Minimal Scale Invariant Theory of Electroweak Symmetry ......16π2 (λ−3h 2 t +···) Λ2 If Λ...

57
Minimal Scale Invariant Theory of Electroweak Symmetry Breaking Apostolos Pilaftsis School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom & Department of Theoretical Physics and IFIC, University of Valencia, E-46100, Valencia, Spain CERN, 16 June 2011 Based on JHEP09 (2010) 021 (63 pages), with Lisa Alexander–Nunneley

Transcript of Minimal Scale Invariant Theory of Electroweak Symmetry ......16π2 (λ−3h 2 t +···) Λ2 If Λ...

  • Minimal Scale Invariant Theory of

    Electroweak Symmetry Breaking

    Apostolos Pilaftsis

    School of Physics and Astronomy, The University of Manchester,

    Manchester M13 9PL, United Kingdom

    &

    Department of Theoretical Physics and IFIC, University of Valencia,

    E-46100, Valencia, Spain

    CERN, 16 June 2011

    Based on JHEP09 (2010) 021 (63 pages), with Lisa Alexander–Nunneley

  • Plan of the talk

    • The Standard Theory of Electroweak Symmetry Breaking: SM

    • The Gauge Hierarchy Problem and Proposed Solutions

    • Classical Scale Symmetry and Flat Directions

    • The Minimal Scale Invariant extension of the Standard Model:MSISM

    • Phenomenology

    • Conclusions

    CERN, 16 June 2011 A. Pilaftsis

  • • The Standard Theory of Electroweak Symmetry Breaking

    Higgs Mechanism in the SM: SU(3)colour⊗ SU(2)L⊗U(1)Y

    Φ

    V (Φ)

    〈Φ

    Higgs potential V (Φ)

    V (Φ) = −m2Φ†Φ + λ(Φ†Φ)2 .Ground state: 〈

    Φ〉

    =

    √m2

    (01

    )

    carries weak charge, but no electriccharge and colour.

    After Spontaneous Symmetry Breaking:

    ⇒ W±, Z bosons and matter feel the presence of〈Φ

    〉and become massive,

    but not γ and ga, e.g. MW = gw〈Φ

    ⇒ Quantum excitations of Φ =〈Φ

    〉+ H

    (01

    ); H is the Higgs boson.

    CERN, 16 June 2011 A. Pilaftsis

  • Light SM Higgs boson experimentally favourable

    0

    1

    2

    3

    4

    5

    6

    10030 300

    mH [GeV]

    ∆χ2

    Excluded Preliminary

    ∆αhad =∆α(5)

    0.02758±0.000350.02749±0.00012incl. low Q2 data

    Theory uncertaintyJuly 2010 mLimit = 158 GeV

    80.3

    80.4

    80.5

    150 175 200

    mH [GeV]114 300 1000

    mt [GeV]

    mW

    [G

    eV

    ]

    68% CL

    ∆α

    LEP1 and SLD

    LEP2 and Tevatron (prel.)

    July 2010

    [ LEP–TEVATRON EWG, http://lepewwg.web.cern.ch/LEPEWWG/]

    CERN, 16 June 2011 A. Pilaftsis

  • • The Gauge Hierarchy Problem

    Quantum effects on the Higgs-boson mass MH :

    H

    +

    t

    t

    · · · : 116π2

    (λ − 3h2t + · · · ) Λ2

    CERN, 16 June 2011 A. Pilaftsis

  • • The Gauge Hierarchy Problem

    Quantum effects on the Higgs-boson mass MH :

    H

    +

    t

    t

    · · · : 116π2

    (λ − 3h2t + · · · ) Λ2

    If Λ ∼ MGUT, Higgs-mass CT δM2H ∼ 116π2M2GUT → δM2H ∼ 1024M2H!

    CERN, 16 June 2011 A. Pilaftsis

  • • The Gauge Hierarchy Problem

    Quantum effects on the Higgs-boson mass MH :

    H

    +

    t

    t

    · · · : 116π2

    (λ − 3h2t + · · · ) Λ2

    If Λ ∼ MGUT, Higgs-mass CT δM2H ∼ 116π2M2GUT → δM2H ∼ 1024M2H!

    =⇒ Vector bosons are protected from quadratic divergences, if gauged.

    CERN, 16 June 2011 A. Pilaftsis

  • • The Gauge Hierarchy Problem

    Quantum effects on the Higgs-boson mass MH :

    H

    +

    t

    t

    · · · : 116π2

    (λ − 3h2t + · · · ) Λ2

    If Λ ∼ MGUT, Higgs-mass CT δM2H ∼ 116π2M2GUT → δM2H ∼ 1024M2H!

