jeff Harvey to J.D. in 2010.

Authors’ contributionsEach author contributing equally to all aspects of the production of this article. All authors read and approved the final manuscript.

Author details1 Institute of Physics and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Neth-erlands. 2 Department of Physics and SLAC, Stanford University, Stanford, CA 94305, USA. 3 Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA.

AcknowledgmentsWe are grateful to Jeff Harvey, Sander Mack-Crane and Daniel Whalen for conversations about related subjects. We are grateful to Daniel Baumann, and the anonymous referees, for very helpful comments on earlier drafts. We note that the appearance of dimensions of M22 representations in an N = 4 decomposition of the partition function of the model studied in this paper was described in correspondence from J. Harvey to J. Duncan in 2010. The expression (5.2) for Z(τ , z) first came to our attention during the course of conversations with S. Mack-Crane. We thank the Simons Center for Geometry and Physics, and in particular the organizers of the workshop on “Mock Modular Forms, Moonshine, and String Theory,” for hospitality when this work was initiated. S.K. is grateful to the Aspen Center for Physics for providing the rockies during the completion of this work. X.D., S.H. and S.K. are supported by the U.S. National Science Foundation Grant PHY-0756174, the Department of Energy under contract DE-AC02-76SF00515, and the John Templeton Founda-tion. J.D. is supported in part by the Simons Foundation (#316779) and by the U.S. National Science Foundation (DMS 1203162). T.W. is supported by a Research Fellowship (Grant number WR 166/1-1) of the German Research Foundation (DFG).

Miranda C N Cheng is on leave from CNRS, Paris.

Compliance with ethical guidelines

Competing interestsThe authors declare that they have no competing interests.

Appendix A: Jacobi theta functionsWe define the Jacobi theta functions θi(τ , z) as follows for q = e(τ ) and y = e(z):

(9.1)θ1(τ , z) = −iq1/8y1/2∞∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1),

(9.2)

θ2(τ , z) = q1/8y1/2∞∏

n=1

(1− qn)(1+ yqn)(1+ y−1qn−1),

Page 30: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 30 of 89Cheng et al. Mathematical Sciences (2015) 2:13

They transform in the following way under the group SL2(Z)⋉ Z2.

Here α(τ , z) =√−iτe( z

2

2τ ), and �,µ ∈ Z.The weight four Eisenstein series E4 can be written in terms of the Jacobi theta func-

tions as

(9.3)θ3(τ , z) =∞∏

n=1

(1− qn)(1+ y qn−1/2)(1+ y−1qn−1/2),

(9.4)θ4(τ , z) =∞∏

n=1

(1− qn)(1− y qn−1/2)(1− y−1qn−1/2).

(9.5)

θ1(τ , z) = i α−1(τ , z)θ1

(−1

τ,z

τ

)= e(−1/8) θ1(τ + 1, z)

= (−1)�+µe(12 (�

2τ + 2�z))θ1(τ , z + �τ + µ),

θ2(τ , z) = α−1(τ , z)θ4

(−1

τ,z

τ

)= e(−1/8) θ2(τ + 1, z)

= (−1)µe(12 (�

2τ + 2�z))θ2(τ , z + �τ + µ),

θ3(τ , z) = α−1(τ , z)θ3

(−1

τ,z

τ

)= θ4(τ + 1, z)

= e(12 (�

2τ + 2�z))θ3(τ , z + �τ + µ),

θ4(τ , z) = α−1(τ , z)θ2

(−1

τ,z

τ

)= θ3(τ + 1, z)

= (−1)�e(12 (�

2τ + 2�z))θ4(τ , z + �τ + µ).

(9.6)E4(τ ) =1

2

(θ2(τ , 0)

8 + θ3(τ , 0)8 + θ4(τ , 0)

8).

Table 1 Frame shapes and spinor characters for M22

[g] 1A 2A 3A 4A 4B 5A 6A 7A 7B 8A 11A 11B

�g 124

1828

1636 1

42444

142444

1454

12223362

1373

1373

122.4.8

21211

21211

2

Tr4096g 2,048 0 64 0 0 0 0 8 8 0 4 4

Table 2 Frame shapes and spinor characters for U4(3)

[g] 1A 2A 3A 3BCD 4AB 5A 6A 6BC 7AB 8A 9ABCD 12A

�g 124

1828 3

9

131636

142244 1

454 1

53.6

4

2412223362

1373

122.4.8

2 1393

321.2

23.12

2

42

Rg 2,048 0 −8 64 0 0 72 0 8 0 4 0

Appendix B: Character tablesB1: Frame shapes and spinor representations

See Tables 1, 2, 3, 4, 5, 6.

Page 31: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 31 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Table 3 Frame shapes and spinor characters for M23

[g] 1A 2A 3A 4A 5A 6A 7AB 8A 11AB 14AB 15AB 23AB

�g 124

1828

1636

142244 1

454

12223362

1373

122.4.8

21211

2 1.2.7.14 1.3.5.15 1.23

Tr4096g 2,048 0 64 0 0 0 8 0 4 0 4 2

Table 4 Frame shapes and spinor characters for McL

[g] 1A 2A 3A 3B 4A 5A 5B 6A 6B 7AB

�g 124

1828 3

9

131636

142244 5

5

11454 1

53.6

4

2412223362

1373

Tr4096g 2,048 0 −8 64 0 −4 0 72 0 8

[g] 8A 9AB 10A 11AB 12A 14AB 15AB 30AB

�g 122.4.8

2 1393

32135.10

2

221211

2 1.223.12

2

421.2.7.14 1

215

2

3.5

2.3.5.30

6.10

Tr4096g 0 4 20 4 0 0 2 2

Table 5 Frame shapes and spinor characters for HS

[g] 1A 2A 2B 3A 4A 4BC 5A 5BC 6A 6B

�g 124

1828

212

1636 2

644

14142244 5

5

11454

2363

12223362

Tr4096g 2,048 0 0 64 0 0 −4 0 0 0

[g] 7A 8ABC 10A 10B 11AB 12A 15A 20AB

�g 1373

122.4.8

2 135.10

2

222210

21211

2 124.6

212

321.3.5.15 1.2.10.20

4.5

Tr4096g 8 0 20 0 4 0 4 0

Table 6 Frame shapes and spinor characters for U6(2)

[g] 1A 2A 2B 2C 3A 3B 3C 4A 4B 4CDE 4F 4G

�g 124 2

16

181828

212

1636 3

9

131636 1

848

2848

24142244 2

444

142244

Tr4069g 2048 0 0 0 64 –8 64 256 0 0 0 0

[g] 5A 6AB 6C 6D 6E 6F 6G 6H 7A 8A 8BCD

�g 1454 1.6

6

22332464

1232153.6

4

24122232621

42.6

5

34122232622363

1373 1

484

2242122.4.8

2

Tr4096g 0 0 0 72 0 0 0 0 8 32 0

[g] 9ABC 10A 11AB 12AB 12C 12DE 12FGH 12I 15A 18AB

�g 1393

32122.10

3

521211

2 2.3312

3

1.4.6312324212

2

22621312

3

2.3.4.6

1.223.12

2

422.4.6.12 1.3.5.15 1.2.18

2

6.9

Tr4096g 4 0 4 4 16 12 0 0 4 0

Page 32: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 32 of 89Cheng et al. Mathematical Sciences (2015) 2:13

B2: I

rred

ucib

le re

pres

enta

tions

See

Tabl

es 7

, 8, 9

, 10,

11,

12,

13,

14.

Tabl

e 7

Char

acte

r tab

le o

f M22. b

p=

(−1+

i√p)/2

[g]

1A2A

3A4A

4B5A

6A7A

7B8A

11A

11B

[g2]

1A1A

3A2A

2A5A

3A7A

7B4A

11B

11A

[g3]

1A2A

1A4A

4B5A

2A7B

7A8A

11A

11B

[g5]

1A2A

3A4A

4B1A

6A7B

7A8A

11A

11B

[g7]

1A2A

3A4A

4B5A

6A1A

1A8A

11B

11A

[g11]

1A2A

3A4A

4B5A

6A7A

7B8A

1A1A

χ1

11

11

11

11

11

11

χ2

215

31

11

−1

00

−1

−1

−1

χ3

45−

30

11

00

b7

b7

−1

11

χ4

45−

30

11

00

b7

b7

−1

11

χ5

557

13

−1

01

−1

−1

10

0

χ6

993

03

−1

−1

01

1−

10

0

χ7

154

101

−2

2−

11

00

00

0

χ8

210

23

−2

−2

0−

10

00

11

χ9

231

7−

3−

1−

11

10

0−

10

0

χ10

280

−8

10

00

10

00

b11

b11

χ11

280

−8

10

00

10

00

b11

b11

χ12

385

1−

21

10

−2

00

10

0

Page 33: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 33 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 8

Char

acte

r tab

le o

f  U4(3). bp=

(−1+

i√p)/2

[g]

1A2A

3A3B

3C3D

4A4B

5A6A

6B6C

7A7B

8A9A

9B9C

9D12

A

[g2]

1A1A

3A3B

3C3D

2A2A

5A3A

3B3C

7A7B

4A9B

9A9D

9C6A

[g3]

1A2A

1A1A

1A1A

4A4B

5A2A

2A2A

7B7A

8A3A

3A3A

3A4A

[g5]

1A2A

3A3B

3C3D

4A4B

1A6A

6B6C

7B7A

8A9B

9A9D

9C12

A

[g7]

1A2A

3A3B

3C3D

4A4B

5A6A

6B6C

1A1A

8A9A

9B9C

9D12

A

χ1

11

11

11

11

11

11

11

11

11

11

χ2

215

−6

33

31

11

2−

1−

10

0−

10

00

0−

2

χ3

353

88

−1

−1

3−

10

00

30

0−

12

2−

1−

10

χ4

353

8−

18

−1

3−

10

03

00

0−

1−

1−

12

20

χ5

9010

99

90

−2

20

11

1−

1−

10

00

00

1

χ6

140

125

−4

−4

54

00

−3

00

00

0−

1−

1−

1−

11

χ7

189

−3

270

00

51

−1

30

00

01

00

00

−1

χ8

210

221

33

3−

2−

20

5−

1−

10

00

00

00

1

χ9

280

−8

1010

11

00

0−

2−

21

00

01+

3b3

1+

3b3

11

0

χ10

280

−8

1010

11

00

0−

2−

21

00

01+

3b3

1+

3b3

11

0

χ11

280

−8

101

101

00

0−

21

−2

00

01

11+

3b3

1+

3b3

0

χ12

280

−8

101

101

00

0−

21

−2

00

01

11+

3b3

1+

3b3

0

χ13

315

11−

918

−9

0−

1−

10

−1

2−

10

01

00

00

−1

χ14

315

11−

9−

918

0−

1−

10

−1

−1

20

01

00

00

−1

χ15

420

4−

396

6−

34

00

1−

2−

20

00

00

00

1

χ16

560

−16

−34

22

20

00

22

20

00

−1

−1

−1

−1

0

χ17

640

0−

8−

8−

81

00

00

00

b7

b7

01

11

10

χ18

640

0−

8−

8−

81

00

00

00

b7

b7

01

11

10

χ19

729

90

00

0−

31

−1

00

01

1−

10

00

00

χ20

896

032

−4

−4

−4

00

10

00

00

0−

1−

1−

1−

10

Page 34: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 34 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 9

Char

acte

r tab

le o

f M23. b

p=

(−1+

i√p)/2

[g]

1A2A

3A4A

5A6A

7A7B

8A11

A11

B14

A14

B15

A15

B23

A23

B

[g2]

1A1A

3A2A

5A3A

7A7B

4A11

B11

A7A

7B15

A15

B23

A23

B

[g3]

1A2A

1A4A

5A2A

7B7A

8A11

A11

B14

B14

A5A

5A23

A23

B

[g5]

1A2A

3A4A

1A6A

7B7A

8A11

A11

B14

B14

A3A

3A23

B23

A

[g7]

1A2A

3A4A

5A6A

1A1A

8A11

B11

A2A

2A15

B15

A23

B23

A

[g11]

1A2A

3A4A

5A6A

7A7B

8A1A

1A14

A14

B15

B15

A23

B23

A

[g23]

1A2A

3A4A

5A6A

7A7B

8A11

A11

B14

A14

B15

A15

B1A

1A

χ1

11

11

11

11

11

11

11

11

1

χ2

226

42

20

11

00

0−

1−

1−

1−

1−

1−

1

χ3

45−

30

10

0b7

b7

−1

11

−b7

−b7

00

−1

−1

χ4

45−

30

10

0b7

b7

−1

11

−b7

−b7

00

−1

−1

χ5

230

225

20

1−

1−

10

−1

−1

11

00

00

χ6

231

76

−1

1−

20

0−

10

00

01

11

1

χ7

231

7−

3−

11

10

0−

10

00

0b15

b15

11

χ8

231

7−

3−

11

10

0−

10

00

0b15

b15

11

χ9

253

131

1−

21

11

−1

00

−1

−1

11

00

χ10

770

−14

5−

20

10

00

00

00

00

b23

b23

χ11

770

−14

5−

20

10

00

00

00

00

b23

b23

χ12

896

0−

40

10

00

0b11

b11

00

11

−1

−1

χ13

896

0−

40

10

00

0b11

b11

00

11

−1

−1

χ14

990

−18

02

00

b7

b7

00

0b7

b7

00

11

χ15

990

−18

02

00

b7

b7

00

0b7

b7

00

11

χ16

1035

270

−1

00

−1

−1

11

1−

1−

10

00

0

χ17

2024

8−

10

−1

−1

11

00

01

1−

1−

10

0

Page 35: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 35 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 10

Cha

ract

er ta

ble

of M

cL. b

p=

(−1+

i√p)/2

, a=

1+

3b3

[g]

1A2A

3A3B

4A5A

5B6A

6B7A

7B8A

9A9B

10A

11A

11B

12A

14A

14B

15A

15B

30A

30B

[g2]

1A1A

3A3B

2A5A

5B3A

3B7A

7B4A

9B9A

5A11

B11

A6A

7A7B

15A

15B

15A

15B

[g3]

1A2A

1A1A

4A5A

5B2A

2A7B

7A8A

3A3A

10A

11A

11B

4A14

B14

A5A

5A10

A10

A

[g5]

1A2A

3A3B

4A1A

1A6A

6B7B

7A8A

9B9A

2A11

A11

B12

A14

B14

A3A

3A6A

6A

[g7]

1A2A

3A3B

4A5A

5B6A

6B1A

1A8A

9A9B

10A

11B

11A

12A

2A2A

15B

15A

30B

30A

[g11]

1A2A

3A3B

4A5A

5B6A

6B7A

7B8A

9B9A

10A

1A1A

12A

14A

14B

15B

15A

30B

30A

χ1

11

11

11

11

11

11

11

11

11

11

11

11

χ2

226

−5

42

−3

23

01

10

11

10

0−

1−

1−

10

0−

2−

2

χ3

231

715

6−

16

17

−2

00

−1

00

20

0−

10

00

02

2

χ4

252

289

94

22

11

00

00

0−

2−

1−

11

00

−1

−1

11

χ5

770

−14

−13

5−

2−

50

71

00

0−

1−

11

00

10

0b15

b15

b15

b15

χ6

770

−14

−13

5−

2−

50

71

00

0−

1−

11

00

10

0b15

b15

b15

b15

χ7

896

032

−4

0−

41

00

00

0−

1−

10

b11

b11

00

02

20

0

χ8

896

032

−4

0−

41

00

00

0−

1−

10

b11

b11

00

02

20

0

χ9

1750

70−

513

20

0−

51

00

0−

2−

20

11

−1

00

00

00

χ10

3520

64−

4410

0−

50

4−

2−

1−

10

11

−1

00

01

11

1−

1−

1

χ11

3520

−64

−44

100

−5

0−

42

−1

−1

01

11

00

0−

1−

11

11

1

χ12

4500

2045

−9

40

05

−1

−1

−1

00

00

11

1−

1−

10

00

0

χ13

4752

−48

540

02

2−

60

−1

−1

00

02

00

01

1−

1−

1−

1−

1

χ14

5103

630

03

3−

20

00

01

00

3−

1−

10

00

00

00

χ15

5544

−56

369

019

−1

41

00

00

0−

10

00

00

11

−1

−1

χ16

8019

−45

00

3−

6−

10

0−b7

−b7

−1

00

00

00

−b7

−b7

00

00

χ17

8019

−45

00

3−

6−

10

0−b7

−b7

−1

00

00

00

−b7

−b7

00

00

χ18

8250

1015

6−

20

0−

5−

2−b7

−b7

00

00

00

1b7

b7

00

00

χ19

8250

1015

6−

20

0−

5−

2−b7

−b7

00

00

00

1b7

b7

00

00

χ20

9625

105

40−

5−

30

00

30

0−

11

10

00

00

00

00

0

Page 36: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 36 of 89Cheng et al. Mathematical Sciences (2015) 2:13

[g]

1A2A

3A3B

4A5A

5B6A

6B7A

7B8A

9A9B

10A

11A

11B

12A

14A

14B

15A

15B

30A

30B

χ21

9856

0−

80−

80

61

00

00

0a

a0

00

00

00

00

0

χ22

9856

0−

80−

80

61

00

00

0a

a0

00

00

00

00

0

χ23

1039

5−

2127

0−

1−

50

30

00

10

0−

10

0−

10

0b15

b15

−b15

−b15

χ24

1039

5−

2127

0−

1−

50

30

00

10

0−

10

0−

10

0b15

b15

−b15

−b15

Tabl

e 10

con

tinu

ed

Page 37: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 37 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 11

Cha

ract

er ta

ble

of HS.

bp=

(−1+

i√p)/2

, ap=

i√p

[g]

1A2A

2B3A

4A4B

4C5A

5B5C

6A6B

7A8A

8B8C

10A

10B

11A

11B

12A

15A

20A

20B

[g2]

1A1A

1A3A

2A2A

2A5A

5B5C

3A3A

7A4B

4C4C

5A5B

11B

11A

6B15

A10

A10

A

[g3]

1A2A

2B1A

4A4B

4C5A

5B5C

2B2A

7A8A

8B8C

10A

10B

11A

11B

4A5B

20A

20B

[g5]

1A2A

2B3A

4A4B

4C1A

1A1A

6A6B

7A8A

8B8C

2A2B

11A

11B

12A

3A4A

4A

[g7]

1A2A

2B3A

4A4B

4C5A

5B5C

6A6B

1A8A

8B8C

10A

10B

11B

11A

12A

15A

20A

20B

[g11]

1A2A

2B3A

4A4B

4C5A

5B5C

6A6B

7A8A

8B8C

10A

10B

1A1A

12A

15A

20B

20A

χ1

11

11

11

11

11

11

11

11

11

11

11

11

χ2

226

−2

4−

62

2−

32

2−

20

10

00

1−

20

00

−1

−1

−1

χ3

7713

15

55

12

−3

21

10

1−

1−

1−

21

00

−1

00

0

χ4

154

1010

1−

26

−2

44

−1

11

00

00

00

00

11

−2

−2

χ5

154

10−

101

−10

−2

24

4−

1−

11

00

2−

20

00

0−

11

00

χ6

154

10−

101

−10

−2

24

4−

1−

11

00

−2

20

00

0−

11

00

χ7

175

1511

415

−1

30

50

20

0−

11

10

1−

1−

10

−1

00

χ8

231

7−

96

15−

1−

16

11

0−

20

−1

−1

−1

21

00

01

00

χ9

693

219

021

51

−7

3−

20

00

1−

1−

11

−1

00

00

11

χ10

770

34−

105

−14

2−

2−

50

0−

11

0−

20

0−

10

00

10

11

χ11

770

−14

105

−10

−2

−2

−5

00

11

00

00

10

00

−1

0a5

a5

χ12

770

−14

105

−10

−2

−2

−5

00

11

00

00

10

00

−1

0a5

a5

χ13

825

259

6−

151

10

−5

00

−2

−1

11

10

−1

00

01

00

χ14

896

016

−4

00

0−

41

1−

20

00

00

01

b11

b11

01

00

χ15

896

016

−4

00

0−

41

1−

20

00

00

01

b11

b11

01

00

χ16

1056

320

−6

00

06

−4

10

2−

10

00

20

00

0−

10

0

χ17

1386

−6

180

6−

2−

211

61

00

00

00

−1

−2

00

00

11

χ18

1408

016

40

00

8−

7−

2−

20

10

00

01

00

0−

10

0

χ19

1750

−10

10−

5−

106

20

00

1−

10

−2

00

00

11

−1

00

0

χ20

1925

5−

19−

15

5−

30

50

−1

−1

01

11

01

00

−1

−1

00

χ21

1925

51

−1

−35

−3

10

50

1−

10

1−

1−

10

10

01

−1

00

Page 38: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 38 of 89Cheng et al. Mathematical Sciences (2015) 2:13

