Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the...

93
Miquel dynamics for circle patterns Sanjay Ramassamy March 12 2018 ENS Lyon Partly joint work with Alexey Glutsyuk (ENS Lyon & HSE) Skoltech Seminar of the Center for Advanced Studies

Transcript of Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the...

Page 1: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics for circle patterns

Sanjay Ramassamy

March 12 2018

ENS Lyon

Partly joint work with Alexey Glutsyuk (ENS Lyon & HSE)

Skoltech

Seminar of the Center for Advanced Studies

Page 2: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Circle patterns form a well-studied class of objects indiscrete differential geometry (discretization of confor-mal maps).

• Many discrete integrable systems have been discoveredrecently (pentagram, dimers,...).

• Attempt to construct a discrete integrable system onsome space of circle patterns.

• First review the Goncharov-Kenyon discrete integrablesystem for dimers.

Page 3: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

The dimer modela b

c d e

f g

Configurations :

Weights : cde bcg aef

• Probabilistic model : draw a configuration at randomwith probability proportional to its weight. Edge cor-relations ?

Page 4: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Dimer local moves

• Contraction of degree 2 vertices :

• Urban renewal :

1 1

a

b

c

d

1

1 1

1

∆ = ac+ bd

c/∆

d/∆ b/∆

a/∆

Page 5: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Goncharov-Kenyon dimer dynamics

• Start with Z2 with some edge weights. At even (resp.odd) times, perform an urban renewal on each white(resp. black) face followed by the contraction of all thedegree 2 vertices. Get Z2 with different edge weights.

Page 6: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Goncharov-Kenyon dimer dynamics

• Start with Z2 with some edge weights. At even (resp.odd) times, perform an urban renewal on each white(resp. black) face followed by the contraction of all thedegree 2 vertices. Get Z2 with different edge weights.

Page 7: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Goncharov-Kenyon dimer dynamics

• Start with Z2 with some edge weights. At even (resp.odd) times, perform an urban renewal on each white(resp. black) face followed by the contraction of all thedegree 2 vertices. Get Z2 with different edge weights.

Page 8: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Goncharov-Kenyon dimer dynamics

• Start with Z2 with some edge weights. At even (resp.odd) times, perform an urban renewal on each white(resp. black) face followed by the contraction of all thedegree 2 vertices. Get Z2 with different edge weights.

Page 9: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Goncharov-Kenyon dimer dynamics

• Start with Z2 with some edge weights. At even (resp.odd) times, perform an urban renewal on each white(resp. black) face followed by the contraction of all thedegree 2 vertices. Get Z2 with different edge weights.

Page 10: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

m = 4

n = 2n

m

• Start with spatially biperiodic edge weights, with fun-damental domain of size m × n. The weights remainm× n biperiodic under the dynamics.

• It is seen as an m× n square grid graph on the torus.

Page 11: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

The Kasteleyn operator K

• K is a weighted signed adjacency matrix of the graphwith edge weights.

• For planar graphs, the determinant of K gives the par-tition function (sum of the weights of all dimer config-urations). The dimer correlations are given by minorsof K−1 (Kasteleyn, Temperley, Fisher).

• For graphs on a torus, the Fourier transform of K willgive the spectral curve.

Page 12: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Kasteleyn signing : assign a sign to each edge suchthat the number of minus signs around a face of degree2 mod 4 (resp. 0 mod 4) is even (resp. odd).

• We shall only consider bipartite graphs, that is graphswhere the vertices can be colored black and white witheach edge connecting a black vertex to a white vertex.

+ +

+

+ +

+−

• K : weighted signed adjacency matrix with rows (resp.columns) indexed by white (resp. black) vertices.

Page 13: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

a bc d e

f g

+ +

+

+ +

+−

• K : weighted signed adjacency matrix with rows (resp.columns) indexed by white (resp. black) vertices.