    =⇒ Vector bosons are protected from quadratic divergences, if gauged.

    =⇒ Fermion masses have no linear divergences because of chirality.

    CERN, 16 June 2011 A. Pilaftsis

  • • The Gauge Hierarchy Problem

    Quantum effects on the Higgs-boson mass MH :

    H

    +

    t

    t

    · · · : 116π2

    (λ − 3h2t + · · · ) Λ2

    If Λ ∼ MGUT, Higgs-mass CT δM2H ∼ 116π2M2GUT → δM2H ∼ 1024M2H!

    =⇒ Vector bosons are protected from quadratic divergences, if gauged.

    =⇒ Fermion masses have no linear divergences because of chirality.

    =⇒ No logarithmic stability of MH against QM effects from MZ toMU ∼ 1016 GeV or MPl ∼ 1019 GeV.

    → This is the Gauge Hierarchy Problem

    CERN, 16 June 2011 A. Pilaftsis

  • • Proposed Solutions to the Gauge Hierarchy Problem

    → SUperSYmmetry

    → Flat or Warped Large Extra Dimensions

    → Higgs as a Pseudo-Goldstone Boson

    → No Higgs at All: Technicolour theories, Composite Higgs . . .

    →...

    CERN, 16 June 2011 A. Pilaftsis

  • • Proposed Solutions to the Gauge Hierarchy Problem

    → SUperSYmmetry

    → Flat or Warped Large Extra Dimensions

    → Higgs as a Pseudo-Goldstone Boson

    → No Higgs at All: Technicolour theories, Composite Higgs . . .

    →...

    → Scale or Conformal Symmetry

    CERN, 16 June 2011 A. Pilaftsis

  • References

    [1] S. R. Coleman and E. Weinberg, “Radiative Corrections As The Origin Of Spontaneous

    Symmetry Breaking,” Phys. Rev. D 7 (1973) 1888.

    [2] E. Gildener and S. Weinberg, “Symmetry Breaking And Scalar Bosons,”

    Phys. Rev. D 13 (1976) 3333.

    [3] R. Hempfling, “The Next-to-minimal Coleman-Weinberg model,”

    Phys. Lett. B 379 (1996) 153.

    [4] K. A. Meissner and H. Nicolai, “Conformal symmetry and the standard model,” Phys.

    Lett. B 648 (2007) 312; Phys. Lett. B 660 (2008) 260.

    [5] R. Foot, A. Kobakhidze and R. R. Volkas, “Electroweak Higgs as a pseudo-Goldstone

    boson of broken scale invariance,” Phys. Lett. B 655 (2007) 156.

    [6] W. F. Chang, J. N. Ng and J. M. S. Wu, “Shadow Higgs from a scale-invariant

    hidden U(1)s model,” Phys. Rev. D 75 (2007) 115016.

    [7] M. Shaposhnikov and D. Zenhäusern, Phys. Lett. B 671 (2009) 162;

    D. Blas, M. Shaposhnikov and D. Zenhäusern, “Scale-invariant alternatives to General

    Relativity,” arXiv:1104.1329.

    [8] L. Alexander-Nunneley and A. Pilaftsis, “The Minimal Scale Invariant Extension of

    the Standard Model,” JHEP 1009 (2010) 021.

    CERN, 16 June 2011 A. Pilaftsis

  • • Classical Scale Symmetry and Flat Directions

    Consider the action of a generic theory:

    S[Φ(x)] =

    ∫d4x L[ ∂µΦ(x), Φ(x)] ,

    with

    L = 12∂µΦ(x)∂

    µΦ(x) +1

    2m2Φ2(x) − λΦ4(x) + C .

    CERN, 16 June 2011 A. Pilaftsis

  • • Classical Scale Symmetry and Flat Directions

    Consider the action of a generic theory:

    S[Φ(x)] =

    ∫d4x L[ ∂µΦ(x), Φ(x)] ,

    with

    L = 12∂µΦ(x)∂

    µΦ(x) +1

    2m2Φ2(x) − λΦ4(x) + C .

    • Scaling transformation acting on the fields:

    Φ(x) → Φ′(x′) = eǫa Φ(eǫx) ,

    with a = 1(32

    )for bosons (fermions).

    Classical Scale Invariance:

    S[Φ(x)] = S[Φ′(x′)] =⇒ m2 = 0 , C = 0 .=⇒ No mass-scale in the theory.