[g]

1A2A

2B3A

4A4B

4C5A

5B5C

6A6B

7A8A

8B8C

10A

10B

11A

11B

12A

15A

20A

20B

χ22

2520

240

024

−8

0−

50

00

00

00

0−

10

11

00

−1

−1

χ23

2750

−50

−10

510

22

00

0−

11

−1

00

00

00

01

00

0

χ24

3200

0−

16−

40

00

0−

50

20

10

00

0−

1−

1−

10

10

0

Tabl

e 11

con

tinu

ed

Page 39: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 39 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Table 12 Character table of U6(2) - Part I

[g] 1A 2A 2B 2C 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 5A

[g2] 1A 1A 1A 1A 3A 3B 3C 2A 2A 2B 2B 2B 2B 2B 5A

[g3] 1A 2A 2B 2C 1A 1A 1A 4A 4B 4C 4D 4E 4F 4G 5A

[g5] 1A 2A 2B 2C 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 1A

[g7] 1A 2A 2B 2C 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 5A

[g11] 1A 2A 2B 2C 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 5A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 22 −10 6 −2 4 −5 4 6 −2 2 2 2 −2 2 2

χ3 231 39 7 −9 6 15 6 23 7 −1 −1 −1 −1 −1 1

χ4 252 60 28 12 9 9 9 12 −4 4 4 4 4 4 2

χ5 385 −95 17 −7 25 7 −2 1 9 5 5 5 −7 −3 0

χ6 440 120 24 8 35 8 −1 24 8 0 0 0 8 0 0

χ7 560 −80 −16 16 20 20 2 16 −16 0 0 0 0 0 0

χ8 616 −24 40 8 −14 −5 13 8 8 8 8 8 0 0 1

χ9 770 −30 −14 10 5 −13 5 34 −6 −2 −2 −2 2 −2 0

χ10 770 −30 −14 10 5 −13 5 34 −6 −2 −2 −2 2 −2 0

χ11 1155 195 35 19 30 −6 3 −13 3 11 −5 −5 3 3 0

χ12 1155 195 35 19 30 −6 3 −13 3 −5 11 −5 3 3 0

χ13 1155 195 35 19 30 −6 3 −13 3 −5 −5 11 3 3 0

χ14 1386 −246 58 −30 36 9 9 −6 2 −2 −2 −2 −6 6 1

χ15 1540 260 4 −28 55 1 1 −12 −12 4 4 4 4 −4 0

χ16 3080 −440 40 −8 65 2 −7 40 −8 0 0 0 −8 0 0

χ17 3080 −440 40 −8 65 2 −7 40 −8 0 0 0 −8 0 0

χ18 3520 −320 64 0 10 −44 10 64 0 0 0 0 0 0 0

χ19 4620 −180 44 −36 −15 57 12 28 −20 4 4 4 −4 −4 0

χ20 4928 320 64 64 −4 68 5 0 0 0 0 0 0 0 −2

χ21 5544 −24 −56 24 9 36 9 72 24 0 0 0 −8 0 −1

χ22 6160 400 −48 −16 40 −50 4 48 16 0 0 0 0 0 0

χ23 6160 400 −48 −16 40 −50 4 48 16 0 0 0 0 0 0

χ24 6930 690 98 42 45 −36 −9 18 −6 6 6 6 10 −2 0

χ25 8064 384 128 0 −36 −36 18 0 0 0 0 0 0 0 −1

χ26 9240 −360 88 −8 −30 33 −3 −8 −8 24 −8 −8 0 0 0

χ27 9240 −360 88 −8 −30 33 −3 −8 −8 −8 24 −8 0 0 0

χ28 9240 −360 88 −8 −30 33 −3 −8 −8 −8 −8 24 0 0 0

χ29 10395 315 −21 −45 0 27 0 75 −13 −1 −1 −1 3 −1 0

χ30 10395 315 −21 −45 0 27 0 75 −13 −1 −1 −1 3 −1 0

χ31 10395 315 −21 −45 0 27 0 −21 19 15 −1 −1 3 −1 0

χ32 10395 315 −21 −45 0 27 0 −21 19 −1 15 −1 3 −1 0

χ33 10395 315 −21 −45 0 27 0 −21 19 −1 −1 15 3 −1 0

χ34 11264 1024 0 0 104 32 −4 0 0 0 0 0 0 0 −1

χ35 13860 420 100 36 −45 9 −18 84 20 4 4 4 −4 4 0

χ36 14784 −1344 64 0 114 −12 6 −64 0 0 0 0 0 0 −1

χ37 18711 −1161 −57 63 81 0 0 −9 15 3 3 3 −1 −5 1

χ38 18711 1431 87 −9 81 0 0 −9 −9 −9 −9 −9 −1 −1 1

χ39 20790 −810 6 −18 0 54 0 6 14 −6 −6 −6 6 2 0

χ40 20790 −810 6 −18 0 54 0 6 14 −6 −6 −6 6 2 0

χ41 24640 −960 64 −64 −20 −92 −11 0 0 0 0 0 0 0 0

χ42 25515 −405 −117 27 0 0 0 27 −21 3 3 3 3 3 0

χ43 25515 −405 −117 27 0 0 0 27 −21 3 3 3 3 3 0

χ44 32768 0 0 0 −64 −64 8 0 0 0 0 0 0 0 −2

χ45 37422 270 30 54 −81 0 0 −18 6 −6 −6 −6 −2 −6 2

χ46 40095 1215 −81 −9 0 0 0 −81 −9 3 3 3 −9 3 0

Page 40: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 40 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Table 13 Character table of U6(2) - Part II. aq = q+ 6i√3, c−3 = (1− 3i

√3)/2

[g] 6A 6B 6C 6D 6E 6F 6G 6H 7A 8A 8B 8C 8D 9A 9B 9C

[g2] 3B 3B 3A 3B 3A 3C 3C 3C 7A 4B 4C 4D 4E 9B 9A 9C

[g3] 2A 2A 2A 2B 2B 2A 2B 2C 7A 8A 8B 8C 8D 3B 3B 3B

[g5] 6B 6A 6C 6D 6E 6F 6G 6H 7A 8A 8B 8C 8D 9B 9A 9C

[g7] 6A 6B 6C 6D 6E 6F 6G 6H 1A 8A 8B 8C 8D 9A 9B 9C

[g11] 6B 6A 6C 6D 6E 6F 6G 6H 7A 8A 8B 8C 8D 9B 9A 9C

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 −1 −1 −4 3 0 2 0 −2 1 2 0 0 0 1 1 1

χ3 3 3 6 7 −2 0 −2 0 0 3 −1 −1 −1 0 0 0

χ4 −3 −3 9 1 1 3 1 3 0 0 0 0 0 0 0 0

χ5 −5 −5 1 −1 5 −2 2 2 0 1 −1 −1 −1 1 1 1

χ6 12 12 3 0 3 3 3 −1 −1 0 0 0 0 2 2 −1

χ7 −8 −8 4 −4 −4 −2 2 −2 0 0 0 0 0 −1 −1 2

χ8 3 3 −6 −5 −2 3 1 −1 0 0 0 0 0 −2 −2 −2

χ9 a−3 a−3 −3 7 1 −3 1 1 0 2 0 0 0 −1 −1 −1

χ10 a−3 a−3 −3 7 1 −3 1 1 0 2 0 0 0 −1 −1 −1

χ11 6 6 6 2 2 −3 −1 1 0 −1 3 −1 −1 0 0 0

χ12 6 6 6 2 2 −3 −1 1 0 −1 −1 3 −1 0 0 0

χ13 6 6 6 2 2 −3 −1 1 0 −1 −1 −1 3 0 0 0

χ14 −3 −3 −12 1 4 −3 1 −3 0 −2 0 0 0 0 0 0

χ15 17 17 −1 1 −5 −1 1 −1 0 0 0 0 0 1 1 1

χ16 a−8 a−8 1 −2 1 1 1 1 0 0 0 0 0 c−3 c−3 −1

χ17 a−8 a−8 1 −2 1 1 1 1 0 0 0 0 0 c−3 c−3 −1

χ18 4 4 −14 4 −2 4 −2 0 −1 0 0 0 0 1 1 1

χ19 9 9 9 −7 5 0 −4 0 0 0 0 0 0 0 0 0

χ20 −4 −4 −4 4 4 5 1 1 0 0 0 0 0 −1 −1 2

χ21 12 12 9 4 1 −3 1 −3 0 0 0 0 0 0 0 0

χ22 a4 a4 −8 −6 0 −2 0 2 0 0 0 0 0 −c−3 −c−3 1

χ23 a4 a4 −8 −6 0 −2 0 2 0 0 0 0 0 −c−3 −c−3 1

χ24 −12 −12 −3 −4 5 −3 −1 −3 0 2 0 0 0 0 0 0

χ25 −12 −12 12 −4 −4 0 2 0 0 0 0 0 0 0 0 0

χ26 9 9 −6 1 −2 −3 1 1 0 0 0 0 0 0 0 0

χ27 9 9 −6 1 −2 −3 1 1 0 0 0 0 0 0 0 0

χ28 9 9 −6 1 −2 −3 1 1 0 0 0 0 0 0 0 0

χ29 −9 −9 0 3 0 0 0 0 0 −1 1 1 1 0 0 0

χ30 −9 −9 0 3 0 0 0 0 0 −1 1 1 1 0 0 0

χ31 −9 −9 0 3 0 0 0 0 0 −1 −3 1 1 0 0 0

χ32 −9 −9 0 3 0 0 0 0 0 −1 1 −3 1 0 0 0

χ33 −9 −9 0 3 0 0 0 0 0 −1 1 1 −3 0 0 0

χ34 16 16 −8 0 0 4 0 0 1 0 0 0 0 −1 −1 −1

χ35 −3 −3 3 1 −5 0 −2 0 0 0 0 0 0 0 0 0

χ36 −12 −12 −6 4 −2 0 −2 0 0 0 0 0 0 0 0 0

χ37 0 0 9 0 −3 0 0 0 0 −1 1 1 1 0 0 0

χ38 0 0 9 0 −3 0 0 0 0 −1 −1 −1 −1 0 0 0

χ39 18i√3 −18i

√3 0 −6 0 0 0 0 0 2 0 0 0 0 0 0

χ40 −18i√3 18i

√3 0 −6 0 0 0 0 0 2 0 0 0 0 0 0

χ41 12 12 12 4 4 3 1 −1 0 0 0 0 0 −2 −2 1

χ42 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 0 0 0

χ43 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 0 0 0

χ44 0 0 0 0 0 0 0 0 1 0 0 0 0 2 2 −1

Page 41: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 41 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Table 13 continued

χ45 0 0 −9 0 3 0 0 0 0 −2 0 0 0 0 0 0

χ46 0 0 0 0 0 0 0 0 −1 3 1 1 1 0 0 0

Table 14 Character table of  U6(2) - Part III. aq = q+ 6i√3, bp = (−1+ i

√p)/2,

dnm = m+ in

√3

[g] 10A 11A 11B 12A 12B 12C 12D 12E 12F 12G 12H 12I 15A 18A 18B

[g2] 5A 11B 11A 6B 6A 6C 6B 6A 6D 6D 6D 6E 15A 9B 9A

[g3] 10A 11A 11B 4A 4A 4A 4B 4B 4C 4D 4E 4F 5A 6A 6B

[g5] 2A 11A 11B 12B 12A 12C 12E 12D 12F 12G 12H 12I 3A 18B 18A

[g7] 10A 11B 11A 12A 12B 12C 12D 12E 12F 12G 12H 12I 15A 18A 18B

[g11] 10A 1A 1A 12B 12A 12C 12E 12D 12F 12G 12H 12I 15A 18B 18A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 0 0 0 −3 −3 0 1 1 −1 −1 −1 −2 −1 −1 −1

χ3 −1 0 0 5 5 2 1 1 −1 −1 −1 2 1 0 0

χ4 0 −1 −1 3 3 −3 −1 −1 1 1 1 1 −1 0 0

χ5 0 0 0 1 1 1 −3 −3 −1 −1 −1 −1 0 1 1

χ6 0 0 0 6 6 3 2 2 0 0 0 −1 0 0 0

χ7 0 −1 −1 −2 −2 4 2 2 0 0 0 0 0 1 1

χ8 1 0 0 −1 −1 2 −1 −1 −1 −1 −1 0 1 0 0

χ9 0 0 0 d−3

−2d−3

−21 d−1

0d10

1 1 1 −1 0 d10 d−1

0

χ10 0 0 0 d−3

−2d−3

−21 d1

0 d−1

01 1 1 −1 0 d−1

0d10

χ11 0 0 0 −4 −4 2 0 0 2 −2 −2 0 0 0 0

χ12 0 0 0 −4 −4 2 0 0 −2 2 −2 0 0 0 0

χ13 0 0 0 −4 −4 2 0 0 −2 −2 2 0 0 0 0

χ14 −1 0 0 3 3 0 −1 −1 1 1 1 0 1 0 0

χ15 0 0 0 −3 −3 3 −3 −3 1 1 1 1 0 −1 −1

χ16 0 0 0 d−3

−5d−3

−51 d−1

1d−1

10 0 0 1 0 d

−1/2−1/2 d

−1/2−1/2

χ17 0 0 0 d−3

−5d−3

−51 d−1

1d−1

10 0 0 1 0 d

−1/2−1/2 d

−1/2−1/2

χ18 0 0 0 −8 −8 −2 0 0 0 0 0 0 0 1 1

χ19 0 0 0 1 1 1 1 1 1 1 1 −1 0 0 0

χ20 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

χ21 1 0 0 0 0 −3 0 0 0 0 0 1 −1 0 0

χ22 0 0 0 −6b3 −6b3 0 d−1

1d−1

10 0 0 0 0 d

−1/2−1/2 d

−1/2−1/2

χ23 0 0 0 −6b3 −6b3 0 d−1

1d−1

10 0 0 0 0 d

−1/2−1/2 d

−1/2−1/2

χ24 0 0 0 0 0 −3 0 0 0 0 0 1 0 0 0

χ25 −1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0

χ26 0 0 0 1 1 −2 1 1 −3 1 1 0 0 0 0

χ27 0 0 0 1 1 −2 1 1 1 −3 1 0 0 0 0

χ28 0 0 0 1 1 −2 1 1 1 1 −3 0 0 0 0

χ29 0 0 0 −a−3 −a−3 0 d−2

−1d−2

−1−1 −1 −1 0 0 0 0

χ30 0 0 0 −a−3 −a−3 0 d−2

−1d−2

−1−1 −1 −1 0 0 0 0

χ31 0 0 0 −3 −3 0 1 1 3 −1 −1 0 0 0 0

χ32 0 0 0 −3 −3 0 1 1 −1 3 −1 0 0 0 0

χ33 0 0 0 −3 −3 0 1 1 −1 −1 3 0 0 0 0

χ34 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 1

χ35 0 0 0 3 3 3 −1 −1 1 1 1 −1 0 0 0

χ36 1 0 0 8 8 2 0 0 0 0 0 0 −1 0 0

χ37 −1 0 0 0 0 −3 0 0 0 0 0 −1 1 0 0

Page 42: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 42 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Table 14 continued

χ38 1 0 0 0 0 −3 0 0 0 0 0 −1 1 0 0

χ39 0 0 0 6b3 6b3 0 d1−1 d1−10 0 0 0 0 0 0

χ40 0 0 0 6b3 6b3 0 d1−1d1−1

0 0 0 0 0 0 0

χ41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ42 0 −b11 −b11 0 0 0 0 0 0 0 0 0 0 0 0

χ43 0 −b11 −b11 0 0 0 0 0 0 0 0 0 0 0 0

χ44 0 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0

χ45 0 0 0 0 0 3 0 0 0 0 0 1 −1 0 0

χ46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15 The twined series for M22. The table shows the Fourier coefficients multiplying q−D/12 in the q-expansion of the function hg,1(τ)

−D[g] 1A 2A 3A 4AB 5A 6A 7AB 8A 11AB

−1 −2 −2 −2 −2 −2 −2 −2 −2 −2

11 560 −16 2 0 0 2 0 0 −1

23 8470 54 −8 −2 0 0 0 2 0

35 70576 −144 16 0 −4 0 2 0 0

47 435820 332 4 4 0 −4 0 0 0

59 2187328 −704 −50 0 8 −2 −4 0 0

71 9493330 1394 58 −6 0 2 0 −2 0

83 36792560 −2640 38 0 0 6 0 0 2

95 130399766 4822 −172 6 −14 4 0 −2 2

107 429229920 −8480 174 0 0 −2 0 0 −2

119 1327987562 14506 104 −6 22 −8 6 2 0

131 3895785632 −24288 −502 0 −8 −6 4 0 2

143 10912966810 39770 466 10 0 2 −10 2 −2

155 29351354032 −63888 316 0 −28 12 0 0 0

167 76141761850 101018 −1232 −14 0 8 0 −2 0

179 191223891936 −157344 1098 0 56 −6 0 0 0

191 466389602756 241764 710 12 −14 −18 0 0 0

203 1107626293840 −366960 −2876 0 0 −12 10 0 0

215 2567229121428 550676 2472 −12 −62 8 6 4 4

227 5818567673360 −817840 1658 0 0 26 −20 0 2

239 12917927405852 1203068 −6148 20 112 20 0 0 −4

251 28135083779792 −1753840 5174 0 −48 −10 −4 0 0

263 60194978116000 2535488 3382 −24 0 −34 0 −4 2

275 126660856741328 −3637232 −12634 0 −112 −26 0 0 −3

287 262393981258310 5179526 10430 22 0 14 20 −2 0

Appendix C: Coefficient tablesSee Tables 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28.