1

2

3

1

2

3

c a 0f −d g0 b e

1 2 3

1

2

3

Page 14: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Consider a bipartite graph on a torus together with twocycles generating the first homology group of the torus.

• K(z, w) : for an edge from a white vertex to a blackvertex, the corresponding coefficient is multiplied by z,z−1, w or w−1 if the edge crosses the right, left, top orbottom boundary of the fundamental domain.

1

1 2

2

a+

b+ d−

c−e+ f+

g+ h+

K(z, w) =

(b+ aw−1 h+ gz−1

f + ez −d− cw

)

Page 15: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Spectral data

• Spectral curve : the set of all (z, w) ∈ (C∗)2 such thatdetK(z, w) = 0.

• Divisor on the spectral curve : values of (z, w) on thespectral curve for which the first coordinate of the vec-tor vanishes.

• Associate to each (z, w) on the spectral curve a vectorin the kernel of K(z, w).

Page 16: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Consider the Goncharov-Kenyon dynamics for m × nsquare-grid dimer model on the torus.

Algebro-geometric integrability

• The dynamics preserves the spectral curve, hence theintegrals of motion are the coefficients of the polynomialdetK(z, w).

• The motion of divisor corresponds to translation on theJacobian of the spectral curve.

Page 17: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Unrelated dimer story : Aztec diamond

Aztec diamond of size 3

Pick a dimer configurationof the Aztec diamond ofsize n uniformly at ran-dom.

Page 18: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

picture by Cris Mooretuvalu.santafe.edu/∼moore/aztec256.gif

• Appearance of a limit shape in the limit n→∞.

color code for dimers:

Page 19: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• To any dimer configuration one can associate a heightfunction, whose graph is a stepped surface.

• A random dimer configuration of the Aztec diamond isa random surface.

• For n → ∞, this random surface concentrates arounda deterministic surface called the limit shape.

• The limit shape is obtained by solving a variationalproblem, minimizing a certain functional with pre-scribed boundary conditions.

Page 20: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Main topic of this talk : Miquel dynamics on circlepatterns.

• Its definition by Kenyon was inspired by theGoncharov-Kenyon dimer integrable system.

Page 21: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel’s theorem

A

A′

B′B C

DD′

C ′

Page 22: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel’s theorem

Theorem (Miquel, 1838). In this setting,A,B,C,D concyclic ⇔ A′, B′, C ′, D′ concyclic.

A

A′

B′B C

DD′

C ′

Page 23: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection
Page 24: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel’s theorem

A

A′

B′B C

DD′

C ′

θ1

θ2

θ3

θ4

θi : intersection anglebetween two circles

Page 25: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel’s theorem

A

A′

B′B C

DD′

C ′

θ1

θ2

θ3

θ4

θi : intersection anglebetween two circles

Theorem (R., 2017). θ1 + θ3 = θ2 + θ4 ⇔A,B,C,D concyclic ⇔ A′, B′, C ′, D′ concyclic.

Page 26: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A

B

C

D

ABCD concyclic ⇔ A+ C = B + D

Page 27: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A

B

C

D

ABCD concyclic ⇔ A+ C = B + D

Page 28: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A

B

C

D

ABCD concyclic ⇔ A+ C = B + D

θ1

θ2 θ3

θ4

A = θ1 + +

C = θ3 + +

B = θ2 + +

D = θ4 + +

Page 29: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Square grid circle patterns

• A square grid circle pattern (SGCP) is a mapS : Z2 → R2 such that any four vertices around a faceof Z2 get mapped to four concyclic points.

S

Page 30: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Square grid circle patterns

• A square grid circle pattern (SGCP) is a mapS : Z2 → R2 such that any four vertices around a faceof Z2 get mapped to four concyclic points.

S

Page 31: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Folds and non-convex quadrilaterals are allowed.

Page 32: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Folds and non-convex quadrilaterals are allowed.