    CERN, 16 June 2011 A. Pilaftsis

  • • Tree-level Ward identity from scaling symmetry:

    If Φ = (φ1, φ2, . . . , φn) = ϕN, with |N| = 1, then

    Φ · ∇V tree(Φ) = ϕ ddϕ

    V tree(ϕN) = 4V tree(Φ) ,

    with ∇ ≡(

    ∂∂φ1

    , ∂∂φ2

    , · · · , ∂∂φn

    ).

    CERN, 16 June 2011 A. Pilaftsis

  • • Tree-level Ward identity from scaling symmetry:

    If Φ = (φ1, φ2, . . . , φn) = ϕN, with |N| = 1, then

    Φ · ∇V tree(Φ) = ϕ ddϕ

    V tree(ϕN) = 4V tree(Φ) ,

    with ∇ ≡(

    ∂∂φ1

    , ∂∂φ2

    , · · · , ∂∂φn

    ).

    • Flat direction along a given unit vector N = n (ϕ 6= 0):

    dV tree(ϕn)

    dϕ= 0 ⇐⇒ V tree(ϕn) = 0 , for SI theory only.

    CERN, 16 June 2011 A. Pilaftsis

  • • Tree-level Ward identity from scaling symmetry:

    If Φ = (φ1, φ2, . . . , φn) = ϕN, with |N| = 1, then

    Φ · ∇V tree(Φ) = ϕ ddϕ

    V tree(ϕN) = 4V tree(Φ) ,

    with ∇ ≡(

    ∂∂φ1

    , ∂∂φ2

    , · · · , ∂∂φn

    ).

    • Flat direction along a given unit vector N = n (ϕ 6= 0):

    dV tree(ϕn)

    dϕ= 0 ⇐⇒ V tree(ϕn) = 0 , for SI theory only.

    • Condition for an extremal or stationary flat direction:

    ∇V tree(Φ)∣∣∣Φ=ϕn

    = 0 . But, ϕ remains undetermined.

    CERN, 16 June 2011 A. Pilaftsis

  • • Tree-level Ward identity from scaling symmetry:

    If Φ = (φ1, φ2, . . . , φn) = ϕN, with |N| = 1, then

    Φ · ∇V tree(Φ) = ϕ ddϕ

    V tree(ϕN) = 4V tree(Φ) ,

    with ∇ ≡(

    ∂∂φ1

    , ∂∂φ2

    , · · · , ∂∂φn

    ).

    • Flat direction along a given unit vector N = n (ϕ 6= 0):

    dV tree(ϕn)

    dϕ= 0 ⇐⇒ V tree(ϕn) = 0 , for SI theory only.

    • Condition for an extremal or stationary flat direction:

    ∇V tree(Φ)∣∣∣Φ=ϕn

    = 0 . But, ϕ remains undetermined.

    • Minimization and convexity conditions:

    (v·∇)2V tree(Φ)∣∣∣Φ=ϕn

    ≥ 0 , V tree(ϕN) ≥ 0 , for all possible v and N.

    CERN, 16 June 2011 A. Pilaftsis

  • • Radiative EW breaking of SI: the Gildener–Weinberg approach

    General MS-renormalized SI scalar potential:

    V tree(Φ) =1

    4!fijkl(µ) φiφjφkφl =

    ϕ4

    4!fijkl(µ) NiNjNkNl ,

    with V tree(Φflat = ϕn) = 0, at the RG scale µ = Λ.

    CERN, 16 June 2011 A. Pilaftsis

  • • Radiative EW breaking of SI: the Gildener–Weinberg approach

    General MS-renormalized SI scalar potential:

    V tree(Φ) =1

    4!fijkl(µ) φiφjφkφl =

    ϕ4

    4!fijkl(µ) NiNjNkNl ,

    with V tree(Φflat = ϕn) = 0, at the RG scale µ = Λ.

    Stationarity condition for a local extremum:

    ∇(V tree(Φ) + V 1−loopeff (Φ)

    )∣∣∣Φ = vϕn + δΦ

    = 0 ,

    with δΦ ⊥ vϕn and δΦ = O(1-loop).

    CERN, 16 June 2011 A. Pilaftsis

  • • Radiative EW breaking of SI: the Gildener–Weinberg approach

    General MS-renormalized SI scalar potential:

    V tree(Φ) =1

    4!fijkl(µ) φiφjφkφl =

    ϕ4

    4!fijkl(µ) NiNjNkNl ,

    with V tree(Φflat = ϕn) = 0, at the RG scale µ = Λ.

