Mixing, mass transfer and bioprocess scaling up and · PDF fileMixing, mass transfer and...

download Mixing, mass transfer and bioprocess scaling up and · PDF fileMixing, mass transfer and bioprocess scaling up and down in new generation single-use bioreactors Nico Oosterhuis CELLution

If you can't read please download the document

Transcript of Mixing, mass transfer and bioprocess scaling up and · PDF fileMixing, mass transfer and...

  • Mixing, mass transfer and bioprocess scalingup and down in new generation single-useg g

    bioreactors

    Nico Oosterhuis CELLution Biotech

  • Questions of today

    Mixing and mass transfer in single use bioreactor: g gcan we design a multipurpose single-usebioreactor?

    Can it be scaleable?

  • Why Single use?

    STERILITY Reduced cross contamination Pre-sterilized (validated) Easy sterile connections

    COSTS No cleaning Simple validation Simple infrastructure Lower maintenance Flexibility turn-aroundy

  • Reasons to apply single-use

    What is the pharma-industry telling us today?

    Source: Paul Cook, 2010

  • Many types of single use bioreactors(Eibl, 2008)

  • Applicability todays single-use bioreactors?

    Rocking systems Stirred systems

    Mass transfer, klamax = 40 50 hr-1Restricted heat transfer

    Scaleability present (rocking) systems questionableScaleability present (rocking) systems questionable

    Only applicable for mammalian cell cultureOnly applicable for mammalian cell culture

  • Single-use bioreactors applicability?

    WORKINGkla

    REACTOR TYPEWORKING VOLUME TYPE OF BAG TYPE OF MIXING SUPPLIER (hr-1)

    Wave Bioreactor 1 200 L pillow shape rocking GE Healthcare < 30Wave Bioreactor 1 200 L pillow shape rocking GE Healthcare < 30Cultibag RM 1 100 L pillow shape rocking Sartorius Stedim Biotech < 30AppliFlex 1 25 L pillow shape rocking Applikon Biotechnology < 40C ltibag STR200 50 200 L t kli ti d S t i St di Bi t h < 40Cultibag STR200 50 200 L tankliner stirred Sartorius Stedim Biotech < 40

    SUB 50 1000 L tankliner stirredThermo-Fischer (Hyclone) < 40

    XDR 40 2000 L t kli ti d XC ll < 20XDR 40 2000 L tankliner stirred XCellerex < 20Nucleo 50 100 L square 3D Paddle agitation ATMI / Pierre Guerin < 20Shaking bioreactor < 200 L tankliner orbital shaker Khner/ExcellGene < 40CellMaker Regular 1 50 L bubble column rotating sparger Cellexus < 10

    => All single-use systems limited applicable=> All single-use systems limited applicable

  • Mammalian vs microbial in biopharma?MAb Therapeutic proteinsEnzymes InsulinsHormones/GF Protein vaccinesToxin-conjugates PEG-Conjugates

    300

    350 Scaffolds MAb Mimetics

    41

    1510

    49

    295200

    250

    71192

    46

    100

    150

    90

    034126210617

    0

    50

    Microbial MammalianMicrobial Mammalian

    44% 56%Phase III projects in 2009 (source: Boehringer 2011)( g )

  • Single use bioreactors today

    Rocking type: mainly applied on small scale (< 150Ltr)g yp y pp ( ) Stirred type: up to 2000 Ltr All: All:

    Mixing, mass- and heat transfer restrictedO l li d f li Only applied for mammalian processes

    Need for high-performance and microbial processes

  • Regime analysis (Kossen & Oosterhuis, 1985)

    R i l i i f t i l ti t tRegime analysis: comparison of typical time constants

    0,0001 0,01 1 100 10000(SEC)