Page 33: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics

• Checkerboard coloring of the faces of Z2 : black andwhite circles.

• Define two maps from the set of SGCPs to itself, blackmutation µB and white mutation µW .

Page 34: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Black mutation µB : each vertex gets moved to theother intersection point of the two white circles it be-longs to. All the vertices move simultaneously.

Page 35: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Black mutation µB : each vertex gets moved to theother intersection point of the two white circles it be-longs to. All the vertices move simultaneously.

Page 36: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Black mutation µB : each vertex gets moved to theother intersection point of the two white circles it be-longs to. All the vertices move simultaneously.

Page 37: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Black mutation µB : each vertex gets moved to theother intersection point of the two white circles it be-longs to. All the vertices move simultaneously.

Page 38: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Black mutation µB : each vertex gets moved to theother intersection point of the two white circles it be-longs to. All the vertices move simultaneously.

• Why does µB produce an SGCP ?

Page 39: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• The maps µB and µW are involutions.

• Miquel dynamics : discrete-time dynamics obtained byalternating between µB and µW .

• Invented by Richard Kenyon.

Page 40: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel’s theorem !

• The maps µB and µW are involutions.

• Miquel dynamics : discrete-time dynamics obtained byalternating between µB and µW .

• Invented by Richard Kenyon.

Page 41: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Biperiodic SGCPs

• An SGCP S is spatially biperiodic if there exist m,nintegers and ~u,~v ∈ R2 such that for all (x, y) ∈ R2,

S(x+m, y) = S(x, y) + ~u

S(x, y + n) = S(x, y) + ~v

m = 4

n = 2n

m

Page 42: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• The vector ~u (resp. ~v) is called the monodromy in thedirection (m, 0) (resp. (0, n)).

• A biperiodic SGCP is mapped by Miquel dynamics toanother biperiodic SGCP with the same periods andmonodromies.

• This reduces the problem to a finite-dimensional one.

• A biperiodic circle pattern in the plane projects downto a circle pattern on a flat torus.

Page 43: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

[Mathematica]

Page 44: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Dimers vs circle patterns

• The limit shape in the dimer model is a deterministicsurface which minimizes some surface tension with pre-scribed boundary conditions (Cohn-Kenyon-Propp).

• For circle patterns, one can find the radii knowing theintersection angles by solving a variational principle.The functional minimized is similar to the one occurringfor dimers (Rivin, Bobenko-Springborn).

• Miquel dynamics mimics the Goncharov-Kenyon dimerdiscrete integrable system. Can it give us a direct con-nection between dimers and circle patterns ?

Page 45: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 46: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 47: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 48: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 49: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 50: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 51: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Miquel dynamics property wish list

Dimension of the space

Coordinates on that space

“Many” independent conserved quantities

Identify black and white mutation ascluster algebra mutations

Compatible Poisson bracket

Spectral curve

Page 52: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

What space of circle patterns ?

• Fix m and n in Z+ and consider the space Mm,n ofSGCPs that have both (m, 0) and (0, n) as a period,considered up to similarity.

• SGCPs whose faces form a cell decomposition of thetorus (no folds, no non-convex quads) are an open sub-set of Mm,n.

• Bobenko-Springborn (2004) : this subspace of cell-decomposition SGCPs has dimension mn+ 1.

Page 53: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Coordinates forMm,n

• Four φ variables in each of the mn faces of a fundamen-tal domain.

• These variables must satisfy some relations.

Page 54: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Coordinates forMm,n

φN

φSφW φE

φN

φW

φS

φE

• Four φ variables in each of the mn faces of a fundamen-tal domain.

• These variables must satisfy some relations.

Page 55: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Flatness at each face and vertex.

• Consistency of radii around a vertex.

φ1φ2

φ3

φ4

φ1φ2

φ3φ4 φ5

φ6

φ7

φ8

4∑i=1

φi = 2π8∑i=1

φi = 4π

sinφ12

sinφ32

sinφ52

sinφ72

sinφ22

sinφ42

sinφ62

sinφ82

= 1

Page 56: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

m = 4

n = 2

• Flatness at each face and vertex.