Page 43: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 43 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 16

The

twin

ed s

erie

s fo

r M22. T

he ta

ble

show

s th

e Fo

urie

r coe

ffici

ents

mul

tipl

ying

q−D/12 in

 the q-

expa

nsio

n of

 the

func

tion

hg,2(τ)

−D

[g]

1A2A

3A4A

B5A

6A7A

B8A

11A

B

−4

11

11

11

11

1

821

02

3−

20

−1

00

1

2044

44−

47

4−

1−

1−

10

0

3242

560

16−

194

01

0−

21

4428

1512

−24

19−

87

30

00

5614

8196

412

24−

12−

60

10

0

6866

4920

0−

16−

8116

0−

15

0−

3

8026

4552

6464

7024

−6

−2

−4

40

9295

7314

05−

8370

−27

0−

20

10

104

3206

2637

236

−24

8−

3622

0−

40

0

116

1006

5671

56−

4421

744

−14

10

01

128

2990

3386

8016

818

352

03

0−

6−

1

140

8469

1294

48−

216

−65

6−

72−

170

30

−1

152

2300

0871

960

8855

8−

880

−2

100

0

164

6018

6506

768

−11

243

111

248

−1

−11

03

176

1523

3580

3872

416

−15

8214

4−

282

08

−1

188

3741

7253

0930

−49

413

40−

166

04

−5

−2

0

200

8943

5292

9498

202

981

−20

2−

421

00

−5

212

2085

1575

2830

0−

244

−35

4524

40

−1

00

0

224

4751

6756

0102

486

429

4628

010

4−

69

−12

0

236

1060

2363

9451

84−

1056

2077

−35

2−

51−

318

00

248

2319

9658

8165

8042

0−

7480

−42

00

0−

200

4

260

4985

1590

6540

96−

496

6146

496

−84

20

00

272

1053

2310

8387

200

1792

4228

608

04

−10

160

284

2190

2185

0730

991

−20

97−

1509

9−

697

196

−3

03

0

Page 44: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 44 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 17

The

twin

ed s

erie

s fo

r  U4(3).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/12 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1(τ)

−D

[g]

1A2A

3A3B

CD4A

B5A

6A6B

C7A

B8A

9ABC

D12

A

−1

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

1156

0−

16−

342

00

22

00

−1

0

2384

7054

−11

6−

8−

20

00

02

1−

2

3570

576

−14

4−

272

160

−4

00

20

10

4743

5820

332

−66

24

40

2−

40

0−

2−

2

5921

8732

8−

704

−14

54−

500

8−

2−

2−

40

40

7194

9333

013

94−

2732

58−

60

−4

20

−2

10

8336

7925

60−

2640

−52

5438

00

66

00

−7

0

9513

0399

766

4822

−98

02−

172

6−

1410

40

−2

20

107

4292

2992

0−

8480

−16

782

174

00

−2

−2

00

30

119

1327

9875

6214

506

−28

930

104

−6

22−

14−

86

2−

70

131

3895

7856

32−

2428

8−

4906

6−

502

0−

8−

6−

64

05

0

143

1091

2966

810

3977

0−

7905

846

610

014

2−

102

4−

2

155

2935

1354

032

−63

888

−12

7484

316

0−

2812

120

0−

110

167

7614

1761

850

1010

18−

2032

64−

1232

−14

0−

48

0−

213

−2

179

1912

2389

1936

−15

7344

−31

3578

1098

056

−6

−6

00

30

191

4663

8960

2756

2417

64−

4828

4271

012

−14

−6

−18

00

−22

0

203

1107

6262

9384

0−

3669

60−

7367

72−

2876

00

−12

−12

100

100

215

2567

2291

2142

855

0676

−10

9887

624

72−

12−

62−

48

64

90

227

5818

5676

7336

0−

8178

40−

1634

074

1658

00

2626

−20

0−

220

239

1291

7927

4058

5212

0306

8−

2412

226

−61

4820

112

3820

00

172

251

2813

5083

7797

92−

1753

840

−35

0248

651

740

−48

−10

−10

−4

014

0

263

6019

4978

1160

0025

3548

8−

5067

686

3382

−24

0−

58−

340

−4

−32

0

275

1266

6085

6741

328

−36

3723

2−

7287

046

−12

634

0−

112

−26

−26

00

320

287

2623

9398

1258

310

5179

526

−10

3485

7010

430

220

3814

20−

211

−2

Page 45: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 45 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 18

The

twin

ed s

erie

s fo

r  U4(3).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/12 in

 the q-

expa

nsio

n of

 the

func

tion

hg,2(τ)

−D

[g]

1A2A

3A3B

CD4A

B5A

6A6B

C7A

B8A

9ABC

D12

A

−4

11

11

11

11

11

11

821

02

213

−2

05

−1

00

01

2044

44−

497

74

−1

−7

−1

−1

01

1

3242

560

1619

7−

194

013

10

−2

−1

1

4428

1512

−24

577

19−

87

−15

30

0−

21

5614

8196

412

1176

24−

12−

624

01

03

0

6866

4920

0−

1623

13−

8116

0−

31−

15

0−

31

8026

4552

6464

4552

7024

−6

40−

2−

44

−2

0

9295

7314

05−

8384

4070

−27

0−

56−

20

17

0

104

3206

2637

236

1444

0−

248

−36

2272

0−

40

−5

0

116

1006

5671

56−

4425

759

217

44−

14−

891

00

1−

1

128

2990

3386

8016

842

861

183

520

117

30

−6

91

140

8469

1294

48−

216

6990

4−

656

−72

−17

−14

40

30

−5

0

152

2300

0871

960

8811

4066

558

−88

017

8−

210

0−

92

164

6018

6506

768

−11

218

1097

431

112

48−

223

−1

−11

011

1

176

1523

3580

3872

416

2802

08−

1582

144

−28

272

20

8−

100

188

3741

7253

0930

−49

443

6490

1340

−16

60

−32

64

−5

−2

−4

2

200

8943

5292

9498

202

6624

9998

1−

202

−42

403

10

024

−1

212

2085

1575

2830

0−

244

9930

25−

3545

244

0−

487

−1

00

−17

1

224

4751

6756

0102

486

414

8546

229

4628

010

458

2−

69

−12

−6

−2

236

1060

2363

9451

84−

1056

2189

455

2077

−35

2−

51−

705

−3

180

25−

1

248

2319

9658

8165

8042

031

8644

0−

7480

−42

00

840

0−

200

−16

0

260

4985

1590

6540

96−

496

4635

278

6146

496

−84

−99

42

00

−16

−2

272

1053

2310

8387

200

1792

6654

706

4228

608

011

864

−10

1634

2

284

2190

2185

0730

991

−20

9794

7538

3−

1509

9−

697

196

−14

01−

30

3−

30−

1

Page 46: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 46 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 19

The

twin

ed s

erie

s fo

r M23. T

he ta

ble

show

s th

e Fo

urie

r coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1 2

(τ) .b

p=

(−1+

i√p)/2

−D

[g]

1A2A

3A4A

5A6A

7AB

8A11

AB

14A

B15

AB

23A

23B

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

2377

0−

145

−2

01

00

00

0b23

b23

4713

915

4310

−1

0−

2−

11

01

00

0

7113

2825

−11

921

5−

51

0−

10

01

00

9591

5124

308

314

4−

10

01

01

00

119

5069

867

−69

359

−13

23

−2

−1

00

−1

00

143

2405

3215

1407

85−

90

−3

4−

1−

10

0−

1−

1

167

1012

6854

0−

2772

135

240

32

2−

10

00

0

191

3877

4628

253

0620

014

−18

−4

00

00

00

0

215

1372

9350

90−

9710

300

−38

154

−5

2−

1−

10

00

239

4552

0392

9617

136

414

−20

11−

60

22

0−

10

0

263

1426

5412

315

−29

589

610

630

60

−3

00

01

1

287

4256

8680

715

5015

583

535

0−

5−

6−

10

00

00

311

1216

6594

9240

−83

160

1165

−10

8−

459

10−

20

00

00

335

3346

5824

6604

1351

4815

81−

6034

−11

3−

40

−1

10

0

359

8894

1309

5662

−21

6482

2158

170

2210

04

30

−2

00

383

2291

4821

4883

534

2259

2865

870

−11

−9

10

10

00

407

5739

3332

2767

0−

5336

1038

55−

250

015

02

−2

00

00

431

1400

8317

4239

6882

1296

5051

−12

4−

107

−17

06

−1

01

−1

−1

455

3338

8385

2016

99−

1250

717

6656

371

7916

−11

−5

01

10

0

479

7785

3744

7689

0618

8623

486

4919

056

−19

220

−4

0−

11

1

503

1778

8179

4535

250

−28

1679

811

250

−55

40

228

−4

32

00

0

527

3988

0841

9854

845

4167

709

1443

0−

283

0−

260

−7

00

01

1

551

8784

6157

5586

727

−61

1666

518

581

799

−21

829

−22

70

−2

10

0

575

1903

2414

7816

7799

8909

383

2363

139

515

4−

290

10

01

b23

b23

Page 47: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 47 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 20

The

twin

ed s

erie

s fo

r M23. T

he ta

ble

show

s th

e Fo

urie

r coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,3 2

(τ)

−D

[g]

1A2A

3A4A

5A6A

7AB

8A11

AB

14A

B15

AB

23A

B

−9

11

11

11

11

11

11

1523

17

6−

11

−2

0−

10

01

1

3957

96−

2818

41

20

0−

10

−2

0

6365

505

97−

151

01

−1

10

−1

01

8749

4385

−23

960

−7

04

31

1−

10

0

111

2922

381

525

90−

3−

9−

60

10

00

1

135

1452

5511

−11

13−

7515

6−

30

−1

00

0−

1

159

6344

7087

2255

228

77

−4

−3

−1

01

−2

0

183

2501

8843

5−

4333

360

−29

08

0−

12

00

1

207

9078

7658

579

45−

260

−15

04

0−

30

00

0

231

3073

1558

10−

1417

476

250

−25

10−

32

−1

12

0

255

9804

6607

7724

809

1062

2517

−10

91

−1

12

0

279

2971

7775

186

−42

286

−75

9−

7816

−7

12

01

10

303

8611

6649

220

7030

820

70−

360

−18

04

−3

00

0

327

2398

0659

2730

−11

5046

2880

122

016

−9

−2

1−

10

−1

351

6444

1843

4331

1855

63−

1926

59−

6410

0−

11

0−

10

375

1676

9940

6590

1−

2944

8352

56−

195

4624

0−

30

01

−1

399

4238

7885

8498

746

0571

6948

−10

137

−28

−9

−5

0−

1−

20

423

1043

2762

5252

95−

7119

85−

4645

295

0−

1319

30

−1

00

447

2505

8448

4337

7010

8884

212

120

146

0−

323

24

−1

00

471

5884

8028

3092

24−

1647

128

1591

2−

424

−13

640

04

00

20

495

1353

4935

1964

727

2466

359

−10

281

−20

192

23−

167

−1

0−

10

519

3053

2688

0332

593

−36

6033

526

646

617

6846

0−

7−

20

−4

0

543

6764

3308

3819

185

5388

145

3411

030

50

−50

0−

30

00

0

567

1473

4684

2984

7035

−78

6739

7−

2184

0−

901

0−

32−

15−

5−

51

01

Page 48: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 48 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 21

The

twin

ed s

erie

s fo

r McL

. The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1 2

(τ) . bp=

(−1+

i√p)/2

−D

[g]

1A2A

3A3B

4A5A

5B6A

6B7A

B8A

9AB

10A

11A

B12

A14

AB

15A,15B

30A,30B

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

2377

0−

14−

135

−2

−5

07

10

0−

11

01

0b15

b15

4713

915

43−

1710

−1

−10

07

−2

−1

11

−2

0−

11

−b15

b15

7113

2825

−11

9−

4221

5−

25−

522

10

−1

01

02

0−b15

b15

9591

5124

308

−68

314

−26

432

−1

00

−2

−2

1−

20

b15

b15

119

5069

867

−69

3−

112

59−

13−

582

603

−2

−1

22

02

0−b15

(b15−

2)

143

2405

3215

1407

−16

785

−9

−85

081

−3

4−

11

−3

−1

−3

0−b15

(b15−

1)

167

1012

6854

0−

2772

−27

913

524

−13

50

141

32

2−

33

−1

30

(b15−

1)

(b15−

1)

191

3877

4628

253

06−

394

200

14−

218

−18

194

−4

00

2−

40

−4

0−2b15

2b15

215

1372

9350

90−

9710

−60

030

0−

38−

285

1530

44

−5

20

5−

14

−1

02b15

239

4552

0392

9617

136

−83

741

4−

20−

404

1141

1−

60

2−

3−

42

−5

0(2b15−

1)

(2b15−

3)

263

1426

5412

315

−29

589

−12

0861

063

−61

00

612

60

−3

46

06

02

(2b15−

2)

287

4256

8680

715

5015

5−

1667

835

35−

835

082

9−

5−

6−

11

−5

0−

70

−b15

(3b15−

2)

311

1216

6594

9240

−83

160

−23

4511

65−

108

−12

10−

4511

799

10−

2−

510

09

0(b

15−

2)

(3b15−

2)

335

3346

5824

6604

1351

48−

3153

1581

−60

−15

4634

1567

−11

3−

43

−12

0−

9−

1(1

−2b15)

(4b15−

1)

359

8894

1309

5662

−21

6482

−43

1321

5817

0−

2138

2221

6710

04

18

311

0b15

(5b15−

3)

383

2291

4821

4883

534

2259

−57

4828

6587

−28

650

2860

−11

−9

1−

6−

110

−12

1(4b15−

1)

(4b15−

3)

407

5739

3332

2767

0−

5336

10−

7692

3855

−25

0−

3855

038

6415

02

615

−2

140

(2−

2b15)

(4b15−

4)

431

1400

8317

4239

6882

1296

−10

096

5051

−12

4−

5157

−10

750

32−

170

62

−19

−1

−16

0(1

−b15)

(5b15−

3)

455

3338

8385

2016

99−

1250

717

−13

333

6656

371

−65

7679

6679

16−

11−

5−

718

017

1(4b15−

1)

(6b15−

3)

479

7785

3744

7689

0618

8623

4−

1728

086

4919

0−

8594

5686

24−

1922

06

−16

−4

−20

0(1

−3b15)

(7b15−

5)

503

1778

8179

4535

250

−28

1679

8−

2250

011

250

−55

4−

1125

00

1127

222

8−

40

223

222

0(8b15−

4)

527

3988

0841

9854

845

4167

709

−28

887

1443

0−

283

−14

430

014

413

−26

0−

7−

9−

260

−25

0(3

−3b15)

(9b15−

5)

551

8784

6157

5586

727

−61

1666

5−

3713

818

581

799

−18

798

−21

818

602

29−

227

830

028

−2

(2−

5b15)

(9b15−

6)

575

1903

2414

7816

7799

8909

383

−47

253

2363

139

5−

2347

615

423

599

−29

01

3−

320

−31

02

(10b15−

6)

Page 49: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 49 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 22

The

twin

ed s

erie

s fo

r McL

. The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,3 2

(τ)

−D

[g]

1A2A

3A3B

4A5A

5B6A

6B7A

B8A

9AB

10A

11A

B12

A14

AB

15A

B30

AB

−9

11

11

11

11

11

11

11

11

11

1523

17

156

−1

61

7−

20

−1

02

0−

10

02

3957

96−

2845

184

211

52

00

0−

3−

11

00

0

6365

505

9730

−15

130

022

1−

11

02

0−

2−

10

2

8749

4385

−23

915

060

−7

600

224

31

0−

41

2−

10

2

111

2922

381

525

225

90−

381

−9

57−

60

10

50

−3

00

2

135

1452

5511

−11

1315

9−

7515

161

663

−3

0−

13

−3

03

0−

13

159

6344

7087

2255

570

228

723

77

122

−4

−3

−1

05

0−

21

02

183

2501

8843

5−

4333

900

360

−29

360

016

48

0−

10

−8

24

00

4

207

9078

7658

579

4550

5−

260

−15

510

028

94

0−

3−

510

0−

30

04

231

3073

1558

10−

1417

419

0576

250

735

−25

361

10−

32

0−

9−

15

10

6

255

9804

6607

7724

809

2655

1062

2510

7717

551

−10

91

09

−1

−5

10

6

279

2971

7775

186

−42

286

1518

−75

9−

7815

3616

710

−7

12

0−

160

61

35

303

8611

6649

220

7030

851

7520

70−

3620

700

1071

−18

04

018

−3

−9

00

6

327

2398

0659

2730

−11

5046

7200

2880

122

2880

014

0816

−9

−2

0−

161

8−

10

8

351

6444

1843

4331

1855

6338

79−

1926

5938

06−

6419

9910

0−

19

181

−13

0−

19

375

1676

9940

6590

1−

2944

8313

140

5256

−19

553

0146

2580

240

−3

0−

230

120

010

399

4238

7885

8498

746

0571

1737

069

48−

101

6987

3735

30−

28−

9−

50

310

−14

−1

010

423

1043

2762

5252

95−

7119

8592

60−

4645

295

9270

045

32−

1319

3−

10−

300

16−

10

12

447

2505

8448

4337

7010

8884

230

300

1212

014

612

120

061

24−

323

20

324

−16

−1

014

471

5884

8028

3092

24−

1647

128

3978

015

912

−42

415

774

−13

678

7640

04

0−

380

200

016

495

1353

4935

1964

727

2466

359

2056

2−

1028

1−

201

2065

292

1044

223

−16

70

44−

1−

180

−3

17

519

3053

2688

0332

593

−36

6033

566

615

2664

661

726

718

6813

231

460

−7

0−

50−

223

00

16

543

6764

3308

3819

185

5388

145

8527

534

110

305

3411

00

1715

5−

500

−3

050

0−

250

020

567

1473

4684

2984

7035

−78

6739

743

725

−21

840

−90

143

710

021

637

−32

−15

−5

15−

62−

529

10

22

Page 50: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 50 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 23

The

twin

ed s

erie

s fo

r HS.

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1 2

(τ) . ap=

i√p

−D

[g]

1A2A

2B3A

4A4B

C5A

5BC

6A6B

7A8A

BC10

A10

B11

AB

12A

15A

20A,20B

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

2377

0−

1410

5−

10−

2−

50

11

00

10

0−

10

a5

4713

915

43−

4510

−25

−1

−10

00

−2

−1

1−

20

02

00

7113

2825

−11

912

921

−35

5−

25−

53

10

−1

1−

10

11

a5

9591

5124

308

−30

031

−60

4−

264

−3

−1

00

−2

01

−3

10

119

5069

867

−69

366

759

−12

5−

13−

582

13

−2

−1

22

01

−1

0

143

2405

3215

1407

−14

2585

−18

5−

9−

850

−3

−3

4−

1−

30

−1

10

a5

167

1012

6854

0−

2772

2820

135

−24

024

−13

50

33

22

30

−1

−3

0a5

191

3877

4628

253

06−

5278

200

−39

414

−21

8−

18−

4−

40

0−

42

02

0(a

5+

1)

215

1372

9350

90−

9710

9634

300

−63

0−

38−

285

154

4−

52

5−

1−

10

0a5

239

4552

0392

9617

136

−17

176

414

−86

0−

20−

404

11−

4−

60

2−

4−

12

−2

−1

0

263

1426

5412

315

−29

589

2971

561

0−

1145

63−

610

06

60

−3

60

04

00

287

4256

8680

715

5015

5−

5008

583

5−

1645

35−

835

0−

9−

5−

6−

1−

50

0−

10

a5

311

1216

6594

9240

−83

160

8294

411

65−

2420

−10

8−

1210

−45

99

10−

210

−1

0−

50

0

335

3346

5824

6604

1351

48−

1352

6815

81−

3244

−60

−15

4634

−7

−11

3−

4−

122

05

1(a

5+

1)

359

8894

1309

5662

−21

6482

2168

2221

58−

4126

170

−21

3822

1210

04

82

32

−2

(a5−

1)

383

2291

4821

4883

534

2259

−34

2085

2865

−56

6587

−28

650

−13

−11

−9

1−

110

0−

70

a5

407

5739

3332

2767

0−

5336

1053

3110

3855

−79

30−

250

−38

550

1315

02

150

−2

50

a5

431

1400

8317

4239

6882

1296

−82

1544

5051

−10

260

−12

4−

5157

−10

7−

15−

170

6−

191

−1

31

a5

455

3338

8385

2016

99−

1250

717

1251

459

6656

−12

909

371

−65

7679

1816

−11

−5

18−

10

−6

1(a

5+

1)

479

7785

3744

7689

0618

8623

4−

1885

854

8649

−17

146

190

−85

9456

−21

−19

220

−16

−4

−4

5−

1(a

5−

1)

503

1778

8179

4535

250

−28

1679

828

1569

011

250

−23

010

−55

4−

1125

00

2222

8−

422

03

00

2a5

527

3988

0841

9854

845

4167

709

−41

6827

514

430

−29

195

−28

3−

1443

00

−24

−26

0−

7−

260

0−

80

0

551

8784

6157

5586

727

−61

1666

561

1826

318

581

−36

305

799

−18

798

−21

827

29−

227

30−

20

71

2a5

575

1903

2414

7816

7799

8909

383

−89

0859

323

631

−46

925

395

−23

476

154

−33

−29

01

−32

20

11

0

Page 51: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 51 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 24

The

twin

ed s

erie

s fo

r HS.