    Stationarity condition for a local extremum:

    ∇(V tree(Φ) + V 1−loopeff (Φ)

    )∣∣∣Φ = vϕn + δΦ

    = 0 ,

    with δΦ ⊥ vϕn and δΦ = O(1-loop).

    Multiply from left with Φ and use the tree-level WI:

    4 V tree(vϕn + δΦ) + Φ · ∇V 1−loopeff (Φ)∣∣∣Φ = vϕn + δΦ

    = 0 .

    CERN, 16 June 2011 A. Pilaftsis

  • GW perturbative approach to find vϕ:

    (4 δΦ · ∇V tree(Φ) + Φ · ∇V 1−loopeff (Φ)

    )∣∣∣Φ = vϕn

    = 0 .

    CERN, 16 June 2011 A. Pilaftsis

  • GW perturbative approach to find vϕ:

    (4 δΦ · ∇V tree(Φ) + Φ · ∇V 1−loopeff (Φ)

    )∣∣∣Φ = vϕn

    = 0 .

    Since ∇V tree(Φ)|Φ=vϕn = 0, the extremum along Φflat = ϕn is

    n · ∇V 1−loopeff (Φ)∣∣∣Φ = vϕn

    =dV

    1−loopeff (ϕn)

    ∣∣∣∣∣ϕ = vϕ

    = 0 .

    CERN, 16 June 2011 A. Pilaftsis

  • GW perturbative approach to find vϕ:

    (4 δΦ · ∇V tree(Φ) + Φ · ∇V 1−loopeff (Φ)

    )∣∣∣Φ = vϕn

    = 0 .

    Since ∇V tree(Φ)|Φ=vϕn = 0, the extremum along Φflat = ϕn is

    n · ∇V 1−loopeff (Φ)∣∣∣Φ = vϕn

    =dV

    1−loopeff (ϕn)

    ∣∣∣∣∣ϕ = vϕ

    = 0 .

    The 1-loop effective potential along Φflat = ϕn is

    V1−loopeff (ϕn) = A(n)ϕ

    4 + B(n) ϕ4 lnϕ2

    Λ2= B(n) ϕ4

    (ln

    ϕ2

    v2ϕ− 1

    2

    ),

    where A and B are dimensionless constants (depending on particle masses)and

    Λ = vϕ exp

    (A

    2B+

    1

    4

    ).

    CERN, 16 June 2011 A. Pilaftsis

  • • Remarks:

    –Scalar mass spectrum:

    Pseudo-Goldstone boson h associated with the radiative EW breaking of SI:

    m2h =d2V

    1−loopeff (ϕn)

    dϕ2

    ∣∣∣∣∣ϕ=vϕ

    = 8Bv2ϕ .

    CERN, 16 June 2011 A. Pilaftsis

  • • Remarks:

    –Scalar mass spectrum:

    Pseudo-Goldstone boson h associated with the radiative EW breaking of SI:

    m2h =d2V

    1−loopeff (ϕn)

    dϕ2

    ∣∣∣∣∣ϕ=vϕ

    = 8Bv2ϕ .

    –SI UV regularization schemes:

    UV regularization schemes should preserve the SI WIs of the classical action,such as the dimensional regularization scheme.

    =⇒ No need of explicit Mass Counterterm.

    CERN, 16 June 2011 A. Pilaftsis

  • • Remarks:

    –Scalar mass spectrum:

    Pseudo-Goldstone boson h associated with the radiative EW breaking of SI:

    m2h =d2V

    1−loopeff (ϕn)

    dϕ2

    ∣∣∣∣∣ϕ=vϕ

    = 8Bv2ϕ .

    –SI UV regularization schemes:

    UV regularization schemes should preserve the SI WIs of the classical action,such as the dimensional regularization scheme.

    =⇒ No need of explicit Mass Counterterm.

    –The Gauge Hierarchy Problem:

    Ignoring Quantum Gravity effects, m2h is stable against QM effects.

    CERN, 16 June 2011 A. Pilaftsis

  • • The MSISM

    • Scalar fields:

    Φ =

    (G+

    1√2(φ + iG)

    ), S =

    1√2

    (σ + iJ) = |S| eiθS .

    CERN, 16 June 2011 A. Pilaftsis

  • • The MSISM

    • Scalar fields:

    Φ =

    (G+

    1√2(φ + iG)

    ), S =

    1√2

    (σ + iJ) = |S| eiθS .