    (MIN) (HR)MASSACTION

    ENZYMEINDUCTION ORGANISMSSELECTION

    ALLOSTERICINTERACTION

    MIXING REACTOR/ENVIRONMENTMASSTRANSFER

    REACTORDYNAMICS

  • Regime analysis microbial

    STR< 10L

    STR> 100L

    Wave CTr10L

    CTr100L< 10L > 100L 10L 100L

    TRANSPORT

    Oxygen transfer < 10 (s) < 15 (s) > 90 (s) 10 15 (s) 12 20 (s)( ) ( ) ( ) ( ) ( )Mixing < 5 (s) 10 40 (s) > 30 (s) < 10 (s) 40 100 (s)Heat transfer 100 200 (s) 300 600 (s) n.a. 30 60 (s) ?CONVERSION

    O2 consumption 6 15 (s)Heat production 300 400 ( )Heat production 300 400 (s)Substrate conv. > 1000 (s)Growth > 2000 (s) 2000 (s)

  • Regime analysis cell-culture

    STR< 10L

    STR> 100L

    Wave CTr10L

    CTr100L< 10L > 100L 10L 100L

    TRANSPORT

    Oxygen transfer 100 200 (s) > 200 (s) > 150 (s) 30 50 (s) 40 60 (s)( ) ( ) ( ) ( ) ( )CO2 transfer > 500 (s) > 500 (s) > 250 (s) 40 75 (s) 60 90 (s)Mixing 50 200 (s) 200 300 (s) > 60 (s) 50 - 120 (s) 80 - 120 (s)Heat transfer 100 200 (s) 300 600 (s) n.a. 30 60 (s) ?CONVERSION

    O2 consumption > 200 ( )O2 consumption > 200 (s)CO2 production < 200 (s)Heat production > 800 (s)p 800 (s)Substrate conv. hoursGrowth days

  • Required mass- and heat transfer

    Cell cultureOUR: 0 2 2 mmol/106 c/hr

    Microbial culture (E.coli)OUR: 4 mmol O /g hrOUR: 0,2 2 mmol/106 c/hr

    When OUR = OTR 20 x 106 c/ml => 4 mmol/l.hr

    1

    OUR: 4 mmol O2/g.hrWhen OUR = OTR

    50 g/L => 200 mmol/l.hr1 4 mmol / l.hr => kla 20 hr-1 (air) 200 mmol/l.hr => kla 1000 hr-1 (air)

    200 mmol/l.hr => kla 400 hr-1 (50% O2)

    Cooling: 469 KJ/mol O2 consumed At 10L => 8 W cooling power needed

    Cooling : 469 KJ/mol O2 consumed At 10L => 260 W cooling power needed

    MASS TRANSFER might be an ISSUE

    g p

    MASS and HEAT TRANSFER is an ISSUE

  • 2-Dimensional movementin rocking motiong

    Increase of mass transfer due to additional translational movementdue to additional translational movement

  • Stirring versus 2-D shaking ?

    The microenvironment of the cell determines its physiological behavior.

    Conditions have to be compared: local concentrations of O and CO nutrients local concentrations of O2 and CO2 nutrients

    energy dissipation scale (shear)ti t t time constants

    gradients

  • Mixing and mass transfer

    Shape/geometry of the bioreactor or power / volume?

  • Stirring versus 2-D shaking

    GAS phase

    O2Mass

    CO2

    phase

    LIQUID phase

    O2 CO2

    transfer GRADIENTS

    Nutrients

    CELL pH Temperaturemixing

    Side-productsProd ct

    Membrane transportSHEAR FORCES

    Product

  • Design using an engineering view

    MASS-transfer & mixingR l SURF ti (t di i l ki ) i i i d Real SURF motion (two dimensional rocking) improves mixing and oxygen transfer

    Proper and accurate temperature control Heating by convection (incubator) Direct cooling (heat exchanger under the bag) Short mixing times => no gradientsShort mixing times > no gradientsEASY handling & real single use Bags flexible in volume