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,3 2

(τ)

−D

[g]

1A2A

2B3A

4A4B

C5A

5BC

6A6B

7A8A

BC10

A10

B11

AB

12A

15A

20A

B

−9

11

11

11

11

11

11

11

11

11

1523

17

−9

615

−1

61

0−

20

−1

21

00

10

3957

96−

2836

1836

421

10

20

0−

31

−1

0−

21

6365

505

97−

95−

1565

130

0−

51

−1

12

00

−1

00

8749

4385

−23

922

560

105

−7

600

04

31

−4

01

00

0

111

2922

381

525

−53

190

189

−3

81−

90

−6

01

5−

10

00

−1

135

1452

5511

−11

1311

43−

7531

915

161

69

−3

0−

1−

3−

20

10

−1

159

6344

7087

2255

−22

4122

847

17

237

70

−4

−3

−1

5−

10

0−

21

183

2501

8843

5−

4333

4275

360

675

−29

360

00

80

−1

−8

02

00

0

207

9078

7658

579

45−

7975

−26

010

25−

1551

00

−10

40

−3

100

02

00

231

3073

1558

10−

1417

414

274

762

1554

5073

5−

250

10−

32

−9

−1

−1

02

−1

255

9804

6607

7724

809

−24

759

1062

2169

2510

7717

0−

109

19

1−

10

2−

1

279

2971

7775

186

−42

286

4213

0−

759

2930

−78

1536

1619

−7

12

−16

00

−1

10

303

8611

6649

220

7030

8−

7038

020

7041

40−

3620

700

0−

180

418

0−

30

00

327

2398

0659

2730

−11

5046

1152

9028

8058

5012

228

800

016

−9

−2

−16

01

00

0

351

6444

1843

4331

1855

63−

1854

45−

1926

7835

5938

06−

64−

3610

0−

118

01

−4

−1

0

375

1676

9940

6590

1−

2944

8329

4093

5256

1026

9−

195

5301

460

240

−3

−23

−2

00

1−

1

399

4238

7885

8498

746

0571

−46

0773

6948

1385

1−

101

6987

370

−28

−9

−5

31−

30

0−

21

423

1043

2762

5252

95−

7119

8571

2575

−46

4518

775

295

9270

045

−13

193

−30

00

10

0

447

2505

8448

4337

7010

8884

2−

1088

550

1212

024

450

146

1212

00

0−

323

232

04

00

0

471

5884

8028

3092

24−

1647

128

1646

280

1591

231

320

−42

415

774

−13

60

400

4−

380

00

20

495

1353

4935

1964

727

2466

359

−24

6676

1−

1028

141

015

−20

120

652

92−

5923

−16

744

4−

15

−1

0

519

3053

2688

0332

593

−36

6033

536

6156

926

646

5381

761

726

718

680

460

−7

−50

4−

20

−4

2

543

6764

3308

3819

185

5388

145

−53

8753

534

110

6862

530

534

110

00

−50

0−

350

00

00

0

567

1473

4684

2984

7035

−78

6739

778

6559

5−

2184

086

395

−90

143

710

090

−32

−15

−5

−62

0−

5−

20

0

Page 52: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 52 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 25

The

twin

ed s

erie

s fo

r  U6(2).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1 2

(τ) -

par

t I. a

p=

i√p

−D

[g]

1A2A

2B2C

3A3B

3C4A

4B4C

DE

4F4G

5A6A,6B

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

2377

0−

30−

1410

5−

135

34−

6−

22

−2

0−

3– 6a3

4713

915

−5

43−

4510

−17

1013

9−

13−

13

−1

0−

5

7113

2825

−19

9−

119

129

21−

4221

505

−15

5−

75

−5

−10−

12a3

9591

5124

180

308

−30

031

−68

3114

12−

284

−4

44

−18−

18a3

119

5069

867

−91

7−

693

667

59−

112

5936

27−

69−

1311

−13

2−

26−

30a3

143

2405

3215

1055

1407

−14

2585

−16

785

8559

−97

−9

7−

90

−43−36a3

167

1012

6854

0−

3300

−27

7228

2013

5−

279

135

1906

8−

108

24−

2024

0−

69−

78a3

191

3877

4628

244

9053

06−

5278

200

−39

420

040

154

−19

014

−14

14−

18−

100−

90a3

215

1372

9350

90−

1089

4−

9710

9634

300

−60

030

081

250

−33

4−

3842

−38

15−

148−

156a3

239

4552

0392

9615

456

1713

6−

1717

641

4−

837

414

1587

36−

440

−20

24−

2011

−21

3−204a3

263

1426

5412

315

−32

005

−29

589

2971

561

0−

1208

610

3009

87−

541

63−

6963

0−

298−

306a3

287

4256

8680

715

4679

550

155

−50

085

835

−16

6783

555

5307

−80

535

−37

350

−41

9− 408a3

311

1216

6594

9240

−87

784

−83

160

8294

411

65−

2345

1165

1001

016

−12

64−

108

104

−10

8−

45−

583−

606a3

335

3346

5824

6604

1287

8013

5148

−13

5268

1581

−31

5315

8117

6738

8−

1652

−60

52−

6034

−79

3− 768a3

359

8894

1309

5662

−22

5074

−21

6482

2168

2221

58−

4313

2158

3062

830

−19

7817

0−

162

170

22−

1073−

1092a3

383

2291

4821

4883

533

0755

3422

59−

3420

8528

65−

5748

2865

5217

427

−27

8987

−85

870

−14

44− 1

428a3

407

5739

3332

2767

0−

5489

70−

5336

1053

3110

3855

−76

9238

5587

5146

2−

4090

−25

025

4−

250

0−

1914−

1938a3

431

1400

8317

4239

6880

1024

8212

96−

8215

4450

51−

1009

650

5114

4731

68−

5192

−12

413

6−

124

−10

7−

2532−

2496a3

455

3338

8385

2016

99−

1277

277

−12

5071

712

5145

966

56−

1333

366

5623

6257

63−

6269

371

−38

137

179

−33

27−

3366a3

479

7785

3744

7689

0618

5156

218

8623

4−

1885

854

8649

−17

280

8649

3810

1658

−84

7819

0−

190

190

56−

4328−

4284a3

503

1778

8179

4535

250

−28

6171

0−

2816

798

2815

690

1125

0−

2250

011

250

6076

2514

−11

782

−55

454

6−

554

0−

5614−

5658a3

527

3988

0841

9854

845

4109

885

4167

709

−41

6827

514

430

−28

887

1443

095

8953

25−

1473

9−

283

269

−28

30

−72

37−

7194a3

551

8784

6157

5586

727

−61

9087

3−

6116

665

6118

263

1858

1−

3713

818

581

1498

7243

9−

1775

379

9−

785

799

−21

8−

9268−

9318a3

575

1903

2414

7816

7799

8814

743

8909

383

−89

0859

323

631

−47

253

2363

123

2094

167

−23

265

395

−39

339

515

4−

1182

7− 11766a3

Page 53: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 53 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 26

The

twin

ed s

erie

s fo

r  U6(2).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,1 2

(τ) -

par

t II. ap=

i√p

−D

[g]

6C6D

6E6F

6G6H

7A8A

8BCD

9ABC

10A

11A

B12A,12B

12C

12D,12E

12FG

H12

I15

A18A,18B

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

23−

37

1−

31

10

20

−1

00

−2+

3a3

1a3

1−

10

−a3

47−

147

−2

4−

20

−1

−1

11

00

−5+

6a3

−2

−1−

2a3

−1

00

1

71−

1922

1−

11

30

1−

10

10

−8+

12a3

10

2−

11

−1+

a3

95−

3332

−1

−3

−1

−3

00

0−

20

1−

19+

15a3

−1

−1+

a3

−2

−1

10

119

−53

603

13

1−

23

−1

2−

20

−27+

27a3

33+

a3

2−

1−

11+

a3

143

−91

81−

35

−3

−3

4−

5−

11

0−

1−

45+

42a3

-3−

1−2 a

3−

31

0−

1

167

−12

914

13

−9

33

24

2−

30

−1

−66+

69a3

33 a

33

10

−a3

191

−20

819

4−

48

−4

−4

0−

20

20

0−

103+

99a3

-4−

1−3 a

3−

4−

20

2

215

−29

230

44

−4

44

−5

62

01

−1

−14

6+ 150a3

42+

2 a3

40

0−

1+a3

239

−42

641

1−

60

−6

−4

0−

42

−3

12

−21

3+ 210a3

−6

−5−

2 a3

−5

0−

1−a3

263

−59

861

26

26

60

3−

34

00

−29

7+ 303a3

65+

a3

60

02

287

−84

582

9−

57

−5

−9

−6

−5

−1

10

0−

425+

414a3

−5

−1−

2 a3

−7

−1

0−

2+a3

311

−11

4711

799

−19

99

108

−2

−5

10

−57

6+ 585a3

92+

7 a3

9−

10

−1−

2 a3

335

−16

0315

67−

1117

−11

−7

3−

16−

43

00

−79

7+ 792a3

−11

−5−

8 a3

−9

11

2+a3

359

−21

3821

6710

−8

1012

014

41

−4

3−

1067+

1080a3

105+

4 a3

110

−2

−2+

a3

383

−28

8728

60−

11−

1−

11−

13−

9−

91

−6

00

−14

48+

1434a3

−11

−8−

2 a3

−12

−1

0−

1−a3

407

−38

2538

6415

−3

1513

018

26

0−

2−

1911+

1923a3

1511+

5 a3

14−

10

3+a3

431

−50

8550

32−

1721

−17

−15

0−

126

2−

1−

1−

2540+

2526a3

−17

−8−

10a3

−16

11

−3+

a3

455

−66

2466

7916

−30

1618

−11

11−

5−

73

0−

3314+

3333a3

164+

11a3

170

1−

3 a3

479

−86

8786

24−

1931

−19

−21

22−

180

62

−4

−43

42+

4320a3

−19

−6−

12a3

−20

−1

−1

4

503

−11

206

1127

222

−22

2222

818

−4

00

3−

5603+

5625a3

2211+

11a3

220

0−

4+2 a

3

527

−14

482

1441

3−

268

−26

−24

0−

35−

7−

90

0−

7244+

7221a3

−26

−18−

9 a3

−25

20

−1−

2 a3

551

−18

523

1860

229

−13

2927

−22

357

82

0−

9259+

9285a3

2919+

11a3

281

15+

a3

575

−23

689

2359

9−

2935

−29

−33

0−

251

3−

20

−11

846+

11811a3

−29

−12−

15a3

−31

−3

1−

4+a3

Page 54: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 54 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 27

The

twin

ed s

erie

s fo

r  U6(2).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,3 2

(τ) -

par

t I

−D

[g]

1A2A

2B2C

3A3B

3C4A

4B4C

DE

4F4G

5A6A

B6C

6D

−9

11

11

11

11

11

11

11

11

1523

139

7−

96

156

237

−1

−1

−1

13

67

3957

9636

−28

3618

4518

8420

4−

44

19

185

6365

505

225

97−

95−

1530

−15

353

331

11

018

3322

8749

4385

−15

−23

922

560

150

6099

349

−7

9−

70

3060

22

111

2922

381

909

525

−53

190

225

9026

8593

−3

5−

3−

945

9057

135

1452

5511

−50

5−

1113

1143

−75

159

−75

6487

167

15−

1715

671

149

63

159

6344

7087

3183

2255

−22

4122

857

022

814

719

239

7−

97

711

422

812

2

183

2501

8843

5−

2925

−43

3342

7536

090

036

031

395

323

−29

27−

290

180

360

164

207

9078

7658

510

025

7945

−79

75−

260

505

−26

064

553

505

−15

9−

150

269

524

289

231

3073

1558

10−

1116

6−

1417

414

274

762

1905

762

1274

9080

250

−46

50−

2538

176

236

1

255

9804

6607

7729

097

2480

9−

2475

910

6226

5510

6224

3945

1097

25−

2325

1753

110

6255

1

279

2971

7775

186

−36

270

−42

286

4213

0−

759

1518

−75

945

3842

1426

−78

82−

7816

738

1497

710

303

8611

6649

220

7866

070

308

−70

380

2070

5175

2070

8245

9620

52−

3644

−36

010

3520

7010

71

327

2398

0659

2730

−10

3590

−11

5046

1152

9028

8072

0028

8014

6557

829

8612

2−

126

122

014

4028

8014

08

351

6444

1843

4331

2011

1518

5563

−18

5445

−19

2638

79−

1926

2555

051

3947

59−

6159

−64

1963

3898

1999

375

1676

9940

6590

1−

2735

55−

2944

8329

4093

5256

1314

052

5643

7607

750

37−

195

189

−19

546

2628

5256

2580

399

4238

7885

8498

748

8475

4605

71−

4607

7369

4817

370

6948

7377

627

6875

−10

191

−10

137

3474

6948

3530

423

1043

2762

5252

95−

6750

25−

7119

8571

2575

−46

4592

60−

4645

1225

7551

9535

295

−28

929

50

4592

9227

4532

447

2505

8448

4337

7011

3745

010

8884

2−

1088

550

1212

030

300

1212

020

0933

0612

298

146

−14

214

60

6060

1212

061

24

471

5884

8028

3092

24−

1583

640

−16

4712

816

4628

015

912

3978

015

912

3253

1448

1544

8−

424

432

−42

4−

136

7956

1591

278

76

495

1353

4935

1964

727

2548

791

2466

359

−24

6676

1−

1028

120

562

−10

281

5207

0711

2040

7−

201

215

−20

192

1035

020

631

1044

2

519

3053

2688

0332

593

−35

5393

5−

3660

335

3661

569

2664

666

615

2664

682

4581

4527

217

617

−63

161

768

1332

326

646

1323

1

543

6764

3308

3819

185

5524

785

5388

145

−53

8753

534

110

8527

534

110

1292

8092

934

465

305

−31

130

50

1705

534

110

1715

5

567

1473

4684

2984

7035

−76

9280

5−

7867

397

7865

595

−21

840

4372

5−

2184

020

0804

347

4274

7−

901

891

−90

10

2176

143

616

2163

7

Page 55: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 55 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 28

The

twin

ed s

erie

s fo

r  U6(2).

The

tabl

e sh

ows

the

Four

ier c

oeffi

cien

ts m

ulti

plyi

ng q−D/24 in

 the q-

expa

nsio

n of

 the

func

tion

hg,3 2

(τ) -

par

t II

−D

[g]

6E6F

6G6H

7A8A

8BCD

9ABC

10A

11A

B12

AB

12C

12D

E12

FGH

12I

15A

18A

B

−9

11

11

11

11

11

11

11

11

1

15−

20

−2

00

3−

10

−1

05

21

−1

21

0

392

02

00

00

01

−1

3−

6−

11

2−

20

631

31

−5

−1

11

00

020

50

−2

10

0

874

04

03

−3

10

01

300

−2

20

00

111

−6

0−

60

09

10

−1

039

−6

3−

32

00

135

−3

−7

−3

90

−5

−1

30

079

1−

13

10

−1

159

−4

0−

40

−3

3−

10

30

130

162

−2

0−

20

183

80

80

0−

9−

10

02

156

−24

−4

40

00

207

414

4−

100

9−

3−

50

027

520

7−

30

0−

1

231

100

100

−3

−6

20

−1

−1

383

2−

55

22

0

255

−10

0−

100

99

10

−3

−1

513

−18

5−

5−

22

0

279

−7

−21

−7

191

−14

20

00

764

5−

86

11

0

303

−18

0−

180

024

40

0−

310

6934

9−

92

00

327

160

160

−9

−18

−2

00

113

68−

72−

88

00

0

351

1028

10−

360

15−

19

01

1985

505

−13

2−

11

375

240

240

0−

27−

30

00

2644

16−

1212

01

0

399

−28

0−

280

−9

27−

50

50

3414

−60

14−

144

−2

0

423

−13

−43

−13

4519

−25

3−

100

046

5419

−14

16−

10

2

447

−32

0−

320

330

20

04

6152

9216

−16

−4

00

471

400

400

0−

364

00

077

88−

168

−20

200

20

495

2369

23−

59−

1655

70

−4

−1

1040

011

928

−18

−1

−1

0

519

460

460

0−

51−

70

0−

213

357

34−

2323

2−

40

543

−50

0−

500

045

−3

00

016

917

−13

825

−25

−2

00

567

−32

−94

−32

90−

15−

69−

515

0−

521

907

52−

3329

00

−1

Page 56: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 56 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 29

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/12 in

 the

func

tion

hg,1(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f M22

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

χ11

χ12

−1

−2

00

00

00

00

00

0

110

00

00

00

00

11

0

230

00

02

24

46

44

8

350

28

86

1622

3432

4848

60

472

2642

4260

100

160

208

232

268

268

380

592

9222

822

825

848

073

810

2811

3213

9413

9419

00

7126

472

952

952

1204

2130

3334

4508

4966

5966

5966

8240

8378

1710

3754

3754

4516

8192

1270

817

410

1911

223

284

2328

431

928

9530

062

2013

194

1319

416

254

2914

845

402

6175

268

016

8221

882

218

1132

16

107

950

2022

843

616

4361

653

078

9574

414

8822

2032

0422

3388

2711

6027

1160

3725

64

119

3040

6308

013

4624

1346

2416

4946

2965

3646

1482

6288

6869

1920

8380

7683

8076

1152

800

131

8706

1841

0039

5460

3954

6048

2650

8694

0813

5205

818

4442

820

2865

224

5995

224

5995

233

8172

4

143

2472

051

7270

1106

932

1106

932

1354

036

2436

238

3790

274

5167

368

5684

522

6888

684

6888

684

9473

140

155

6601

613

8893

029

7851

829

7851

836

3864

665

5114

810

1897

9413

8971

1415

2859

6818

5312

3618

5312

3625

4784

20

167

1719

0436

0640

877

2463

277

2463

294

4399

016

9967

1826

4407

0836

0523

9639

6591

1448

0671

5648

0671

5666

0956

08

179

4307

8290

5221

619

4030

0419

4030

0423

7104

4242

6826

6466

3931

0690

5408

8899

5928

2812

0725

462

1207

2546

216

5992

492

191

1052

210

2208

6048

4731

8486

4731

8486

5784

0438

1041

0671

416

1947

152

2208

2972

824

2915

594

2944

3286

229

4432

862

4048

5268

0

203

2496

320

5243

9410

1123

8378

011

2383

780

1373

4767

824

7235

148

3845

8282

652

4442

118

5768

8224

469

9266

588

6992

6658

896

1480

364

215

5789

798

1215

6177

026

0469

430

2604

6943

031

8366

892

5730

4653

089

1413

422

1215

5471

6813

3710

8322

1620

7140

5216

2071

4052

2228

4987

96

227

1311

6978

2754

8985

059

0364

314

5903

6431

472

1533

716

1298

7810

3220

2031

4748

2754

9995

1030

3048

8952

3673

3552

6436

7335

5264

5050

8377

68

239

2912

8906

6116

5946

613

1065

6938

1310

6569

3816

0194

7284

2883

4753

1644

8542

2600

6116

4486

4867

2810

9656

8155

2319

6881

5523

1968

1121

3482

124

App

endi

x D

: Dec

ompo

siti

on ta

bles

See

Tabl

es 2

9, 3

0, 3

1, 3

2, 3

3, 3

4, 3

5, 3

6, 3

7, 3

8, 3

9, 4

0, 4

1, 4

2, 4

3, 4

4, 4

5, 4

6, 4

7, 4

8, 4

9, 5

0, 5

1, 5

2, 5

3, 5

4, 5

5, 5

6, 5

7, 5

8, 5

9, 6

0.

Page 57: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 57 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 30

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/12 in

 the

func

tion

hg,2(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f M22

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

χ11

χ12

−4

10

00

00

00

00

00

80

00

00

00

10

00

0

200

11

11

12

21

33

4

320

15

55

1015

1824

2626

38

442

1528

2835

6196

136

147

179

179

242

562

7014

914

918

433

251

670

677

093

693

612

84

6815

310

675

675

821

1486

2307

3138

3468

4196

4196

5778

8062

1260

2686

2686

3286

5906

9192

1252

813

770

1670

216

702

2296

4

9221

545

3597

1197

1111

871

2136

733

238

4533

849

855

6044

060

440

8309

4

104

716

1516

232

528

3252

839

754

7156

211

1316

1517

9816

7022

2024

0820

2408

2783

32

116

2277

4767

810

2132

1021

3212

4829

2246

8434

9513

4766

0452

4228

6354

6663

5466

8737

48

128

6752

1416

1130

3407

3034

0737

0835

6674

9010

3832

514

1588

615

5745

218

8784

218

8784

225

9577

4

140

1906

740

0933

8592

8185

9281

1050

214

1890

431

2940

645

4009

962

4411

059

5346

659

5346

659

7351

704

152

5187

010

8909

623

3368

223

3368

228

5230

251

3412

479

8642

610

8906

2811

9795

8414

5207

6614

5207

6619

9659

96

164

1357

3128

4979

461

0659

961

0659

974

6362

113

4344

7820

8980

9928

4974

1431

3471

0037

9965

4637

9965

4652

2452

18

176

3434

3672

1275

015

4561

5815

4561

5818

8908

1834

0035

4052

8943

5872

1285

3879

3416

8496

1715

4196

1715

4113

2236

044

188

8436

6217

7165

9237

9639

2337

9639

2346

4003

8883

5206

4412

9921

032

1771

6516

419

4881

422

2362

2008

023

6220

080

3248

0245

2

200

2016

488

4234

6314

9074

1956

9074

1956

1109

0688

619

9632

354

3105

3924

042

3462

681

4658

0875

056

4616

772

5646

1677

277

6347

956

212

4701

307

9872

8774

2115

6227

421

1562

274

2585

7598

746

5436

954

7240

1294

198

7290

154

1086

0198

1413

1638

7235

1316

3872

3518

1003

2796

224

1071

3686

2249

8494

648

2109

963

4821

0996

358

9245

588

1060

6418

7416

4988

7462

2249

8466

0024

7483

0808

2999

7952

6629

9979

5266

4124

7182

68

236

2390

5058

5020

0598

510

7572

6834

1075

7268

3413

1477

7297

2366

5990

9136

8137

6388

5020

0589

2055

2206

4385

6693

4116

6166

9341

1661

9203

4407

74

248

5230

7782

1098

4680

3623

5386

1448

2353

8614

4828

7694

1610

5178

4952

5680

5543

6866

1098

4686

398

1208

3156

304

1464

6249

036

1464

6249

036

2013

8593

100

260

1124

0007

023

6039

7820

5057

9942

3250

5799

4232

6181

9930

6611

1275

8722

817

3095

8029

423

6039

7326

425

9643

6954

831

4719

6397

831

4719

6397

843

2739

4992

4

Page 58: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 58 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 31