• Consistency of radii around a vertex.

• Global relations across the torus, expressing theconsistency of radii and the parallelism of edges.

Page 57: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

m = 4

n = 2

• Flatness at each face and vertex.

• Consistency of radii around a vertex.

• Global relations across the torus, expressing theconsistency of radii and the parallelism of edges.

∏sin φ

2 =∏

sin φ2

Page 58: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

m = 4

n = 2

• Flatness at each face and vertex.

• Consistency of radii around a vertex.

• Global relations across the torus, expressing theconsistency of radii and the parallelism of edges.

∏sin φ

2 =∏

sin φ2∑

φ =∑φ

Page 59: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 60: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 61: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 62: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 63: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 64: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 65: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Page 66: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 67: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 68: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 69: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 70: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 71: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 72: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Theorem (R., 2017). The 4mn φ variables satisfying theabove relations coordinatize Mm,n.

We easily reconstruct the SGCP from such φ variables.

Conjecture. One can choose mn+1 φ variables freely, theyprovide local coordinates “almost everywhere” on Mm,n.

m = 2

n = 2

imposed

deduced

Page 73: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Local recurrence formulas

• Replace the φ variables by X = eiφ, complex numbersof modulus one.

XN

XW

XS

XE YE

YN

YW

YS

central faceis black

• How does black mutation act on the Xi’s and Yi’s ?

Page 74: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Y ′N = YN

1−

(1−X

−1W

)(1−Y

−1N

)(1−YW

)(1−XN

) 1−

(1−X

−1E

)(1−Y

−1N

)(1−YE

)(1−XN

) 1−

(1−XW

)(1−YN

)(1−Y

−1W

)(1−X

−1N

)1−

(1−XE

)(1−YN

)(1−Y

−1E

)(1−X

−1N

)

X ′N =

1−

(1−X

−1N

)(1−Y

−1W

)(1−Y ′N

−1)(

1−YN

)(1−XW

)(1−Y ′

W

)1−

(1−XN

)(1−YW

)(1−Y ′

N

)(1−Y

−1N

)(1−X

−1W

)(1−Y ′

W−1)

• Reminiscent of the mutation of ratios of cluster vari-ables in cluster algebras.

Page 75: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Conserved quantities

• The pair of monodromy vectors (~u,~v) up to similarity(two real conserved quantities).

• Signed sums of intersection angles along loops on thetorus.

Page 76: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Draw dual graph to the square grid on the torus andorient the horizontal (resp. vertical) dual edges fromwhite dual vertices to black dual vertices (resp. fromblack dual vertices to white dual vertices).

m = 4

n = 2

• For any directed loop l drawn on the dual graph, defineγ(l) =

∑e∈l±θe.

Page 77: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Draw dual graph to the square grid on the torus andorient the horizontal (resp. vertical) dual edges fromwhite dual vertices to black dual vertices (resp. fromblack dual vertices to white dual vertices).

m = 4

n = 2

• For any directed loop l drawn on the dual graph, defineγ(l) =

∑e∈l±θe.

Page 78: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Draw dual graph to the square grid on the torus andorient the horizontal (resp. vertical) dual edges fromwhite dual vertices to black dual vertices (resp. fromblack dual vertices to white dual vertices).

m = 4

n = 2

• For any directed loop l drawn on the dual graph, defineγ(l) =

∑e∈l±θe.

Page 79: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Draw dual graph to the square grid on the torus andorient the horizontal (resp. vertical) dual edges fromwhite dual vertices to black dual vertices (resp. fromblack dual vertices to white dual vertices).

m = 4

n = 2

• For any directed loop l drawn on the dual graph, defineγ(l) =

∑e∈l±θe.