    • Classical Potential of the MSISM

    V tree(Φ, S) =λ1

    2(Φ†Φ)2 +

    λ2

    2(S∗S)2 + λ3 Φ

    †Φ S∗S + λ4 Φ†Φ S2

    + λ∗4 Φ†Φ S∗2 + λ5 S

    3S∗ + λ∗5 SS∗3 +

    λ6

    2S4 +

    λ∗62

    S∗4

    =1

    2

    (Φ†Φ , S∗S

    )(λ1 λ3 + 2Re (λ4e

    2iθS)

    λ3 + 2Re (λ4e2iθS) λ2 + 4Re (λ5e

    2iθS) + 2Re (λ6e4iθS)

    )

    ︸ ︷︷ ︸≡ Λ

    (Φ†ΦS∗S

    ).

    CERN, 16 June 2011 A. Pilaftsis

  • • Convexity conditions on V tree(Φ, S):

    (i) TrΛ ≥ 0 , (ii){

    Λ12 ≥ 0 , if Λ11 = 0 or Λ22 = 0DetΛ ≥ 0 , if Λ11 6= 0 and Λ22 6= 0

    .

    CERN, 16 June 2011 A. Pilaftsis

  • • Convexity conditions on V tree(Φ, S):

    (i) TrΛ ≥ 0 , (ii){

    Λ12 ≥ 0 , if Λ11 = 0 or Λ22 = 0DetΛ ≥ 0 , if Λ11 6= 0 and Λ22 6= 0

    .

    • Classification of flat directions:

    Φflat = ϕ

    nφnσnJ

    =

    φ

    σ

    J

    ; n2φ + n2σ + n2J = 1 .

    CERN, 16 June 2011 A. Pilaftsis

  • • Convexity conditions on V tree(Φ, S):

    (i) TrΛ ≥ 0 , (ii){

    Λ12 ≥ 0 , if Λ11 = 0 or Λ22 = 0DetΛ ≥ 0 , if Λ11 6= 0 and Λ22 6= 0

    .

    • Classification of flat directions:

    Φflat = ϕ

    nφnσnJ

    =

    φ

    σ

    J

    ; n2φ + n2σ + n2J = 1 .

    –Type-I flat direction: |S| = 0; Φflat = φ =⇒ λ1(Λ) = 0.

    –Type-II flat direction: Φflat general, constrained by V tree minimization.

    –Type-III flat direction: φ = 0; Φflat = ϕ

    (nσnJ

    )=⇒ λ2,5,6(Λ) = 0.

    CERN, 16 June 2011 A. Pilaftsis

  • • Convexity conditions on V tree(Φ, S):

    (i) TrΛ ≥ 0 , (ii){

    Λ12 ≥ 0 , if Λ11 = 0 or Λ22 = 0DetΛ ≥ 0 , if Λ11 6= 0 and Λ22 6= 0

    .

    • Classification of flat directions:

    Φflat = ϕ

    nφnσnJ

    =

    φ

    σ

    J

    ; n2φ + n2σ + n2J = 1 .

    –Type-I flat direction: |S| = 0; Φflat = φ =⇒ λ1(Λ) = 0.

    –Type-II flat direction: Φflat general, constrained by V tree minimization.

    –Type-III flat direction: φ = 0; Φflat = ϕ

    (nσnJ

    )=⇒ λ2,5,6(Λ) = 0.

    (introduces little hierarchy between vSM and Λ)

    CERN, 16 June 2011 A. Pilaftsis

  • • 1-loop effective potential for Type-I & Type-II MSISM:

    V1−loopeff (φ) = α φ

    4 + β φ4 lnφ2

    Λ2= β φ4

    (ln

    φ2

    v2SM− 1

    2

    ),

    with vSM ≈ 246 GeV and

    β =1

    64π2v4SM

    (2∑

    i=1

    m4Hi + 6m4W + 3m

    4Z − 12m4t − 2

    3∑

    i=1

    m4Ni

    ),

    Λ = vSM exp

    2β+

    1

    4

    ), for α ∼ β ⇒ Λ ∼ vSM .

    m2h = 8β n2φv

    2SM ⇐= Pseudo-Goldstone h-Boson

    CERN, 16 June 2011 A. Pilaftsis

  • • 1-loop effective potential for Type-I & Type-II MSISM:

    V1−loopeff (φ) = α φ

    4 + β φ4 lnφ2

    Λ2= β φ4

    (ln

    φ2

    v2SM− 1

    2

    ),

    with vSM ≈ 246 GeV and

    β =1

    64π2v4SM

    (2∑

    i=1

    m4Hi + 6m4W + 3m

    4Z − 12m4t − 2

    3∑

    i=1

    m4Ni

    ),

    Λ = vSM exp

    2β+

    1

    4

    ), for α ∼ β ⇒ Λ ∼ vSM .

    m2h = 8β n2φv

    2SM ⇐= Pseudo-Goldstone h-Boson

    • Important remark on SI SM:

    β1−loop =1

    64π2v4SM

    (6m4W + 3m

    4Z − 12m4t

    )< 0 .