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/12 in

 the

func

tion

hg,1(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U4(3) -

pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

−1

−2

00

00

00

00

0

110

00

00

00

00

0

230

00

00

00

00

0

350

00

00

24

47

7

470

64

414

2222

2634

34

590

1220

2052

8212

013

218

918

9

714

7210

210

227

042

253

260

680

180

1

838

232

380

380

984

1548

2112

2344

3164

3164

9538

860

1398

1398

3618

5622

7492

8350

1112

511

125

107

124

2748

4554

4554

1173

218

306

2478

427

532

3683

436

834

119

420

8640

1422

814

228

3667

657

060

7667

485

316

1137

0611

3706

131

1156

2497

241

622

4162

210

7060

1666

7822

5288

2502

6033

4074

3340

74

143

3368

7044

611

6944

1169

4430

0968

4681

7663

1070

7015

1293

5210

9352

10

155

8908

1885

9231

4208

3142

0880

8100

1257

446

1698

156

1886

748

2516

637

2516

637

167

2335

049

0188

8159

8481

5984

2098

802

3264

774

4405

146

4895

338

6526

850

6526

850

179

5838

812

2927

620

4845

020

4845

052

6778

881

9533

411

0651

4412

2944

2016

3949

4816

3949

48

191

1429

3630

0048

049

9813

449

9813

412

8538

1419

9948

4226

9872

7829

9877

5439

9829

0139

9829

01

203

3386

6471

2112

411

8681

8611

8681

8630

5188

3247

4759

4264

0962

8871

2174

1294

9623

2094

9623

20

215

7863

8216

5110

0227

5122

3027

5122

3070

7490

8011

0054

184

1485

5999

016

5070

996

2200

9286

922

0092

869

227

1780

628

3741

1832

6235

1670

6235

1670

1603

3454

424

9414

368

3367

1723

237

4129

064

4988

5130

949

8851

309

239

3955

942

8307

0266

1384

3786

613

8437

866

3559

9006

055

3762

164

7475

5092

483

0621

184

1107

4914

2711

0749

1427

251

8612

692

1809

0595

230

1506

846

3015

0684

677

5306

952

1206

0439

8016

2817

6080

1809

0820

3224

1213

6251

2412

1362

51

263

1843

2618

3870

7255

064

5093

274

6450

9327

416

5882

6474

2580

3968

3034

8347

5608

3870

5481

6651

6072

2937

5160

7229

37

275

3877

7988

8144

2566

413

5737

1466

1357

3714

6634

9039

0608

5429

5186

6073

2988

6448

8144

3121

1210

8591

3941

710

8591

3941

7

287

8034

5934

1687

2376

7828

1200

6070

2812

0060

7072

3090

3886

1124

8072

954

1518

4775

484

1687

2013

154

2249

6001

167

2249

6001

167

Page 59: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 59 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 32

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/12 in

 the

func

tion

hg,1(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U4(3) -

pa

rt II

−D

χ11

χ12

χ13

χ14

χ15

χ16

χ17

χ18

χ19

χ20

−1

00

00

00

00

00

110

00

00

10

00

0

230

02

22

12

22

2

357

76

610

1614

1416

16

4734

3446

4662

7486

8610

011

6

5918

918

920

620

629

039

143

243

248

059

6

7180

180

193

493

412

4216

2618

6418

6421

3025

86

8331

6431

6435

3235

3247

5663

7972

1672

1681

9210

064

9511

125

1112

512

636

1263

616

856

2234

525

568

2556

829

148

3572

8

107

3683

436

834

4134

641

346

5527

873

819

8413

684

136

9574

411

7656

119

1137

0611

3706

1282

7012

8270

1710

2222

7677

2602

7426

0274

2965

3636

4172

131

3340

7433

4074

3755

9037

5590

5012

5866

8609

7635

0076

3500

8694

0810

6856

0

143

9352

1093

5210

1053

068

1053

068

1404

072

1871

144

2138

648

2138

648

2436

238

2993

494

155

2516

637

2516

637

2830

546

2830

546

3775

230

5034

454

5751

956

5751

956

6551

148

8051

776

167

6526

850

6526

850

7345

188

7345

188

9793

632

1305

5603

1492

1266

1492

1266

1699

6718

2088

8326

179

1639

4948

1639

4948

1844

2654

1844

2654

2459

3074

3279

2777

3747

3264

3747

3264

4268

2664

5246

0200

191

3998

2901

3998

2901

4498

6624

4498

6624

5998

2140

7997

0261

9139

5836

9139

5836

1041

0671

412

7950

562

203

9496

2320

9496

2320

1068

2884

610

6828

846

1424

4537

818

9931

510

2170

5497

021

7054

970

2472

3514

830

3871

648

215

2200

9286

922

0092

869

2476

1781

224

7617

812

3301

5697

644

0195

866

5030

8382

650

3083

826

5730

4653

070

4309

074

227

4988

5130

949

8851

309

5611

9917

256

1199

172

7482

8063

699

7717

729

1140

2271

3611

4022

7136

1298

7810

3215

9630

5804

239

1107

4914

2711

0749

1427

1245

9572

2412

4595

7224

1661

2765

5622

1500

5306

2531

4411

9825

3144

1198

2883

4753

1635

4400

0144

251

2412

1362

5124

1213

6251

2713

6349

0427

1363

4904

3618

2121

3648

2430

4831

5513

4446

8055

1344

4680

6280

1389

3677

1879

6324

263

5160

7229

3751

6072

2937

5805

8748

6058

0587

4860

7741

1663

4010

3214

9273

111

7960

0499

611

7960

0499

613

4363

9885

216

5143

6929

2

275

1085

9139

417

1085

9139

417

1221

6494

216

1221

6494

216

1628

8726

840

2171

8346

527

2482

0871

652

2482

0871

652

2827

2484

272

3474

9166

956

287

2249

6001

167

2249

6001

167

2530

8126

986

2530

8126

986

3374

4168

882

4499

2097

964

5141

9567

602

5141

9567

602

5857

0125

574

7198

7317

446

Page 60: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 60 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 33

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/12 in

 the

func

tion

hg,2(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U4(3) -

pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

−4

10

00

00

00

00

80

00

00

00

10

0

200

00

01

11

01

1

320

01

12

14

33

3

441

24

48

1416

2126

26

560

818

1842

6492

104

129

129

683

3774

7418

528

539

642

857

357

3

8010

170

288

288

742

1142

1558

1720

2276

2276

9230

606

1038

1038

2648

4114

5574

6189

8226

8226

104

9820

4034

5834

5888

5213

740

1861

620

668

2750

527

505

116

315

6453

1082

010

820

2778

543

187

5837

464

812

8634

986

349

128

932

1920

032

105

3210

582

484

1282

3117

3260

1924

4325

6447

2564

47

140

2585

5434

390

862

9086

223

3470

3630

7249

0425

5447

9272

6201

7262

01

152

7068

1478

0224

6650

2466

5063

4020

9860

9613

3159

414

7942

619

7215

719

7215

7

164

1847

938

6845

6452

4664

5246

1658

877

2580

201

3483

848

3870

656

5160

351

5160

351

176

4667

897

9182

1632

930

1632

930

4198

392

6530

326

8817

060

9796

194

1306

0772

1306

0772

188

1146

4424

0553

040

1050

440

1050

410

3118

6616

0400

8021

6554

9224

0610

7832

0800

5632

0800

56

200

2739

5857

5007

695

8545

695

8545

624

6469

9638

3387

6851

7596

0457

5097

4776

6774

9676

6774

96

212

6385

8713

4064

7722

3474

5222

3474

5257

4628

3589

3850

1712

0673

444

1340

7984

017

8770

283

1787

7028

3

224

1455

274

3055

2132

5092

4466

5092

4466

1309

4583

020

3691

226

2749

8813

630

5540

174

4073

8219

040

7382

190

236

3246

731

6817

1414

1136

2573

011

3625

730

2921

7608

445

4492

898

6135

7280

868

1744

339

9089

8565

190

8985

651

248

7103

972

1491

7115

424

8629

024

2486

2902

463

9325

160

9945

0069

213

4258

7586

1491

7588

8019

8900

2072

1989

0020

72

260

1526

5066

3205

4326

653

4252

608

5342

5260

813

7378

3498

2136

9895

5828

8495

1508

3205

4946

0842

7397

8516

4273

9785

16

272

3225

0408

6772

2534

011

2872

8962

1128

7289

6229

0243

2966

4514

8853

9660

9511

8216

6772

3433

5490

2977

0416

9029

7704

16

284

6706

4204

1408

3090

5323

4721

2278

2347

2122

7860

3566

9290

9388

8040

8412

6749

1931

714

0832

2860

218

7776

0945

518

7776

0945

5

Page 61: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 61 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 34

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/12 in

 the

func

tion

hg,1(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U4(3) -

pa

rt II

−D

χ11

χ12

χ13

χ14

χ15

χ16

χ17

χ18

χ19

χ20

−4

00

00

00

00

00

80

00

00

00

00

0

201

10

00

01

11

1

323

33

35

68

810

14

4426

2627

2731

4654

5461

81

5612

912

914

214

218

224

828

928

933

241

0

6857

357

363

663

684

211

2412

9912

9914

8618

42

8022

7622

7625

4425

4433

7245

1251

7851

7859

0672

78

9282

2682

2692

2392

2312

251

1636

618

749

1874

921

367

2630

5

104

2750

527

505

3090

230

902

4114

254

888

6281

262

812

7156

288

062

116

8634

986

349

9704

497

044

1292

6817

2448

1972

1419

7214

2246

8427

6276

128

2564

4725

6447

2883

5128

8351

3842

7351

2502

5859

3858

5938

6674

9082

0618

140

7262

0172

6201

8167

4481

6744

1088

680

1451

756

1659

543

1659

543

1890

431

2323

911

152

1972

157

1972

157

2218

282

2218

282

2957

154

3943

264

4507

162

4507

162

5134

124

6310

848

164

5160

351

5160

351

5804

744

5804

744

7738

814

1031

8996

1179

4091

1179

4091

1343

4478

1651

3050

176

1306

0772

1306

0772

1469

2426

1469

2426

1958

8686

2611

9004

2985

1826

2985

1826

3400

3540

4179

4712

188

3208

0056

3208

0056

3608

8522

3608

8522

4811

5930

6415

6020

7332

3427

7332

3427

8352

0644

1026

5596

2

200

7667

7496

7667

7496

8625

9890

8625

9890

1150

1006

615

3348

868

1752

5931

617

5259

316

1996

3235

424

5367

882

212

1787

7028

317

8770

283

2011

1315

220

1113

152

2681

4642

435

7531

400

4086

1270

640

8612

706

4654

3695

457

2065

334

224

4073

8219

040

7382

190

4582

9975

845

8299

758

6110

5941

081

4750

620

9311

5130

993

1151

309

1060

6418

7413

0362

2708

236

9089

8565

190

8985

651

1022

6012

1310

2260

1213

1363

4580

0918

1795

0926

2077

6697

2020

7766

9720

2366

5990

9129

0875

3703

248

1989

0020

7219

8900

2072

2237

6164

5022

3761

6450

2983

4740

9039

7797

4852

4546

2740

8845

4627

4088

5178

4952

5663

6480

7716

260

4273

9785

1642

7397

8516

4808

2095

6848

0820

9568

6410

9244

4485

4791

3920

9769

0687

9697

6906

8796

1112

7587

228

1367

6730

320

272

9029

7704

1690

2977

0416

1015

8468

546

1015

8468

546

1354

4593

866

1805

9479

228

2063

9439

888

2063

9439

888

2350

9622

436

2889

5264

904

284

1877

7609

455

1877

7609

455

2112

4777

990

2112

4777

990

2816

6327

222

3755

5131

344

4292

0200

803

4292

0200

803

4888

8805

889

6008

8352

145

Page 62: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 62 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 35

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f M

23 -

part

I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

−1

−1

00

00

00

00

230

00

00

00

00

470

00

01

10

00

710

01

13

32

24

951

44

424

2321

2124

119

010

2323

110

115

113

113

122

143

357

104

104

555

552

547

547

604

167

1121

745

045

022

6622

8922

8322

8325

00

191

4085

117

0517

0587

9288

0087

8987

8996

46

215

132

2945

6066

6066

3088

331

076

3106

231

062

3400

2

239

455

9865

2006

120

061

1027

8410

3141

1031

1910

3119

1129

80

263

1393

3071

762

965

6296

532

1420

3229

8032

2951

3229

5135

3668

287

4196

9193

818

7731

1877

3196

0228

9641

2396

4080

9640

8010

5601

8

311

1189

826

2221

5368

0053

6800

2742

534

2754

938

2754

882

2754

882

3017

118

335

3286

572

2082

1476

142

1476

142

7546

650

7578

723

7578

641

7578

641

8300

712

359

8712

919

1774

039

2375

939

2375

920

0518

0520

1401

9720

1400

9220

1400

9222

0578

24

383

2247

7849

4277

910

1081

5010

1081

5051

6687

0051

8914

3351

8912

8751

8912

8756

8340

66

407

5624

4312

3766

6825

3187

9225

3187

9212

9399

884

1299

6552

912

9965

340

1299

6534

014

2342

008

431

1373

557

3021

3098

6179

4663

6179

4663

3158

5095

131

7219

639

3172

1938

231

7219

382

3474

3251

6

455

3272

651

7200

4775

1472

8924

614

7289

246

7527

9447

575

6074

520

7560

7419

175

6074

191

8280

7894

0

479

7632

762

1679

0846

434

3437

978

3434

3797

817

5537

6093

1762

9976

1017

6299

7173

1762

9971

7319

3090

5618

503

1743

6751

3836

2443

878

4701

896

7847

0189

640

1065

9821

4028

1134

0140

2811

2844

4028

1128

4444

1173

7282

527

3909

6804

8601

0367

917

5927

8672

1759

2786

7289

9192

7075

9030

9991

1790

3099

8389

9030

9983

8998

9110

2068

551

8611

3417

1894

5295

1338

7520

7902

3875

2079

0219

8065

3365

319

8926

8336

819

8926

8244

619

8926

8244

621

7872

1203

2

575

1865

7820

841

0466

4777

8395

8534

5083

9585

3450

4291

2264

213

4309

8789

349

4309

8788

160

4309

8788

160

4720

3452

886

Page 63: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 63 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 36

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f M

23 -

part

II

−D

χ10

χ11

χ12

χ13

χ14

χ15

χ16

χ17

−1

00

00

00

00

231

00

00

00

0

471

11

11

12

3

7111

1111

1114

1412

26

9568

6880

8087

8796

182

119

389

389

444

444

496

496

508

1003

143

1811

1811

2111

2111

2324

2324

2454

4777

167

7661

7661

8892

8892

9848

9848

1024

620

084

191

2924

529

245

3405

234

052

3759

637

596

3939

476

950

215

1036

9510

3695

1205

8612

0586

1333

0613

3306

1392

0427

2375

239

3435

2534

3525

3998

1939

9819

4416

5844

1658

4620

2890

3231

263

1076

965

1076

965

1252

987

1252

987

1384

656

1384

656

1447

084

2830

347

287

3212

975

3212

975

3738

996

3738

996

4130

944

4130

944

4319

566

8446

311

311

9184

195

9184

195

1068

6484

1068

6484

1180

8192

1180

8192

1234

3520

2413

9819

335

2526

0382

2526

0382

2939

4631

2939

4631

3247

7570

3247

7570

3395

6132

6640

0838

359

6713

6828

6713

6828

7812

1437

7812

1437

8631

8725

8631

8725

9023

8598

1764

7019

4

383

1729

6644

817

2966

448

2012

7197

420

1271

974

2223

8534

522

2385

345

2324

9959

645

4660

159

407

4332

2552

043

3225

520

5041

1350

550

4113

505

5570

0406

555

7004

065

5823

1336

011

3875

4982

431

1057

3869

7910

5738

6979

1230

4186

2712

3041

8627

1359

4973

4813

5949

7348

1421

3066

9427

7943

0485

455

2520

2652

2225

2026

5222

2932

6643

4629

3266

4346

3240

3408

1432

4034

0814

3387

6076

7866

2467

5836

479

5876

6317

6558

7663

1765

6838

2733

9768

3827

3397

7555

6691

3175

5566

9131

7899

1407

6815

4471

7714

8

503

1342

7082

844

1342

7082

844

1562

4224

127

1562

4224

127

1726

3391

744

1726

3391

744

1804

8043

408

3529

3998

406

527

3010

3271

271

3010

3271

271

3502

9285

569

3502

9285

569

3870

4205

367

3870

4205

367

4046

3558

496

7912

8667

059

551

6630

9028

068

6630

9028

068

7715

9558

254

7715

9558

254

8525

4464

108

8525

4464

108

8912

9562

686

1742

9791

3365

575

1436

6250

5416

1436

6250

5417

1671

7096

8143

1671

7096

8143

1847

0893

4751

1847

0893

4751

1931

0494

7248

3776

2730

3791

Page 64: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 64 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 37

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f M

23 -

part

I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

−9

10

00

00

00

0

150

00

00

10

00

390

10

01

00

00

630

00

02

12

22

871

22

210

1210

1012

111

08

1212

7271

6565

76

135

129

6666

317

324

327

327

354

159

814

827

827

814

5614

5114

3914

3915

84

183

2553

611

0811

0856

1456

6656

5056

5061

86

207

9019

6939

9639

9620

527

2057

120

585

2058

522

554

231

301

6612

1357

413

574

6920

069

575

6953

969

539

7616

0

255

979

2122

943

224

4322

422

1297

2221

2822

2072

2220

7224

3296

279

2892

6397

713

1140

1311

4066

9671

6728

2667

2862

6728

6273

6834

303

8477

1859

2537

9810

3798

1019

4229

319

5036

119

5025

319

5025

321

3617

8

327

2348

551

6995

1058

004

1058

004

5406

043

5430

193

5430

053

5430

053

5947

048

351

6322

913

9015

828

4255

028

4255

014

5311

0614

5932

2014

5933

1914

5933

1915

9834

98

375

1643

1436

1615

973

9813

073

9813

037

8087

3937

9748

2337

9745

6637

9745

6641

5907

10

399

4157

3391

4280

518

6982

6218

6982

6295

5754

8795

9885

0295

9881

4895

9881

4810

5130

940

423

1022

444

2249

8248

4602

3364

4602

3364

2352

2048

623

6247

135

2362

4736

423

6247

364

2587

4561

2

447

2456

955

5404

5257

1105

4036

411

0540

364

5649

9952

356

7449

989

5674

4937

556

7449

375

6214

9463

2

471

5768

329

1269

1180

725

9601

046

2596

0104

613

2682

7403

1332

6055

7513

3260

4789

1332

6047

8914

5951

6642

495

1326

9156

2919

0777

659

7070

540

5970

7054

030

5172

7864

3064

9823

5530

6498

2875

3064

9828

7533

5689

0620

519

2993

0003

6584

7866

813

4690

7692

1346

9076

9268

8414

4714

6914

0964

1469

1409

5094

6914

0950

9475

7257

3738

543

6631

2927

1458

8488

2029

8397

6756

2983

9767

5615

2515

1250

015

3177

9333

415

3177

9161

615

3177

9161

616

7766

4043

6

567

1444

4101

231

7775

1973

6499

9930

0464

9999

3004

3322

2076

673

3336

6564

639

3336

6565

723

3336

6565

723

3654

4317

696

Page 65: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 65 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 38