Page 80: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• Draw dual graph to the square grid on the torus andorient the horizontal (resp. vertical) dual edges fromwhite dual vertices to black dual vertices (resp. fromblack dual vertices to white dual vertices).

m = 4

n = 2

• For any directed loop l drawn on the dual graph, defineγ(l) =

∑e∈l±θe.

minus if traversing e in the wrong way

intersection angle associated with e

Page 81: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• γ(l) only depends on the homology class of l on thetorus. We can upgrade γ to be a group homomorphismfrom H1(T,Z) to R/(2πZ).

Theorem (R., 2017). Black mutation and white mutationchange γ to −γ.

• Provides only two independent conserved quantities.

Page 82: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Isoradial patterns

• An SGCP is called isoradial if all the circles have acommon radius.

Theorem (R., 2017). Isoradial patterns are periodic pointsin Mm,n, with a common period depending on m and n.

• When (m,n) = (2, 1) or (m,n) = (4, 1), every patternis isoradial.

• The isoradial Miquel dynamics coincides with the iso-radial dimer dynamics.

Page 83: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Isoradial Miquel vs Goncharov-Kenyon

Isoradial SGCP withintersection anglesθe on each edge e.

Square grid withweights sin θe

2 oneach edge e.

Isoradial SGCP withintersection anglesθ′e on each edge e.

Square grid with

weights sinθ′e2 on

each edge e.

Black/whitemutation

Black/whiteG-K map

Page 84: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

The 2× 2 case

• Construction of a 2 × 2 SGCP : pick B,D,F and Hfreely, pick E to be any point on the equilateral hyper-bola through B,D,F,H and extend it to a biperiodic

SGCP with monodromies ~u =−−→DF and ~v =

−−→BH.

A BC

D E

F

GH

I

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

Page 85: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

[Geogebra]

Page 86: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A BC

D E

F

GH

I

• Absolute motion : iterating Miquel dynamics, all thepoints usually drift to infinity.

Page 87: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A BC

D E

F

GH

I

• Relative motion : apply black or white mutation andtranslate to bring A back to its original position.

• A,C,G and I are fixed.

Page 88: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

A BC

D E

F

GH

I

• Relative motion : apply black or white mutation andtranslate to bring A back to its original position.

• A,C,G and I are fixed.

• B,D,F and H move along arcs of circles.

Page 89: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Quartic curve for E

Theorem (R., 2017). E moves along the quartic curve Qdefined as the set of the points M satisfying

PM2P ′M2 − λΩM2 = k,

where λ and k are chosen such that the curve goes throughA,C,G and I.

• Given a 2× 2 SGCP, elementary construction of threepoints Ω, P, P ′ (cf Geogebra).

Page 90: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

[Geogebra]

then

[Mathematica]

Page 91: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

Binodal quartic curves

• As a curve in CP2, the quartic Q has two nodes, thecircular points at infinity (1 : i : 0) and (1 : −i : 0),

hence has geometric genus 1 and its normalization Q isan elliptic curve.

• Taking coordinates centered at Ω such that P is onthe horizontal axis, Q has an equation of the form

(X2 + Y 2)2 + aX2 + bY 2 + c = 0

Page 92: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

• For any binodal quartic curve C with nodes P1 and P2,the group law on C can be defined using conics goingthrough P1, P2 and a fixed base point P0 ∈ C : theother three intersection points of the conic with C aredeclared to have zero sum.

Theorem (Glutsyuk-R., 2018). Denote by E′w (resp. E′b) therenormalized position of E after white (resp. black) mutation.

Then Miquel dynamics is translation on Q :

E′w = −E − 2A

E′b = −E − 2C

Page 93: Miquel dynamics for circle patternsramassamy/documents/miquel.pdf · Miquel dynamics mimics the Goncharov-Kenyon dimer discrete integrable system. Can it give us a direct con-nection

[Geogebra]

cubic then quartic

(then the end)