    =⇒ Perturbative SI SM unrealistic! What about non-perturbative SI SM?

    CERN, 16 June 2011 A. Pilaftsis

  • • Model Taxonomy

    Flat direction U(1) Invariant CP Violation Massive DM SeesawCandidate Neutrinos

    Type-I

    S = 0 Yes None Yes No

    S = 0 No Explicit Yes No

    Type-II

    S = real Yes None No Yes

    S = real No Explicit Model YesDependent

    S = imaginary No Explicit Model YesDependent

    S = complex No Explicit or Model YesSpontaneous Dependent

    CERN, 16 June 2011 A. Pilaftsis

  • • Phenomenology

    • EW oblique parameters S, T and U

    µ ν

    φ

    G/G±p

    µ ν

    φ

    Z/W±p µ ν

    φ

    p

    Theoretical prediction: δP = PMSISM − PSM, with P = S, T, U .

    Experimental limits:

    −0.296 < δSexp < 0.096 ,−0.296 < δTexp < 0.136 ,−0.066 < δUexp < 0.366 ,

    for mrefHSM = 117 GeV.

    CERN, 16 June 2011 A. Pilaftsis

  • • Perturbativity constraints on couplings

    Constraint on 1-loop β-functions:

    βλ ≤ 1 ,

    where λ ∈ {λ1,2,...,6, g′, g, gs, he,u,d, hN , h̃N}.

    CERN, 16 June 2011 A. Pilaftsis

  • • Perturbativity constraints on couplings

    Constraint on 1-loop β-functions:

    βλ ≤ 1 ,

    where λ ∈ {λ1,2,...,6, g′, g, gs, he,u,d, hN , h̃N}.

    1-loop RGEs for λ1,2,...,6 and hN , h̃N are calculated, using the

    Displacement Operator Formalism for Renormalization.[D. Binosi, J. Papavassiliou and AP, PRD71 (2005) 085007.]

    ΓR(φR, λR) = limε→0

    eD Γ0(φR, λR ; ε) ,

    D = δφ∂

    ∂φR+ δλ

    ∂λR,

    with δφ = φ0 − φR and δλ = λ0 − λR.

    CERN, 16 June 2011 A. Pilaftsis

  • Type-I U(1)-Invariant MSISM

    V tree(Λ) =λ2(Λ)

    2(S∗S)2 + λ3(Λ) Φ

    †Φ S∗S .

    Scalar boson mass spectrum:

    h ≡ φ , H1 ≡ σ , H2 ≡ J ,

    with

    m2σ = m2J =

    λ3(Λ)

    2v2SM .

    Higgs-to-gauge boson couplings:

    g2hZZ = 1 , g2H1,2ZZ

    = 0 .

    CERN, 16 June 2011 A. Pilaftsis

  • Type-I U(1)-Invariant MSISM [L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    1 10 10210

    102

    103

    104

    Λ3HLL

    mhHG

    eVL

    LEP

    ∆T

    ∆S

    ΒΛ31

    1 10 102102

    103

    104

    Λ3HLL

    ,JHG

    eVL

    LEP

    ∆T

    ∆S

    ΒΛ31

    CERN, 16 June 2011 A. Pilaftsis

  • General Type-I MSISM

    V tree(Λ) =λ2(Λ)

    2(S∗S)2 + λ3(Λ)Φ

    †Φ S∗S + λ4(Λ) Φ†Φ S2 + λ∗4(Λ) Φ

    †Φ S∗2

    + λ5(Λ) S3S∗ + λ∗5(Λ) SS

    ∗3 +λ6(Λ)

    2S4 +

    λ∗6(Λ)

    2S∗4 .

    Scalar boson mass spectrum:

    h ≡ φ , H1 = cos θ σ + sin θ J , H2 = − sin θ σ + cos θ J ,

    with

    m2H1 =1

    2

    (λ3(Λ)+2|λ4(Λ)|

    )v2SM , m

    2H2

    =1

    2

    (λ3(Λ)−2|λ4(Λ)|

    )v2SM .