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f M

23 -

part

II

−D

χ10

χ11

χ12

χ13

χ14

χ15

χ16

χ17

−9

00

00

00

00

150

00

00

00

0

391

10

01

10

1

634

46

66

68

13

8741

4142

4249

4948

97

111

220

220

254

254

280

280

302

582

135

1099

1099

1278

1278

1418

1418

1462

2879

159

4783

4783

5568

5568

6143

6143

6460

1259

4

183

1892

018

920

2196

721

967

2430

824

308

2534

249

625

207

6848

268

482

7974

979

749

8805

588

055

9219

418

0159

231

2320

6423

2064

2699

1226

9912

2983

4729

8347

3116

6260

9707

255

7399

8473

9984

8611

6986

1169

9513

7495

1374

9950

3819

4543

8

279

2243

393

2243

393

2610

275

2610

275

2884

379

2884

379

3014

774

5896

262

303

6500

043

6500

043

7563

999

7563

999

8357

121

8357

121

8738

192

1708

6836

327

1810

2016

1810

2016

2106

3317

2106

3317

2327

3934

2327

3934

2432

9868

4758

0312

351

4864

1673

4864

1673

5660

2448

5660

2448

6253

9370

6253

9370

6538

5226

1278

6136

7

375

1265

8639

112

6586

391

1472

9844

314

7298

443

1627

5371

316

2753

713

1701

4660

833

2736

007

399

3199

5466

631

9954

666

3723

1329

437

2313

294

4113

7002

641

1370

026

4300

7652

484

1030

812

423

7875

0073

178

7500

731

9163

6044

891

6360

448

1012

5011

4810

1250

1148

1058

5117

6220

6999

0475

447

1891

4838

1718

9148

3817

2201

0053

0222

0100

5302

2431

9073

5624

3190

7356

2542

4671

4649

7191

7548

471

4442

0401

7344

4204

0173

5168

9085

8051

6890

8580

5711

1938

7557

1119

3875

5970

7655

6211

6761

9110

8

495

1021

6574

441

1021

6574

441

1188

8393

029

1188

8393

029

1313

5596

047

1313

5596

047

1373

2710

656

2685

5037

539

519

2304

7036

703

2304

7036

703

2681

8346

389

2681

8346

389

2963

1903

464

2963

1903

464

3097

8745

714

6058

0719

175

543

5105

9233

415

5105

9233

415

5941

4411

523

5941

4411

523

6564

7584

650

6564

7584

650

6863

1657

584

1342

1292

9307

567

1112

2199

3159

1112

2199

3159

1294

2190

9124

1294

2190

9124

1429

9970

6146

1429

9970

6146

1494

9955

8772

2923

5482

3899

Page 66: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 66 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 39

The

tabl

e sh

ows t

he d

ecom

posi

tion

of th

e Fo

urie

r coe

ffici

ents

mul

tiply

ing q−D/24 in

 the

func

tion hg,1 2

(τ) i

nto 

irred

ucib

le re

pres

enta

tions

χn o

f McL

- pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

−1

−1

00

00

00

0

230

00

01

00

0

470

00

00

00

0

710

00

01

10

0

950

11

12

11

1

119

01

21

77

55

143

03

88

2322

2424

167

15

2729

9392

101

101

191

013

103

113

336

336

386

386

215

237

357

381

1192

1191

1370

1370

239

612

211

8112

9239

1139

0945

4145

41

263

1835

736

7339

9012

260

1225

914

231

1423

1

287

4910

6510

971

1198

736

504

3650

342

467

4246

7

311

135

2983

3129

634

082

1043

8110

4379

1213

7512

1375

335

379

8247

8612

794

007

2869

1928

6918

3338

6533

3865

359

995

2179

622

8754

2494

3276

2672

7626

7088

7304

8873

04

383

2564

5623

158

9479

6432

1819

6454

919

6454

522

8605

022

8605

0

407

6386

1405

6814

7613

816

1001

649

2087

049

2086

957

2573

157

2573

1

431

1562

234

3337

3603

184

3931

104

1200

9753

1200

9751

1397

5118

1397

5118

455

3716

781

7799

8587

440

9367

446

2862

5805

2862

5800

3330

9272

3330

9272

479

8675

619

0749

820

0245

8321

8458

8266

7466

5466

7466

5277

6692

7477

6692

74

503

1980

1443

5704

445

7511

9249

9088

3615

2506

325

1525

0632

117

7460

315

1774

6031

5

527

4441

7397

6982

810

2575

149

1119

0211

534

1912

961

3419

1295

839

7863

480

3978

6348

0

551

9779

9721

5176

6322

5940

987

2464

7785

475

3141

922

7531

4192

087

6380

147

8763

8014

7

575

2119

404

4662

2397

4895

1878

353

4024

793

1631

7204

5816

3172

0453

1898

7319

7218

9873

1972

Page 67: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 67 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 40

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f McL

- pa

rt II

−D

χ9

χ10

χ11

χ12

χ13

χ14

χ15

χ16

−1

00

00

00

00

230

00

00

00

0

470

10

00

00

0

710

11

10

11

2

953

53

54

55

8

119

821

2225

2727

3246

143

4999

9212

012

313

814

621

4

167

193

396

402

507

536

572

628

909

191

765

1535

1513

1946

2039

2212

2385

3459

215

2657

5375

5400

6874

7271

7783

8486

1226

9

239

8900

1788

117

816

2281

624

056

2588

728

072

4062

6

263

2774

555

882

5596

371

465

7550

081

007

8809

512

7410

287

8303

316

6945

1667

6621

3315

2251

5324

1943

2626

9438

0029

311

2369

1947

6743

4769

8260

9553

6438

0369

1150

7511

3210

8640

5

335

6523

1413

1187

813

1141

216

7684

517

7048

319

0166

620

6559

229

8787

9

359

1732

646

3485

567

3486

207

4456

239

4706

100

5053

141

5490

489

7941

451

383

4465

544

8981

556

8980

403

1148

1470

1212

3772

1302

0310

1414

4455

2045

9305

407

1118

2141

2249

3230

2249

4840

2875

6211

3036

7390

3260

8993

3542

8696

5124

4665

431

2729

6592

5490

3746

5490

1023

7018

7986

7411

6978

7959

3979

8646

9919

1250

7338

7

455

6505

5014

1308

5609

013

0859

914

1672

8929

717

6659

468

1897

0476

020

6102

830

2981

1203

9

479

1517

0109

030

5132

577

3051

2639

339

0081

042

4119

2213

244

2353

736

4805

7598

769

5120

690

503

3465

9729

569

7161

444

6971

7013

889

1261

397

9411

7661

110

1068

7552

1098

0395

9815

8823

3526

527

7770

8436

715

6304

2221

1563

0286

6419

9820

0428

2110

0921

6522

6596

3373

2461

7744

7435

6078

4919

551

1711

6694

1634

4291

2979

3442

9319

8844

0145

9954

4647

9516

8549

9124

9366

5422

6106

8078

4341

3933

575

3708

4763

9174

5931

9124

7459

2903

0995

3604

6829

1007

0049

592

1081

3885

859

1174

8391

635

1699

3217

734

Page 68: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 68 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 41

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f McL

- pa

rt II

I

−D

χ17

χ18

χ19

χ20

χ21

χ22

χ23

χ24

−1

00

00

00

00

230

00

00

00

0

470

00

00

00

1

712

11

11

11

2

958

88

1010

1011

11

119

4646

4653

5355

5960

143

214

221

221

261

261

263

279

279

167

909

928

928

1076

1076

1110

1175

1175

191

3459

3561

3561

4167

4167

4252

4487

4489

215

1226

912

607

1260

714

687

1468

715

064

1589

915

900

239

4062

641

815

4181

548

824

4882

449

950

5268

352

683

263

1274

1013

1025

1310

2515

2796

1527

9615

6541

1651

3016

5131

287

3800

2939

1030

3910

3045

6320

4563

2046

7137

4926

7749

2679

311

1086

405

1117

568

1117

568

1303

640

1303

640

1335

140

1408

229

1408

230

335

2987

879

3074

116

3074

116

3586

785

3586

785

3672

503

3873

309

3873

312

359

7941

451

8169

871

8169

871

9531

019

9531

019

9760

341

1029

4270

1029

4273

383

2045

9305

2104

9092

2104

9092

2455

8072

2455

8072

2514

6550

2652

1644

2652

1644

407

5124

4665

5272

0052

5272

0052

6150

5504

6150

5504

6298

3039

6642

7796

6642

7799

431

1250

7338

712

8677

387

1286

7738

715

0125

530

1501

2553

015

3726

332

1621

3294

516

2132

948

455

2981

1203

930

6697

753

3066

9775

335

7811

165

3578

1116

536

6401

965

3864

4037

538

6440

376

479

6951

2069

071

5147

222

7151

4722

283

4342

808

8343

4280

885

4361

992

9010

8413

790

1084

142

503

1588

2335

2616

3398

1014

1633

9810

1419

0630

4694

1906

3046

9419

5206

3468

2058

8186

8220

5881

8686

527

3560

7849

1936

6336

4558

3663

3645

5842

7393

4999

4273

9349

9943

7649

8280

4615

8362

1346

1583

6219

551

7843

4139

3380

6934

6991

8069

3469

9194

1422

4038

9414

2240

3896

4018

1689

1016

7382

764

1016

7382

771

575

1699

3217

734

1748

2746

319

1748

2746

319

2039

6558

046

2039

6558

046

2088

6051

640

2202

8253

515

2202

8253

520

Page 69: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 69 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 42

The

tabl

e sh

ows t

he d

ecom

posi

tion

of th

e Fo

urie

r coe

ffici

ents

mul

tiply

ing q−D/24 in

 the

func

tion hg,3 2

(τ) i

nto 

irred

ucib

le re

pres

enta

tions

χn o

f McL

- pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

−9

10

00

00

00

150

01

00

00

0

390

00

10

00

0

630

01

00

00

0

871

01

11

10

0

111

00

41

33

22

135

10

65

1212

1414

159

13

2423

5555

6262

183

25

7272

219

219

247

247

207

222

245

259

777

777

905

905

231

673

804

865

2644

2644

3060

3060

255

1825

125

5627

8584

0484

0497

7597

75

279

3671

676

5983

0825

493

2549

329

645

2964

5

303

105

2128

2221

824

238

7382

273

822

8589

985

899

327

276

5867

6172

867

254

2056

5320

5653

2392

1923

9219

351

730

1580

316

5837

1809

3755

2420

5524

2064

2880

6428

80

375

1881

4105

143

1408

4704

0614

3789

514

3789

516

7298

716

7298

7

399

4756

1039

2710

9048

911

8974

836

3396

936

3396

942

2870

042

2870

0

423

1162

525

5433

2683

334

2926

781

8944

652

8944

652

1040

8024

1040

8024

447

2797

761

4030

6445

575

7031

919

2148

3285

2148

3285

2499

8994

2499

8994

471

6553

614

4129

715

1359

1616

5108

5050

4533

9350

4533

9358

7084

8458

7084

84

495

1508

1133

1576

334

8128

3037

9785

1511

6039

405

1160

3940

513

5028

617

1350

2861

7

519

3399

8174

7867

278

5306

0285

6675

9226

1770

033

2617

7003

330

4603

271

3046

0327

1

543

7534

2616

5704

3717

3981

507

1898

0026

957

9930

706

5799

3070

667

4830

133

6748

3013

3

567

1640

491

3609

1901

3789

7780

641

3425

592

1263

2644

3112

6326

4431

1469

9771

3814

6997

7138

Page 70: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 70 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 43

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f McL

- pa

rt II

−D

χ9

χ10

χ11

χ12

χ13

χ14

χ15

χ16

−9

00

00

00

00

150

00

00

00

0

390

00

00

01

0

630

00

10

11

0

871

12

22

26

4

111

713

1015

1419

2125

135

2454

5675

7881

9513

0

159

129

254

244

320

334

365

398

562

183

482

975

986

1251

1328

1414

1566

2235

207

1776

3566

3536

4559

4792

5173

5607

8093

231

5969

1202

612

064

1539

416

274

1744

519

023

2745

1

255

1915

438

471

3838

049

139

5184

655

752

6053

387

506

279

5780

911

6393

1165

1014

8894

1572

8216

8786

1835

4326

5369

303

1679

3133

7637

3373

9043

1517

4555

5848

9419

5315

7576

8802

327

4670

8393

9698

9400

3412

0148

612

6895

213

6237

114

8057

221

4123

9

351

1255

917

2525

910

2525

280

3228

953

3409

380

3661

782

3977

741

5753

503

375

3267

135

6572

140

6573

020

8402

301

8873

332

9527

924

1035

2451

1497

3440

399

8260

107

1661

3698

1661

2158

2123

8355

2242

6902

2408

4770

2616

5020

3784

5752

423

2032

6853

4088

7536

4088

9694

5227

2318

5520

0610

5927

5991

6440

1011

9315

0396

447

4882

8286

9821

2448

9820

8856

1255

5395

913

2583

074

1423

7930

515

4680

790

2237

3483

9

471

1146

6245

323

0638

380

2306

4343

829

4852

626

3113

6716

033

4361

281

3632

6241

252

5430

528

495

2637

3184

353

0473

486

5304

6543

267

8158

814

7161

3113

276

9034

337

8354

8696

512

0847

3427

519

5949

2242

611

9665

0730

1196

6620

6015

2981

4670

1615

4904

7217

3480

6216

1884

7400

6527

2613

6749

543

1318

0376

1526

5112

8016

2651

1105

3033

8921

7725

3579

0045

7638

4337

8364

4175

5068

5160

3957

4829

567

2871

0350

0157

7489

7738

5774

9222

2873

8269

4796

7796

1384

5883

7196

7563

9095

4962

6113

1559

7652

6

Page 71: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 71 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 44

The

tab

le s

how

s th

e de

com

posi

tion

of 

the

Four

ier

coeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

fun

ctio

n hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f McL

- pa

rt II

I

−D

χ17

χ18

χ19

χ20

χ21

χ22

χ23

χ24

−9

00

00

00

00

150

00

00

00

0

390

00

00

00

0

630

00

11

11

1

874

55

55

56

6

111

2527

2732

3231

3434

135

130

132

132

153

153

161

168

168

159

562

583

583

685

685

695

733

733

183

2235

2298

2298

2671

2671

2743

2898

2898

207

8093

8336

8336

9753

9753

9968

1050

310

503

231

2745

128

225

2822

532

895

3289

533

718

3557

635

576

255

8750

690

070

9007

010

5135

1051

3510

7589

1134

6711

3467

279

2653

6927

2959

2729

5931

8375

3183

7532

6136

3439

7634

3976

303

7688

0279

1067

7910

6792

3068

9230

6894

5024

9966

8599

6685

327

2141

239

2202

779

2202

779

2569

637

2569

637

2631

602

2775

597

2775

597

351

5753

503

5919

487

5919

487

6906

560

6906

560

7071

840

7458

445

7458

445

375

1497

3440

1540

4421

1540

4421

1797

1134

1797

1134

1840

3192

1940

9807

1940

9807

399

3784

5752

3893

6669

3893

6669

4542

7164

4542

7164

4651

6151

4905

9813

4905

9813

423

9315

0396

9583

2723

9583

2723

1118

0332

511

1803

325

1144

8856

512

0749

919

1207

4991

9

447

2237

3483

923

0181

494

2301

8149

426

8547

565

2685

4756

527

4989

746

2900

2776

929

0027

769

471

5254

3052

854

0564

243

5405

6424

363

0654

439

6306

5443

964

5794

430

6811

1229

968

1112

299

495

1208

4734

2712

4328

8847

1243

2888

4714

5050

9683

1450

5096

8314

8531

5445

1566

5421

1315

6654

2113

519

2726

1367

4928

0466

2530

2804

6625

3032

7209

7750

3272

0977

5033

5063

7733

3533

8778

2335

3387

7823

543

6039

5748

2962

1356

2155

6213

5621

5572

4916

8236

7249

1682

3674

2313

3737

7829

0838

0478

2908

3804

567

1315

5976

526

1353

4944

287

1353

4944

287

1579

0750

779

1579

0750

779

1616

9749

982

1705

4036

789

1705

4036

789

Page 72: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 72 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 45

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t I −

Dχ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

−1

−1

00

00

00

0

230

00

00

00

0

470

00

00

00

0

710

00

10

01

0

950

23

25

53

6

119

02

819

1414

2124

143

016

4480

9090

9213

1

167

450

174

357

339

339

407

515

191

720

368

113

3413

7213

7215

2120

39

215

3367

223

7247

8747

2047

2054

3571

12

239

9922

9279

2915

766

1588

715

887

1792

923

777

263

330

7047

2473

349

595

4939

249

392

5634

874

177

287

948

2120

773

979

1476

9514

8048

1480

4816

7874

2219

11

311

2759

6024

521

1115

4226

2842

2054

4220

5448

0211

6333

38

335

7516

1662

3358

1198

1161

707

1162

651

1162

651

1320

213

1743

556

359

2010

844

0909

1543

852

3088

701

3087

208

3087

208

3509

785

4631

476

383

5159

111

3721

339

7875

379

5577

979

5817

179

5817

190

4089

211

9361

73

407

1295

1828

4617

399

6342

019

9293

8419

9256

8919

9256

8922

6467

2429

8902

00

431

3156

5969

4987

124

3211

2548

6381

8948

6439

1248

6439

1255

2711

9272

9632

81

455

7530

8816

5600

0657

9643

3211

5934

578

1159

2592

611

5925

926

1317

4316

617

3892

768

479

1754

960

3862

0903

1351

6536

327

0321

371

2703

3450

927

0334

509

3071

8459

040

5495

839

503

4011

289

8823

1069

3088

1883

161

7651

188

6176

3166

461

7631

664

7018

7471

992

6456

288

527

8990

981

1978

2806

969

2381

433

1384

7423

5113

8477

1352

1384

7713

5215

7357

3454

2077

1439

71

551

1980

7924

4357

3618

715

2509

8819

3050

2270

0630

5018

4616

3050

1846

1634

6616

3569

4575

2959

28

575

4291

0275

9440

8184

633

0425

0864

6608

4579

1666

0851

9893

6608

5198

9375

0961

6830

9912

7519

19

Page 73: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 73 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 46

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t II −

Dχ9

χ10

χ11

χ12

χ13

χ14

χ15

χ16

−1

00

00

00

00

230

01

00

00

0

470

10

01

00

0

713

23

43

33

2

9514

1915

1518

1717

22

119

7985

9494

9510

610

611

7

143

375

432

413

412

449

478

478

575

167

1585

1739

1776

1777

1887

2061

2061

2396

191

6059

6780

6708

6709

7219

7803

7803

9247

215

2145

423

769

2389

823

897

2554

427

789

2778

932

642

239

7111

879

177

7895

078

950

8468

691

864

9186

410

8441

263

2229

1424

7447

2478

3624

7836

2653

6528

8353

2883

5333

9513

287

6651

2073

9461

7387

9673

8797

7918

5785

9693

8596

9310

1372

5

311

1901

066

2111

639

2112

736

2112

736

2263

145

2458

353

2458

353

2896

427

335

5228

981

5811

159

5809

370

5809

369

6225

096

6760

018

6760

018

7968

570

359

1389

7177

1543

9550

1544

2403

1544

2404

1654

4170

1796

9139

1796

9139

2117

5541

383

3580

4287

3978

5466

3978

0944

3978

0943

4262

4415

4629

0660

4629

0660

5456

0442

407

8967

7291

9963

7115

9964

4150

9964

4149

1067

5844

911

5949

075

1159

4907

513

6648

460

431

2188

7965

624

3206

606

2431

9575

624

3195

757

2605

7161

328

2991

729

2829

9172

933

3534

637

455

5216

9404

057

9649

779

5796

6627

057

9666

271

6210

6371

967

4519

766

6745

1976

679

4956

158

479

1216

4640

5513

5164

2677

1351

6177

6713

5161

7768

1448

1727

9515

7279

2424

1572

7924

2418

5366

8197

503

2779

4041

5030

8820

3718

3088

2408

6530

8824

0863

3308

8130

3535

9358

7213

3593

5872

1342

3526

8766

527

6231

3799

6269

2379

0672

6923

7356

4869

2373

5648

7418

3122

7280

5671

2554

8056

7125

5494

9545

5515

551

1372

5964

622

1525

1021

256

1525

1101

926

1525

1101

928

1634

0430

775

1774

6732

420

1774

6732

420

2091

5725

781

575

2973

8144

692

3304

2457

875

3304

2340

266

3304

2340

266

3540

2559

005

3844

9273

233

3844

9273

233

4531

5309

735

Page 74: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 74 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 47