    R b t b i t ( t k bl ) Robust one box equipment (stackable) In-line measurements non-invasive, fully disposable (pH, DO,), bottom

    mounted, others (glucose/lactate)Scaleable Same process performance at different scales

  • RESULTS

    Mass transferMass transfer E.coli

    H t t hi l Heterotrophic algae Pre-culture Corynebacterium (lysine) Mammalian cells (PER.C6 - CHO) ScaleabilityScaleability

  • Mass-transfer CELL-tainer

  • Mass transfer results (dynamic, water, 20 oC)

    800

    At higher rocking rate:decrease of kla due to inertia of the liquid

    600

    700

    CT'r (10L)

    CTr (15L)

    inertia of the liquid

    400

    500

    kla

    (hr-

    1)

    CTr (15L)

    Wave (20 - 10L)

    Range microbial

    100

    200

    300 Range microbial(35 55 rpm; kla >300 hr-1)

    020 25 30 35 40 45 50

    rocking speed (rpm) / at maximum circle (angle)rocking speed (rpm) / at maximum circle (angle)

    Range cell culture operation(15 25 rpm; kla 50 - 100 hr-1)

  • Comparison to STR

    0,25

    0,2

    0,15

    (s-1

    )

    0,1Kla

    CELL-tainerSTR

    0,05

    00 1 2 3 4

    P/V (W/Ltr)

  • Mass transfer volume rocking speed

    Interdependence kla volume rocking speed

  • Mass transfer - rocking speed

    Linear evolution kla rocking speed

  • Comparison mass transfer

    CELL-culture shake flask STR(SUB)

    wave CELL-tainer

    P/V (W/L) 0 02 0 1 0 1 0 5 0 1 1 0P/V (W/L) - 0,02 0,1 0,1 0,5 0,1 1,0

    Gasflow (vvh) - < 1 0,5 - 1 < 1kla (hr-1) < 50 2 - 20 < 30 50 - 150kla (hr ) 50 2 20 30 50 150

    Microbial culture shake STR wave CELL-flask (standard) (sparger) tainer

    P/V (W/L) - 2 - 6 < 0,5 2 - 3G fl ( ) 1 0 1 0 5Gasflow (vvm) - 1 < 0,1 0,5kla (hr-1) < 100 > 400 40 100 > 300

  • Mixing times

    200CT10 5L

    CELL-tainer 15L

    100

    150

    time

    (s) CT10-5L

    CT10-15LW10-2L

    wave 2L

    50

    100

    mix

    ing

    010 15

    20

    CELL-tainer 5L

    2025

    rocking speed (rpm) Angle: 10 degrees

  • Batch and Fed-batch E.coli

  • Operational stability

    Growth of heterotrophicpalgea (TU Berlin)

    Runs > 1000 h Stable pH measurementp No issues with bags Control of DO by shakingy g

    speed

  • Comparison100L shaker

    CELL-tainer Shaker

  • Inoculation of a (large-scale) bioreactor?

    Step1 Step 2 n Final processStep1Step 2-n.Final process

    Many steps involved

  • Corynebacterium inoculation

    Experiment 1

    Copy of shakeCopy of shake-flask conditions

    Experiment 2Experiment 2

    Controlled startControlled start

  • Result: simplification seed train

    Reduction of steps

  • Also suitable for cell-culture? YES!

    CELL tainer(Mab g/L)

    CELL-tainer

    wavewave

    (days)

    Productivity with PER.C6 fed-batch

  • CHO subclone 2 Bioceros

    8040006Viable cell density x 106 Titer (g/L) Q values (pcd)

    60

    70

    3000

    35005

    40

    50

    2000

    2500

    3

    4

    30

    40

    1500

    2000

    2

    3

    10

    20

    500

    1000

    1

    0

    10

    0 2 4 6 8 10 12 14 160

    500

    0 2 4 6 8 10 12 14 160

    0 2 4 6 8 10 12 14 16

    Culture Time (days)