    Higgs-to-gauge boson couplings:

    g2hZZ = 1 , g2H1,2ZZ

    = 0 .

    CERN, 16 June 2011 A. Pilaftsis

  • General Type-I MSISM [L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    1 10 10210

    102

    103

    104

    Λ3HLL

    mhHG

    eVL

    LEP

    ∆T∆S

    ΒΛ31

    Λ4=0

    Λ3=2 Λ4

    1 10 102102

    103

    104

    Λ3HLL

    mH

    2HG

    eVL

    LEP

    ∆T∆S

    ΒΛ31

    Λ4 =0

    Β=0

    1 10 102102

    103

    104

    Λ3HLL

    mH

    1HG

    eVL

    LEP

    ∆T∆S

    ΒΛ31

    Β=0Λ4 =

    0

    Λ3=2 Λ4

    1 10 102102

    103

    104

    Λ3HLL

    LHG

    eVL

    LEP

    ∆T∆S

    ΒΛ31Λ3=2

    Λ4

    Λ4 =0

    CERN, 16 June 2011 A. Pilaftsis

  • Type-II U(1)-Invariant MSISM

    V tree(Λ) =λ1(Λ)

    2(Φ†Φ)2 +

    λ2(Λ)

    2(S∗S)2 + λ3(Λ) Φ

    †Φ S∗S ,

    withφ2

    σ2=

    n2φ

    n2σ= − λ2(Λ)

    λ3(Λ)= − λ3(Λ)

    λ1(Λ).

    Scalar mass spectrum:

    h = cos θ φ + sin θ σ , H1 ≡ H = − sin θ φ + cos θ σ , H2 ≡ J ,

    withm2H =

    [λ1(Λ) − λ3(Λ)

    ]v2SM , m

    2J = 0 .

    Higgs-to-gauge boson couplings:

    g2hV V = cos2 θ =

    −λ3(Λ)λ1(Λ) − λ3(Λ)

    , g2HV V = sin2 θ =

    λ1(Λ)

    λ1(Λ) − λ3(Λ).

    CERN, 16 June 2011 A. Pilaftsis

  • Type-II U(1)-Invariant MSISM [L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    0

    -1

    -2

    -3

    -4

    0 1 2 3 4

    Λ3HLL

    Λ1HLL

    LEP

    Β=0

    ΒΛ2=1

    ΒΛ1=1

    Pert0

    -0.01

    -0.02

    -0.03

    -0.04

    0 1 2 3 4

    Λ3HLL

    Λ1HLL

    LEP

    Β=0 ΒΛ1=1

    Pert

    0 1 2 3 40

    50

    100

    150

    Λ1HLL

    mhHG

    eVL LEP

    LEP

    ΒΛ2=1 ΒΛ1=1

    0 1 2 3 4200

    300

    400

    500

    600

    700

    Λ1HLL

    mHHG

    eVL

    LEP

    LEP

    ΒΛ2=1ΒΛ1=1

    Λ3=0Β=0

    CERN, 16 June 2011 A. Pilaftsis

  • Type-II MSISM with Maximal SCPV[L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    Breaking pattern U(1) → Z4 symmetry:

    V tree(Λ) =λ1(Λ)

    2(Φ†Φ)2+

    λ2(Λ)

    2(S∗S)2+λ3(Λ) Φ

    †Φ S∗S+λ6(Λ)

    2(S4+S∗4) ,

    with

    φ2

    σ2=

    n2φ

    n2σ= −2λ3(Λ)

    λ1(Λ)= −2

    [λ2(Λ) − 2λ6(Λ)

    ]

    λ3(Λ), σ = J , nσ = nJ .

    Scalar boson mass spectrum:

    m2H1 =[λ1(Λ)−λ3(Λ)

    ]v2SM , m

    2H2

    = 4λ1(Λ)λ6(Λ)

    −λ3(Λ)v2SM , H2 =

    1√2

    (−σ+J) .

    Higgs-to-gauge boson couplings:

    g2hV V =−λ3(Λ)

    λ1(Λ) − λ3(Λ), g2H1V V =

    λ1(Λ)

    λ1(Λ) − λ3(Λ).