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t III −

Dχ17

χ18

χ19

χ20

χ21

χ22

χ23

χ24

−1

00

00

00

00

230

00

00

00

0

470

00

11

11

1

714

56

46

79

9

9526

2735

4240

5356

67

119

162

164

202

215

221

286

317

361

143

740

756

941

1054

1046

1371

1487

1743

167

3180

3230

4009

4374

4396

5744

6289

7290

191

1207

312

281

1527

316

866

1683

422

047

2402

828

003

215

4296

743

635

5421

359

519

5959

177

977

8515

999

000

239

1421

2214

4411

1795

2419

7695

1975

8325

8692

2821

9532

8520

263

4459

8545

3032

5630

1161

8937

6191

5981

0439

8846

1010

2907

9

287

1329

897

1351

104

1679

391

1847

957

1847

627

2418

829

2639

284

3071

601

311

3802

615

3862

871

4800

963

5280

034

5280

632

6912

578

7544

029

8777

736

335

1045

7085

1062

3310

1320

3972

1452

6071

1452

5165

1901

5093

2074

9740

2414

6350

359

2779

5624

2823

6528

3509

4660

3860

1412

3860

2966

5053

4149

5514

7824

6416

9990

383

7160

6337

7274

3550

9041

3520

9945

9154

9945

6838

1301

9891

014

2079

975

1653

3246

9

407

1793

5782

418

2203

997

2264

5977

524

9099

125

2491

0290

332

6096

807

3558

6308

241

4090

303

431

4377

5401

344

4703

911

5527

2319

860

8005

819

6080

0021

579

5929

685

8685

6881

310

1070

5622

455

1043

3956

6110

5995

5647

1317

4138

1214

4913

9547

1449

1483

8518

9706

3405

2070

2162

4824

0896

7373

479

2432

9160

4524

7153

6933

3071

8716

4233

7908

2403

3379

0694

9144

2351

4093

4827

2354

6756

1716

3685

503

5558

8256

1556

4705

6684

7018

7078

6377

2054

3541

7720

5633

1910

1069

1132

711

0293

8577

712

8341

6854

4

527

1246

2733

462

1266

0561

531

1573

5791

983

1730

9423

366

1730

9394

714

2265

9582

306

2472

7692

056

2877

4079

262

551

2745

1966

739

2788

7702

980

3466

1549

588

3812

7628

080

3812

7670

972

4991

2570

342

5446

8122

422

6338

1031

865

575

5947

6232

959

6042

0314

767

7509

6290

859

8260

6031

374

8260

5970

008

1081

3874

8123

1180

0849

7342

1373

1905

9194

Page 75: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 75 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 48

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t I −

Dχ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

−9

10

00

00

00

150

00

00

00

1

390

01

00

01

0

630

00

01

10

1

871

02

31

13

3

111

02

610

1313

1221

135

14

2554

4545

6173

159

236

118

217

232

232

251

349

183

811

743

688

285

085

010

0012

98

207

1945

515

8531

3831

9131

9135

6747

68

231

7615

0453

3310

710

1060

910

609

1216

915

972

255

224

4906

1707

834

000

3416

834

168

3866

251

207

279

680

1465

351

536

1032

8710

2985

1029

8511

7337

1546

28

303

1937

4282

414

9641

2988

8329

9362

2993

6233

9698

4488

87

327

5448

1187

9041

6242

8329

4083

2131

8321

3194

6482

1248

628

351

1449

231

9869

1119

026

2237

183

2238

459

2238

459

2542

349

3357

136

375

3790

083

1414

2911

159

5823

587

5821

517

5821

517

6617

566

8733

350

399

9550

621

0326

773

5976

514

7170

8214

7202

5014

7202

5016

7242

8522

0791

47

423

2354

0051

7380

418

1114

8836

2264

6736

2214

8636

2214

8641

1659

9354

3345

28

447

5648

2312

4314

2443

5059

6587

0062

5587

0137

6887

0137

6898

8715

0213

0517

592

471

1327

268

2918

8063

1021

6480

520

4337

166

2043

2565

520

4325

655

2322

0043

130

6494

073

495

3051

197

6714

0916

2349

8481

946

9957

788

4699

7482

946

9974

829

5340

4432

770

4954

744

519

6885

123

1514

4650

253

0077

046

1060

1709

8110

6014

5461

1060

1454

6112

0473

7801

1590

2303

48

543

1525

0485

3355

4031

611

7437

0946

2348

7146

2223

4875

1902

2348

7519

0226

6899

7408

3523

1119

75

567

3322

3874

7308

7482

425

5809

4287

5116

2271

4551

1617

2310

5116

1723

1058

1388

9540

7674

2835

01

Page 76: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 76 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 49

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t II −

Dχ9

χ10

χ11

χ12

χ13

χ14

χ15

χ16

−9

00

00

00

00

150

00

00

00

0

390

00

00

00

0

631

10

01

11

3

877

710

109

1010

10

111

4654

4848

5654

5471

135

227

239

254

254

268

299

299

344

159

990

1118

1089

1089

1183

1265

1265

1520

183

3908

4310

4367

4367

4655

5071

5071

5937

207

1418

115

813

1570

915

709

1687

918

296

1829

621

661

231

4802

553

238

5342

653

426

5717

162

148

6214

873

107

255

1531

8517

0410

1700

8617

0086

1823

9119

7917

1979

1723

3542

279

4643

4651

5565

5161

2651

6126

5527

5560

0589

6005

8970

7419

303

1345

538

1495

628

1494

707

1494

707

1601

901

1739

300

1739

300

2050

680

327

3747

019

4162

388

4163

910

4163

910

4460

701

4845

163

4845

163

5709

189

351

1006

8963

1118

9191

1118

6751

1118

6751

1198

6913

1301

7514

1301

7514

1534

4148

375

2620

3117

2911

2145

2911

6039

2911

6039

3119

4087

3388

0203

3388

0203

3992

7180

399

6623

0865

7359

3695

7358

7635

7358

7635

7884

6635

8562

9401

8562

9401

1009

2542

8

423

1630

1217

618

1118

490

1811

2790

318

1127

903

1940

6156

621

0766

813

2107

6681

324

8396

323

447

3915

3780

343

5051

059

4350

3672

143

5036

721

4661

1722

750

6225

002

5062

2500

259

6634

205

471

9195

0102

610

2165

4112

1021

6758

7510

2167

5875

1094

6433

0111

8885

7894

1188

8578

9414

0113

6588

495

2114

8325

8323

4983

4128

2349

8016

3023

4980

1630

2517

6590

6127

3431

6595

2734

3165

9532

2261

4325

519

4770

7338

7453

0078

4874

5300

8332

1953

0083

3219

5679

4432

2561

6823

9640

6168

2396

4072

6967

2253

543

1056

9264

743

1174

3672

359

1174

3601

341

1174

3601

341

1258

2461

650

1366

5284

242

1366

5284

242

1610

5571

907

567

2302

2947

110

2558

0985

954

2558

1089

850

2558

1089

850

2740

8265

179

2976

7082

573

2976

7082

573

3508

2549

764

Page 77: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 77 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 50

The

tabl

e sh

ows

the

deco

mpo

siti

on o

f the

Fou

rier

coe

ffici

ents

mul

tipl

ying

q−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χ

n o

f HS

- par

t III −

Dχ17

χ18

χ19

χ20

χ21

χ22

χ23

χ24

−9

00

00

00

00

150

00

00

00

0

391

10

00

01

0

632

22

42

44

5

8719

1919

2020

2832

34

111

8993

111

131

125

168

181

213

135

466

468

580

622

628

822

904

1043

159

1973

2007

2489

2770

2750

3612

3932

4587

183

7859

7976

9884

1082

810

850

1420

415

532

1802

3

207

2832

828

783

3578

439

464

3939

851

610

5626

765

550

231

9615

297

662

1213

1313

3278

1333

6217

4568

1906

0822

1641

255

3062

4831

1150

3867

2642

5729

4255

3555

7162

6078

7270

7534

279

9290

2094

3669

1172

777

1289

537

1289

797

1688

384

1842

742

2143

915

303

2690

703

2733

527

3397

533

3738

214

3737

680

4893

216

5339

398

6213

691

327

7494

835

7613

625

9462

567

1040

7432

1040

8176

1362

5020

1486

9371

1730

1389

351

2013

6861

2045

6746

2542

5987

2797

0908

2796

9538

3661

5272

3995

5933

4649

5887

375

5240

8277

5323

9679

6617

0567

7278

4072

7278

6002

9528

2852

1039

8127

612

0993

550

399

1324

5908

413

4562

341

1672

4784

518

3978

541

1839

7519

524

0841

718

2628

2044

330

5831

383

423

3260

2906

233

1202

866

4116

4968

345

2805

738

4528

1050

259

2768

390

6468

7482

975

2720

667

447

7830

6915

779

5500

581

9887

2755

210

8761

4155

1087

6063

4514

2377

8908

1553

7201

6818

0797

4775

471

1839

0128

6718

6820

0964

2321

9783

4725

5415

5967

2554

1670

5933

4363

2878

3648

8165

7442

4588

0168

495

4229

6504

3442

9679

1328

5340

4771

9558

7455

5816

5874

5382

4876

9031

1850

8392

1893

9297

6547

9321

519

9541

4914

0996

9293

7895

1204

7321

308

1325

2008

175

1325

2033

063

1734

8106

814

1893

1489

848

2202

9335

806

543

2113

8496

831

2147

4037

147

2669

0041

661

2935

9113

857

2935

9075

739

3843

3714

858

4194

1519

745

4880

4725

354

567

4604

5944

874

4677

6819

698

5813

8785

609

6395

2566

006

6395

2619

706

8371

9772

698

9136

0913

541

1063

1081

0073

Page 78: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 78 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 51

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

−1

−1

00

00

00

00

0

230

00

00

00

00

1

470

00

00

00

00

0

710

00

00

00

01

1

950

11

00

00

11

2

119

01

21

02

20

45

143

03

52

13

33

79

167

14

108

311

1310

2227

191

08

2817

1833

3232

5661

215

215

6757

5499

112

103

172

180

239

336

187

156

196

280

312

330

475

487

263

973

477

461

592

807

971

998

1394

1411

287

1217

913

1812

7918

0322

6527

2329

3638

9239

14

311

3340

434

5135

5650

8062

4477

4182

8710

843

1087

8

335

6610

2991

8895

3414

074

1675

120

811

2268

029

067

2910

9

359

160

2473

2355

825

066

3721

443

863

5515

660

008

7644

376

503

383

334

6120

5983

763

872

9610

911

1842

1408

4415

4261

1949

5319

5033

407

795

1467

814

7655

1592

2324

0240

2783

6235

2289

3856

5348

6133

4862

40

431

1763

3522

035

8129

3868

5458

6899

6763

7485

6699

9404

0811

8147

211

8161

0

455

4088

8241

484

8112

9201

6213

9773

816

0761

120

4054

322

3970

728

1045

628

1064

5

479

9121

1906

7919

7191

621

4126

632

6034

337

4105

947

5052

752

2023

765

4105

465

4129

2

503

2050

043

1992

4492

407

4887

625

7446

731

8536

684

1085

0420

1192

3091

1493

1553

1493

1866

527

4500

996

4995

1005

8179

1094

7884

1669

7919

1912

1267

2430

9087

2672

6129

3344

7564

3344

7965

551

9835

421

1732

822

1252

2024

1038

0436

7751

7842

0929

4653

5366

7958

8603

8173

6432

8073

6437

97

575

2109

6845

7916

747

9036

3252

1994

1379

6807

0391

1559

8611

5951

616

1275

1242

315

9487

514

1594

8816

7

Page 79: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 79 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 52

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt II

−D

χ11

χ12

χ13

χ14

χ15

χ16

χ17

χ18

χ19

−1

00

00

00

00

0

230

00

00

00

00

470

00

00

00

10

710

00

00

01

10

950

00

10

12

31

119

00

00

03

58

3

143

11

15

414

1622

17

167

1010

1012

1145

4963

55

191

3939

3962

6115

916

420

421

9

215

157

157

157

189

207

510

519

625

715

239

532

532

532

693

744

1642

1653

1946

2383

263

1732

1732

1732

2090

2302

4975

4992

5815

7273

287

5207

5207

5207

6424

7052

1467

114

694

1698

321

717

311

1507

115

071

1507

118

136

2009

741

417

4145

047

724

6150

6

335

4158

541

585

4158

550

419

5577

311

3397

1134

4013

0238

1691

59

359

1110

4811

1048

1110

4813

3476

1481

0229

9955

3000

1634

3936

4480

42

383

2864

7928

6479

2864

7934

5208

3828

6477

1309

7713

8888

3312

1154

153

407

7188

8471

8884

7188

8486

3390

9587

4219

2813

019

2823

822

0670

428

8684

6

431

1755

665

1755

665

1755

665

2110

561

2343

230

4702

139

4702

278

5378

796

7045

333

455

4187

951

4187

951

4187

951

5027

797

5584

747

1119

8147

1119

8333

1280

6125

1678

2848

479

9767

990

9767

990

9767

990

1173

1080

1302

9827

2610

1380

2610

1618

2984

2923

3913

1147

503

2232

6103

2232

6103

2232

6103

2679

7674

2977

0742

5961

4785

5961

5100

6815

2090

8938

5449

527

5006

1479

5006

1479

5006

1479

6009

6749

6676

2700

1336

3122

313

3631

622

1527

5329

620

0393

822

551

1102

8960

511

0289

605

1102

8960

513

2364

423

1470

6013

729

4300

418

2943

0093

633

6394

392

4413

6042

7

575

2389

6510

923

8965

109

2389

6510

928

6811

937

3186

5280

063

7563

387

6375

6404

172

8720

690

9562

1602

2

Page 80: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 80 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 53

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt II

I

−D

χ20

χ21

χ22

χ23

χ24

χ25

χ26

χ27

χ28

−1

00

00

00

00

0

230

00

00

00

00

470

00

00

00

00

711

10

10

00

00

950

21

21

11

11

119

48

57

54

44

4

143

1224

2224

2022

2424

24

167

5989

8185

8386

9797

97

191

204

281

291

296

302

345

388

388

388

215

750

942

982

991

1064

1194

1360

1360

1360

239

2420

2932

3180

3191

3473

4006

4564

4564

4564

263

7688

9022

9799

9816

1085

612

481

1426

614

266

1426

6

287

2275

426

332

2898

329

006

3223

237

369

4272

842

728

4272

8

311

6531

374

730

8232

382

356

9203

410

6605

1220

2712

2027

1220

27

335

1791

6220

3895

2256

7122

5714

2526

8329

3554

3360

8033

6080

3360

80

359

4768

7754

0363

5983

0759

8368

6712

6877

9662

8929

7689

2976

8929

76

383

1227

450

1387

781

1539

339

1539

418

1728

219

2009

529

2301

754

2301

754

2301

754

407

3076

064

3471

701

3851

620

3851

728

4327

763

5031

900

5764

588

5764

588

5764

588

431

7505

177

8462

435

9395

281

9395

420

1055

9896

1228

3559

1407

2625

1407

2625

1407

2625

455

1789

2382

2015

9114

2238

3595

2238

3781

2516

7016

2927

4597

3354

0710

3354

0710

3354

0710

479

4171

4567

4697

9165

5217

9270

5217

9508

5867

5953

6826

5693

7821

5160

7821

5160

7821

5160

503

9531

9311

1073

1205

911

9196

613

1191

9692

813

4058

491

1559

6844

917

8705

755

1787

0575

517

8705

755

527

2136

9102

224

0528

777

2672

0376

926

7204

168

3005

3968

934

9688

430

4006

6980

840

0669

808

4006

6980

8

551

4707

2001

952

9752

466

5885

1885

258

8519

370

6619

9003

977

0250

507

8825

5852

888

2558

528

8825

5852

8

575

1019

8155

8311

4759

8073

1274

9856

2912

7498

6283

1434

2030

4416

6881

5367

1912

1486

0119

1214

8601

1912

1486

01

Page 81: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 81 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 54

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt IV

−D

χ29

χ30

χ31

χ32

χ33

χ34

χ35

χ36

χ37

−1

00

00

00

00

0

230

00

00

00

00

471

00

00

00

00

711

00

00

01

00

954

31

11

13

01

119

119

44

46

124

11

143

4339

2626

2630

4730

44

167

140

135

105

105

105

124

181

141

208

191

504

495

430

430

430

476

641

581

769

215

1659

1647

1512

1512

1512

1679

2189

2112

2800

239

5391

5373

5106

5106

5106

5576

7089

7143

9196

263

1651

316

488

1598

115

981

1598

117

469

2195

622

579

2903

4

287

4894

448

909

4796

447

964

4796

452

139

6497

067

811

8640

1

311

1388

1213

8765

1370

5213

7052

1370

5214

9008

1848

7619

4405

2475

40

335

3808

4638

0778

3777

4537

7745

3777

4540

9888

5069

6453

5979

6802

73

359

1009

253

1009

164

1003

898

1003

898

1003

898

1089

307

1345

063

1426

142

1809

476

383

2597

544

2597

424

2588

431

2588

431

2588

431

2806

561

3461

147

3677

682

4660

418

407

6498

438

6498

279

6483

169

6483

169

6483

169

7029

317

8662

775

9215

765

1167

6421

431

1585

3998

1585

3785

1582

8769

1582

8769

1582

8769

1715

7026

2113

2786

2250

2085

2849

5813

455

3776

9072

3776

8797

3772

7937

3772

7937

3772

7937

4089

2977

5035

3789

5364

4469

6792

7686

479

8805

0558

8805

0195

8798

4244

8798

4244

8798

4244

9535

3051

1173

8601

712

5107

300

1583

8347

7

503

2011

3595

220

1135

486

2010

3024

220

1030

242

2010

3024

221

7864

013

2681

6799

128

5875

651

3618

9762

9

527

4509

0047

845

0899

874

4507

3371

045

0733

710

4507

3371

048

8448

796

6011

6491

264

0979

164

8113

5301

3

551

9931

0512

999

3104

358

9928

4459

599

2844

595

9928

4459

510

7591

2674

1324

1065

4314

1196

0695

1787

2234

81

575

2151

5222

6521

5152

1277

2151

1188

7421

5111

8874

2151

1188

7423

3103

3239

2868

6125

6030

5921

4800

3872

0973

31

Page 82: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 82 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 55

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,1 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt V

−D

χ38

χ39

χ40

χ41

χ42

χ43

χ44

χ45

χ46

−1

00

00

00

00

0

230

00

00

00

00

470

00

00

00

00

710

00

01

11

00

952

22

33

33

32

119

911

1112

1717

1821

17

143

4955

5567

6969

8794

91

167

199

228

228

265

295

295

362

409

415

191

786

881

881

1049

1088

1088

1384

1557

1631

215

2771

3105

3105

3657

3864

3864

4892

5575

5869

239

9251

1031

110

311

1223

012

681

1268

116

220

1845

219

609

263

2894

332

259

3225

938

155

3977

339

773

5083

157

985

6176

0

287

8656

096

303

9630

311

4151

1182

9611

8296

1516

7517

2971

1847

63

311

2472

8627

5091

2750

9132

5787

3381

6233

8162

4335

0349

4841

5289

70

335

6807

0275

6753

7567

5389

6888

9291

0992

9109

1192

384

1360

994

1456

375

359

1808

802

2010

778

2010

778

2382

438

2469

363

2469

363

3168

960

3618

306

3873

101

383

4661

495

5180

729

5180

729

6140

008

6359

343

6359

343

8164

490

9321

948

9982

360

407

1167

4769

1297

4774

1297

4774

1537

5595

1592

7891

1592

7891

2044

9076

2335

1239

2500

8800

431

2849

8396

3166

8560

3166

8560

3753

2560

3886

9434

3886

9434

4991

1204

5699

4271

6105

0043

455

6792

3794

7547

8392

7547

8392

8945

0970

9264

3752

9264

3752

1189

6173

213

5851

564

1455

2748

6

479

1583

8939

617

5998

083

1759

9808

320

8588

414

2160

0731

421

6007

314

2773

9033

931

6772

980

3393

5918

6

503

3618

8887

140

2117

862

4021

1786

247

6572

073

4935

3604

749

3536

047

6337

8694

872

3786

642

7754

1467

1

527

8113

6608

890

1543

092

9015

4309

210

6848

9749

1106

4646

6911

0646

4669

1420

9411

3716

2271

9280

1738

5253

74

551

1787

2044

1119

8582

9461

1985

8294

6123

5354

7126

2437

2209

3424

3722

0934

3129

9293

1235

7442

8126

3829

5703

52

575

3872

1252

4043

0242

3193

4302

4231

9350

9915

2355

5280

3105

0452

8031

0504

6781

1858

1077

4422

2864

8297

1325

08

Page 83: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 83 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 56

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt I

−D

χ1

χ2

χ3

χ4

χ5

χ6

χ7

χ8

χ9

χ10

−9

10

00

00

00

00

150

01

00

00

00

0

390

00

10

00

00

0

630

01

00

10

00

0

871

01

10

10

01

1

111

00

41

02

00

22

135

10

54

15

20

55

159

12

148

413

67

1414

183

22

2419

1030

2420

4343

207

28

6240

4279

6666

113

113

231

516

140

124

128

213

228

223

342

342

255

1054

379

334

423

585

648

693

964

964

279

1710

794

692

812

4216

3919

5220

3727

8227

82

303

3029

925

7425

5636

4245

0254

3458

8976

9776

97

327

6471

666

5569

4710

035

1214

915

072

1626

721

026

2102

6

351

122

1817

1736

618

206

2708

731

983

3984

843

501

5545

055

450

375

287

4447

4396

547

011

7019

982

214

1035

1411

2936

1432

2014

3220

399

608

1097

310

9822

1177

8117

7721

2060

6325

9946

2849

9735

9275

3592

75

423

1400

2617

626

7074

2886

8343

6768

5045

9163

9120

7004

2788

1263

8812

63

447

3111

6220

863

8341

6910

0110

4970

412

0768

715

3097

616

8136

221

0998

721

0998

7

471

7070

1441

0014

9147

416

1995

924

6362

028

2983

635

9351

839

4621

049

4767

549

4767

5

495

1566

632

9562

3422

339

3719

775

5667

740

6498

220

8255

052

9073

094

1136

3145

1136

3145

519

3486

473

8943

7702

776

8384

938

1278

2104

1464

3912

1861

7246

2046

2399

2561

5443

2561

5443

543

7589

916

3259

617

0462

8618

5625

8628

3209

8732

4185

8841

2226

4445

3261

7556

7116

0156

7116

01

567

1641

1835

4553

837

0915

1440

4189

9661

6840

6370

5825

7889

7823

6898

7204

8212

3491

729

1234

9172

9

Page 84: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 84 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 57