    CERN, 16 June 2011 A. Pilaftsis

  • Type-II MSISM with Maximal SCPV[L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    0-0.005-0.01-0.015-0.02-0.0251

    10

    102

    103

    Λ3HLL

    mhHG

    eVL

    Λ2=0.02

    Λ2=0.2

    LEP

    LEP Α=1

    Α=1

    0-0.005-0.01-0.015-0.02-0.025102

    103

    104

    Λ3HLL

    mH

    2HG

    eVL

    Λ2=0.02

    Λ2=0.2

    LEPLEP

    Α=1Α=1

    0-0.005-0.01-0.015-0.02-0.025150

    160

    170

    180

    190

    200

    Λ3HLL

    mH

    1HG

    eVL

    Λ2=0.2

    ΒΛ1=1

    Λ1=0

    LEP Α=1

    0-0.005-0.01-0.015-0.02-0.025150

    160

    170

    180

    190

    200

    Λ3HLL

    mH

    1HG

    eVL

    Λ2=0.02

    Β=0

    ΒΛ1=1

    Λ1=0

    LEP Α=1

    CERN, 16 June 2011 A. Pilaftsis

  • Extension by RH Neutrinos

    LYν = − hνijL̄iLΦ̃ν0jR −1

    2h

    Nij ν̄

    0CiR Sν

    0jR −

    1

    2h̃

    Nij ν̄

    0iRSν

    0CjR + H.c.

    Neutrino mass spectrum:

    LMassν = −1

    2

    (ν̄0iL, ν̄

    0CiR

    ) ( 0 mDijm

    TDij mMij

    ) (ν0CjLν0jR

    )+ H.c.,

    with

    mD =φ√2

    hν , mM =

    1√2

    (h

    N + h̃N†)

    + iJ(h

    N − h̃N†) ]

    .

    Type-II MSISM with σ ↔ J symmetry =⇒ hN = −ih̃N†.

    mν = −1

    4

    √−λ3(Λ)λ1(Λ)

    vSM hν(RehN)−1 hνT , mN = 2

    √λ1(Λ)

    −λ3(Λ)vSM Reh

    N .

    CERN, 16 June 2011 A. Pilaftsis

  • Extension by RH Neutrinos [L. Alexander–Nunneley, AP, JHEP09 (2010) 021]

    0 0.05 0.1 0.15 0.20

    200

    400

    600

    800

    Re hNHLL

    mNHG

    eVL

    LEP

    ΒΛ1=1

    Λ1=0

    Β=0

    Case A

    0 0.05 0.1 0.15 0.20

    200

    400

    600

    800

    Re hNHLL

    mNHG

    eVL

    LEPΒΛ1=1

    Λ1=0

    Β=0Α=1

    Case B

    0 0.05 0.1 0.15 0.20

    200

    400

    600

    800

    Re hNHLL

    mNHG

    eVL

    LEP

    ΒΛ1=1

    Λ1=0

    Β=0

    Case C

    A: λ2(Λ) = 0.1 , λ3(Λ) = −0.01 ,

    B: λ2(Λ) = 0.1 , λ3(Λ) = −0.005 ,

    C: λ2(Λ) = 0.05 , λ3(Λ) = −0.005 .

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    • Convexity conditions and classification of MSISM flat directions

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    • Convexity conditions and classification of MSISM flat directions

    • 1-loop effective potential and radiative EW breaking of SI

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    • Convexity conditions and classification of MSISM flat directions

    • 1-loop effective potential and radiative EW breaking of SI

    • EW constraints + perturbativity up to MPl=⇒ Type-II U(1)-violating MSISM + Z4 symmetry

    =⇒ Stable H2 Scalar as DM + Maximal Spontaneous CP Violation

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    • Convexity conditions and classification of MSISM flat directions

    • 1-loop effective potential and radiative EW breaking of SI

    • EW constraints + perturbativity up to MPl=⇒ Type-II U(1)-violating MSISM + Z4 symmetry

    =⇒ Stable H2 Scalar as DM + Maximal Spontaneous CP Violation

    • RH neutrinos predicted at the EW scale in the Type-II MSISM

    CERN, 16 June 2011 A. Pilaftsis

  • • Conclusions

    • Perturbative SI extension(s) of the SM as potential solution tothe gauge hierarchy problem (up to quantum gravity effects)

    • MSISM = SI SM + 1 complex singlet scalar S

    • Convexity conditions and classification of MSISM flat directions

    • 1-loop effective potential and radiative EW breaking of SI

    • EW constraints + perturbativity up to MPl=⇒ Type-II U(1)-violating MSISM + Z4 symmetry

    =⇒ Stable H2 Scalar as DM + Maximal Spontaneous CP Violation

    • RH neutrinos predicted at the EW scale in the Type-II MSISM

    • LHC will partially probe the Higgs sector of the MSISM

    CERN, 16 June 2011 A. Pilaftsis