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt II

−D

χ11

χ12

χ13

χ14

χ15

χ16

χ17

χ18

χ19

−9

00

00

00

00

0

150

00

00

00

00

390

00

00

00

00

630

00

00

00

00

870

00

00

00

01

111

00

00

02

24

4

135

11

10

08

810

9

159

55

511

930

3040

44

183

2626

2630

3210

010

012

713

9

207

9797

9713

614

335

035

041

649

7

231

363

363

363

436

475

1106

1106

1310

1596

255

1172

1172

1172

1484

1607

3458

3458

4034

5088

279

3638

3638

3638

4370

4842

1024

810

248

1185

615

102

303

1061

110

611

1061

112

975

1429

729

442

2944

233

922

4378

3

327

2981

429

814

2981

435

856

3974

181

284

8128

493

406

1210

84

351

8028

680

286

8028

697

039

1074

9321

7714

2177

1424

9613

3252

36

375

2096

7520

9675

2096

7525

1918

2796

2656

4586

5645

8664

6742

8443

20

399

5305

0653

0506

5305

0663

8563

7085

4714

2502

014

2502

016

3101

721

3371

3

423

1307

537

1307

537

1307

537

1570

043

1743

695

3502

378

3502

378

4006

776

5246

147

447

3142

048

3142

048

3142

048

3775

558

4192

520

8406

902

8406

902

9614

460

1259

9677

471

7383

374

7383

374

7383

374

8863

180

9845

654

1973

0666

1973

0666

2256

0343

2957

6649

495

1698

5215

1698

5215

1698

5215

2039

4871

2265

4755

4536

6836

4536

6836

5186

4617

6802

1751

519

3832

6695

3832

6695

3832

6695

4600

0805

5110

5811

1023

1100

810

2311

008

1169

5463

615

3417

371

543

8491

9350

8491

9350

8491

9350

1019

3370

111

3244

297

2266

3161

622

6631

616

2590

4986

233

9876

627

567

1850

0300

618

5003

006

1850

0300

622

2026

326

2466

8079

349

3602

894

4936

0289

456

4184

563

7402

8402

9

Page 85: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 85 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 58

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt II

I

−D

χ20

χ21

χ22

χ23

χ24

χ25

χ26

χ27

χ28

−9

00

00

00

00

0

150

00

00

00

00

390

10

00

00

00

630

10

00

00

00

871

31

10

10

00

111

27

44

24

33

3

135

920

1515

1211

1313

13

159

3260

5555

4859

6363

63

183

142

204

193

193

196

219

243

243

243

207

477

630

662

662

698

801

909

909

909

231

1672

2051

2165

2165

2352

2689

3057

3057

3057

255

5228

6225

6779

6779

7442

8627

9834

9834

9834

279

1597

718

566

2028

620

286

2254

826

013

2975

929

759

2975

9

303

4606

852

957

5840

058

400

6510

075

588

8645

486

454

8645

4

327

1286

6414

6652

1618

6916

1869

1811

8421

0189

2406

2724

0627

2406

27

351

3450

7439

1657

4338

5143

3851

4863

0856

5195

6472

2164

7221

6472

21

375

8990

0310

1703

011

2698

611

2698

612

6512

414

7020

616

8399

316

8399

316

8399

3

399

2270

753

2564

491

2845

570

2845

570

3196

124

3717

138

4257

972

4257

972

4257

972

423

5591

173

6305

860

6998

318

6998

318

7865

522

9147

020

1047

9406

1047

9406

1047

9406

447

1342

5927

1513

0943

1680

1605

1680

1605

1888

7958

2197

2919

2517

4005

2517

4005

2517

4005

471

3153

5156

3551

8958

3944

4133

3944

4133

4435

4258

5159

8009

5911

8234

5911

8234

5911

8234

495

7252

2016

8165

6325

9070

1880

9070

1880

1020

0426

811

8679

661

1359

7908

813

5979

088

1359

7908

8

519

1636

1022

018

4167

767

2045

7770

220

4577

702

2300

9805

026

7714

806

3067

4522

130

6745

221

3067

4522

1

543

3624

5105

540

7928

442

4531

8501

045

3185

010

5097

4548

059

3117

732

6795

9370

867

9593

708

6795

9370

8

567

7895

4863

288

8501

021

9870

9618

698

7096

186

1110

3569

7812

9196

4951

1480

3495

6814

8034

9568

1480

3495

68

Page 86: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 86 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 59

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt IV

−D

χ29

χ30

χ31

χ32

χ33

χ34

χ35

χ36

χ37

−9

00

00

00

00

0

150

00

00

00

00

390

00

00

00

00

631

10

00

01

00

872

20

00

12

02

111

88

33

34

83

5

135

2424

1313

1317

3516

32

159

9595

6969

6977

118

8912

3

183

322

322

267

267

267

306

424

367

517

207

1124

1124

1011

1011

1011

1113

1471

1390

1822

231

3633

3633

3411

3411

3411

3763

4830

4796

6268

255

1144

411

444

1101

911

019

1101

912

011

1514

015

497

1986

4

279

3416

434

164

3337

233

372

3337

236

393

4550

647

238

6049

1

303

9854

198

541

9710

497

104

9710

410

5478

1310

1413

7526

1749

34

327

2729

1827

2918

2703

7227

0372

2703

7229

3697

3636

5638

3784

4879

25

351

7320

5573

2055

7276

1272

7612

7276

1278

9280

9750

5310

3303

313

1027

4

375

1901

107

1901

107

1893

498

1893

498

1893

498

2053

906

2534

016

2690

675

3411

830

399

4801

562

4801

562

4788

741

4788

741

4788

741

5191

571

6399

104

6805

582

8621

691

423

1180

7813

1180

7813

1178

6521

1178

6521

1178

6521

1277

7678

1574

1552

1675

6387

2122

5130

447

2835

1578

2835

1578

2831

6673

2831

6673

2831

6673

3069

0911

3779

4342

4025

8951

5097

5995

471

6655

7162

6655

7162

6650

0652

6650

0652

6650

0652

7207

5158

8873

6216

9456

0774

1197

2505

6

495

1530

5616

415

3056

164

1529

6572

215

2965

722

1529

6572

216

5771

974

2040

5573

321

7516

112

2753

5524

4

519

3452

1296

934

5212

969

3450

6977

734

5069

777

3450

6977

737

3954

834

4602

6634

249

0719

721

6211

8391

7

543

7647

4065

076

4740

650

7645

1615

176

4516

151

7645

1615

182

8475

182

1019

6072

6410

8722

5658

1376

1741

13

567

1665

6967

1316

6569

6713

1665

3480

0516

6534

8005

1665

3480

0518

0465

8930

2220

8849

0723

6838

0807

2997

7639

88

Page 87: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 87 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Tabl

e 60

The

tab

le s

how

s th

e de

com

posi

tion

of t

he F

ouri

er c

oeffi

cien

ts m

ulti

plyi

ng q

−D/24 in

 the

func

tion

hg,3 2

(τ) i

nto 

irre

duci

ble

repr

esen

tati

ons χn o

f  U6(2) -

pa

rt V

−D

χ38

χ39

χ40

χ41

χ42

χ43

χ44

χ45

χ46

−9

00

00

00

00

0

150

00

00

00

00

390

00

00

00

00

630

00

10

00

00

871

11

12

22

20

111

67

79

88

119

9

135

2832

3238

4545

5158

54

159

130

145

145

175

179

179

225

250

255

183

503

566

566

662

715

715

891

1012

1044

207

1846

2060

2060

2457

2536

2536

3233

3662

3861

231

6220

6951

6951

8205

8608

8608

1095

112

474

1321

5

255

1993

722

198

2219

826

322

2727

827

278

3493

439

779

4238

1

279

6035

567

201

6720

179

550

8272

882

728

1058

7812

0825

1288

99

303

1751

4719

4787

1947

8723

0873

2392

0023

9200

3068

3135

0044

3742

14

327

4875

5554

2191

5421

9164

2249

6661

8866

6188

8544

2197

5422

1043

352

351

1310

841

1457

089

1457

089

1726

958

1788

772

1788

772

2296

034

2621

064

2805

657

375

3410

897

3791

267

3791

267

4492

367

4655

102

4655

102

5975

070

6822

630

7304

754

399

8623

112

9583

033

9583

033

1135

7471

1176

2638

1176

2638

1510

2657

1724

4669

1846

8738

423

2122

2871

2358

4843

2358

4843

2794

9916

2895

0941

2895

0941

3717

1558

4244

7872

4546

5426

447

5097

9357

5664

8802

5664

8802

6713

8492

6952

8362

6952

8362

8928

2411

1019

5512

910

9216

491

471

1197

1986

513

3032

283

1330

3228

315

7661

257

1632

8196

016

3281

960

2096

7356

223

9444

613

2565

0971

1

495

2753

6288

830

5972

205

3059

7220

536

2631

248

3755

2463

937

5524

639

4822

4514

055

0717

850

5899

9952

1

519

6211

7238

769

0217

270

6902

1727

081

8019

198

8471

2195

884

7121

958

1087

8694

4612

4235

5809

1330

9995

39

543

1376

1908

4015

2913

4899

1529

1348

9918

1229

9925

1876

7000

2918

7670

0029

2410

1084

3027

5236

4303

2948

8236

57

567

2997

7392

8133

3088

3649

3330

8836

4939

4767

6846

4087

9908

5040

8799

0850

5249

9185

6059

9550

2658

6423

5200

20

Page 88: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 88 of 89Cheng et al. Mathematical Sciences (2015) 2:13

Received: 1 July 2014 Accepted: 15 June 2015

References 1. Benjamin, N., Harrison, S.M., Kachru, S., Paquette, N.M., Whalen, D.: On the elliptic genera of manifolds of Spin(7)

holonomy. arXiv:1412.2804 [hep-th] 2. Benjamin, N, Harrison, S.M., Kachru, S., Paquette, N.M., Whalen, D.: On the elliptic genera of manifolds of Spin(7)

holonomy. arXiv:1412.2804 3. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405 (1992) 4. Cheng, M.C.N.: K3 surfaces, N=4 Dyons, and the Mathieu Group M24. Commun. Num. Theor. Phys. 4, 623 (2010).

arXiv:1005.5415 [hep-th] 5. Cheng, M.C.N., Dong, X., Duncan, J., Harvey, J., Kachru, S., Wrase, T.: Mathieu moonshine and N = 2 string compactifi-

cations. JHEP 1309, 030 (2013). arXiv:1306.4981 [hep-th] 6. Cheng, M.C.N., Duncan, J.F.R., Harvey, J.A.: Weight one Jacobi forms and umbral moonshine (to appear) 7. Cheng, M.C.N., Duncan, J.F.R.: On Rademacher sums, the largest Mathieu group, and the Holographic modularity of

moonshine. Commun. Num. Theor. Phys. 6, 697 (2012). arXiv:1110.3859 [math.RT] 8. Cheng, M.C.N., Duncan, J.F.R.: On the discrete groups of Mathieu moonshine. arXiv:1212.0906 [math.NT] 9. Cheng, M.C.N., Harrison, S.: Umbral moonshine and K3 surfaces. arXiv:1406.0619 [hep-th] 10. Cheng, M.C.N., Harrison, S.M., Kachru, S., Whalen, D.: Exceptional algebra and Sporadic Groups at c = 12.

arXiv:1503.07219 11. Cheng, M.C.N., Duncan, J.F.R.: Rademacher sums and rademacher series. arXiv:1210.3066 [math.NT] 12. Cheng, M.C.N., Harrison, S.M., Kachru, S., Whalen, D.: Exceptional algebra and Sporadic Groups at c = 12.

arXiv:1503.07219 [hep-th] 13. Cheng, M.C.N., Duncan, J.F.R., Harvey, J.A.: Umbral moonshine. arXiv:1204.2779 [math.RT] 14. Cheng, M.C.N., Duncan, J.F.R. Harvey, J.A.: Umbral moonshine and the Niemeier lattices. Research in the Mathemati-

cal Sciences 1:3. arXiv:1307.5793 [math.RT] (2014) 15. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308 (1979) 16. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1999) 17. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Maximal subgroups and ordinary

characters for simple groups. With comput. assist. from J. G. Thackray., Clarendon Press, Oxford (1985) 18. Creutzig, T., Hoehn, G.: Mathieu moonshine and the geometry of K3 surfaces. arXiv:1309.2671 [math.QA] 19. Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074

[hep-th] 20. Dijkgraaf, R., Maldacena, J.M., Moore, G.W., Verlinde, E.P.: A black hole farey tail. hep-th/0005003 21. Dixon, L.J., Ginsparg, P.H., Harvey, J.A.: Beauty and the beast: superconformal symmetry in a monster module. Comm.

Math. Phys. 119, 221 (1988) 22. Dobrev, V.K.: Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras. Phys.

Lett. B. 186, 43 (1987) 23. Dong, C., Li, H., Mason, G., Montague, P.S.: The radical of a vertex operator algebra. In: The monster and Lie algebras

(Columbus, OH, 1996), Ohio State Univ. Math. Res. Inst. Publ., 7 (1998) 24. Duncan, J.F.: Super-moonshine for Conway’s largest sporadic group. Duke Math. J. 139(2), 255–315 (2007).

arXiv:math/0502267 25. Duncan, J.F.R., Mack-Crane, S.: Derived equivalences of K3 surfaces and twined elliptic genera (to appear) 26. Duncan, J.F.R., Harvey, J.A.: The umbral mooonshine module for the unique unimodular Niemeier Root System.

arXiv:1412.8191 27. Duncan, J.F.R., Mack-Crane, S.: The moonshine module for Conway’s Group. arXiv:1409.3829 28. Duncan, J.F.R., Griffin, M.J., Ono, K.: Proof of the umbral moonshine conjecture. arXiv:1503.01472 29. Duncan, J.F., Frenkel, I.B.: Rademacher sums, moonshine and gravity. Commun. Num. Theor. Phys. 5, 849 (2011).

arXiv:0907.4529 [math.RT]] 30. Duncan, J.F.R., Griffin, M.J., Ono, K.: Moonshine. arXiv:1411.6571 31. Eguchi, T., Hikami, K.: Note on twisted elliptic genus of K3 surface. Phys. Lett. B 694, 446 (2011). arXiv:1008.4924

[hep-th] 32. Eguchi, T., Taormina, A.: Unitary representations of the N = 4 superconformal algebra. Phys. Lett. B. 196, 1 (1987) 33. Eguchi, T., Taormina, A.: On the unitary representations of N = 2 and N = 4 superconformal algebras. Phys. Lett. B.

210, 125 (1988) 34. Eguchi, T., Taormina, A.: Character formulas for the N = 4 superconformal algebra. Phys. Lett. B. 200, 315 (1988) 35. Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the K3 Surface and the Mathieu group M24. Exper. Math. 20, 91 (2011).

arXiv:1004.0956 [hep-th] 36. Frenkel, I., Lepowsky, J., Meurman, A.: A moonshine module for the monster, in vertex operators in mathematics and

physics (Berkeley, CA 1983), vol. 3, Math. Sci. Res. Inst. Publ., Springer (1985) 37. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster, vol. 134, Pure and Applied Math-

ematics, Elsevier Science (1989) 38. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu twining characters for K3. JHEP 1009, 058 (2010).

arXiv:1006.0221 [hep-th] 39. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu moonshine in the elliptic genus of K3. JHEP 1010, 062 (2010).

arXiv:1008.3778 [hep-th] 40. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Symmetries of K3 sigma models. Commun. Num. Theor. Phys. 6, 1 (2012).

arXiv:1106.4315 [hep-th]

Page 89: Mock modular Mathieu moonshine modules...Mock modular Mathieu moonshine modules Miranda C N Cheng1*, Xi Dong2, John F R Duncan3, Sarah Harrison2, Shamit Kachru2 and Timm Wrase 2 1

Page 89 of 89Cheng et al. Mathematical Sciences (2015) 2:13

41. Gaberdiel, M.R., Persson, D., Ronellenfitsch, H., Volpato, R.: Generalised Mathieu moonshine. Commun. Num. Theor. Phys. 7, 145 (2013). arXiv:1211.7074 [hep-th]

42. Gaberdiel, M.R., Persson, D., Volpato, R.: Generalised moonshine and holomorphic orbifolds. arXiv:1302.5425 [hep-th] 43. Gannon, T.: Much ado about Mathieu. arXiv:1211.5531 [math.RT] 44. Gannon, T.: Moonshine beyond the monster: the bridge connecting algebras, modular forms, and physics. Cam-

bridge University Press, Cambridge Monographs on Mathematical Physics (2006) 45. Gepner, D., Noyvert, B.: Unitary representations of SW(3/2,2) superconformal algebra. Nucl. Phys. B. 610, 545 (2001).

arXiv:hep-th/0101116 46. Govindarajan, S.: Unravelling Mathieu moonshine. Nucl. Phys. B 864, 823 (2012). arXiv:1106.5715 [hep-th] 47. Harrison, S., Kachru, S., Paquette, N.M.: Twining genera of (0,4) supersymmetric Sigma models on K3. JHEP 1404, 048

(2014). arXiv: 1309.0510 [hep-th] 48. Harvey, J.A., Murthy, S.: Moonshine in fivebrane spacetimes. JHEP 1401, 146 (2014). arXiv:1307.7717 [hep-th] 49. Hohenegger, S., Stieberger, S.: BPS saturated string amplitudes: K3 elliptic genus and Igusa Cusp form. Nucl. Phys. B

856, 413 (2012). arXiv:1108.0323 [hep-th] 50. Kac, V.: Vertex algebras for beginners. University Lecture Series, American Mathematical Society 10 (1988) 51. Kiritsis, E.: Character formulae and the structure of the representations of the N = 1, N = 2 superconformal algebras.

Int. J. Mod. Phys. A. 3, 1871 (1988) 52. Kostelecky, V.A., Lechtenfeld, O., Lerche, W., Samuel, S., Watamura, S.: Conformal techniques, bosonization and tree

level string amplitudes. Nucl. Phys. B. 288, 173 (1987) 53. Manschot, J., Moore, G.W.: A modern farey tail. Commun. Num. Theor. Phys. 4, 103 (2010). arXiv:0712.0573 [hep-th] 54. Neumann, C.D.D.: The elliptic genus of Calabi-Yau 3-folds and 4-folds: product formulae and generalized Kac–Moody

algebras. J. Geom. Phys. 29, 5 (1999). arXiv:hep-th/9607029 55. Ono, K., Rolen, L., Trebat-Leder, S.: Classical and umbral moonshine: connections and p-adic properties. J. Ramanujan

Math. Soc. (to appear) (arXiv e-prints (2014)) 56. Persson, D., Volpato, R.: Second quantized Mathieu moonshine. arXiv:1312.0622 [hep-th] 57. Raum, M.: M24-twisted product expansions are Siegel modular forms. arXiv:1208.3453 [math.NT] 58. Shatashvili, S.L., Vafa, C.: Superstrings and manifold of exceptional holonomy. Selecta Math. 1, 347 (1995).

arXiv:hep-th/9407025 59. Taormina, A., Wendland, K.: The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24.

JHEP 1308, 125 (2013). arXiv:1107.3834 [hep-th] 60. Taormina, A., Wendland, K.: The symmetries of the tetrahedral kummer surface in the Mathieu group M24.

arXiv:1008.0954 [hep-th] 61. Taormina, A., Wendland, K.: Symmetry-surfing the moduli space of Kummer K3s. arXiv:1303.2931 [hep-th] 62. Witten, E.: Three-dimensional gravity revisited. arXiv:0706.3359 [hep-th] 63. Wrase, T.: Mathieu moonshine in four dimensional N = ∞ theories. JHEP 1404, 069 (2014). arXiv:1402.2973

[hep-th] 64. Zwegers, S.: Mock theta functions. arXiv:0807.4834 [math.NT]