Millimeter-Wave CMOS Device Modeling and...

18
Matsuzawa & Okada Lab. . Matsuzawa & Okada Lab. . Millimeter-Wave CMOS Device Modeling and Issues Kenichi Okada Tokyo Institute of Technology MOS-AK @ ESSCIRC 2012

Transcript of Millimeter-Wave CMOS Device Modeling and...

Page 1: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Matsuzawa& Okada Lab.

Matsuzawa Lab.Tokyo Institute of Technology

Matsuzawa& Okada Lab.

Matsuzawa Lab.Tokyo Institute of Technology

Millimeter-Wave CMOS

Device Modeling and Issues

Kenichi Okada

Tokyo Institute of Technology

MOS-AK @ ESSCIRC 2012

Page 2: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

1

Outline

• Motivation

& Brief introduction of 60GHz CMOS

transceiver

• Modeling issues

• Measurement issues

• Substrate modeling issues

• Layout optimization

• Transistor characterization

• Summary & Conclusion

Page 3: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

2

Motivation

• 60GHz CMOS transceiver

for multi-Gbps wireless

communication

57.24GHz - 65.88GHz

2.16GHz/ch x 4channels

IEEE 802.11ad specification

QPSK 16QAM 64QAM

2.16GHz

x1ch 3.4Gbps 6.8Gbps 10.1Gbps

2.16GHz

x4ch 13.5Gbps 27.0Gbps 40.6Gbps

Page 4: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

3

60GHz Direct-Conversion Transceiver

[1] K. Okada, et al., ISSCC 2012

LNA

LNAQ MIXER

I MIXER

LO BUF.

LO BUF.

Q.OSC.

Logic

I MIXER

Q MIXER

LO BUF.

LO BUF.

Q.OSC.PA

PLL LO BUF.

• 2.4GHz vs 60GHz (25x)

RF front-end (Tx/Rx/LO)

– Simulation/Modeling, Gain, Noise, Pout

65nm CMOS, 4.2x4.2mm

Page 5: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

4

• TL-based design for simulation accuracy

• Low-loss TL & MIM TL

TL-Based Design

MIM TL for decoupling 50W, 0.8dB/mm

Z0=3W

W=1mm x40 1mm x40 2mm x20 2mm x20

GND

dummy

signal(10mm)

gap(15mm) GND

M1&M2 shield

GND GND

4-stage CS-CS LNA

[2] K. Okada, et al., ISSCC 2011

Page 6: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Performance Summary

5

-40

-30

-20

-10

0

10

57.24 60.48 63.72

Arch. Max. rate in 16QAM

Distance for BER <10-3

PDC (Tx/Rx)

IMEC[3] Direct 7Gb/s ch.1-4 (EVM < -17dB) (w/o PLL)

176mW / 112mW

SiBeam [4]

Hetero 7Gb/s ch.2-3 (EVM < -19dB) 50m(LOS), 16m(NLOS)

1,820mW / 1,250mW

This work

Direct 10Gb/s- ch.1-4 (EVM < -23dB) 1.3-1.6m (QPSK) 0.3-0.5m (16QAM)

319mW / 223mW

[3] V. Vidojkovic, et al., ISSCC 2012 [4] S. Emami, et al., ISSCC 2011

6dBi antennas

Page 7: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

6

Outline

• Motivation

& Brief introduction of 60GHz CMOS

transceiver

• Modeling issues

• Measurement issues

• Substrate modeling issues

• Layout optimization

• Transistor characterization

• Summary & Conclusion

Page 8: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Issues of mmW Tr Modeling

• Bias scalability

• L & W scalability

• Linearity –Large-signal accuracy for RF and mmW

• Noise

caused by

• Measurement inaccuracy

• Complex physical and electrical

structure of miniaturized transistors –Substrate model

7

Page 9: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Substrate Coupling

8

GND

Input Output

p + n + n +

G

S D B

P sub

n + n + p +

G

S D B P well

N well

n +

N well

n +

P well

Vdd

Vdd

bias

Common-Source Common-Gate

0

5

10

15

20

25

0 20 40 60 80 100

Ma

xG

ain

(d

B)

Frequency (GHz)

CS+CG

Cascode

CS CG

Cascode

completely same layout but

different characteristics

connect S-parameters

measured individually

Page 10: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Substrate model issue

• Measurement through drain, gate and

source is not so reliable to build an

equivalent circuit of the substrate

network.

• Up to 10GHz

• CS meas. + CG meas. ≠ Cascode

meas.

• L, Wf-scalability, VB dependence

9

Page 11: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Current status & Target

DC (< 1GHz)

RF (< 10GHz)

mmW (> 10GHz)

Bias dep. (VG, VD)

Bias dep. (VS) partially

Bias dep. (VB)

#finger scalability

Wf scalability

L scalability

Non-linearity (IM3) partially

Large-signal partially

Noise partially 10

Page 12: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

11

Outline

• Motivation

& Brief introduction of 60GHz CMOS

transceiver

• Modeling issues

• Measurement issues

• Substrate modeling issues

• Layout optimization

• Transistor characterization

• Summary & Conclusion

Page 13: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Finger Width Optimization

12

[5] T. Suzuki, ISSCC 2008

W=2umx8

•MAG peak

W=1umx16

• Rg

• Diffusion capacitance

• MAG

• NF

Page 14: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Asymmetric Source/Drain Layout

13

Dgd should be longer for smaller Cgdsw.

Dgs should be shorter for smaller Rs.

Gate

Cont.

M1

Source DrainP-Sub

M1

Dgs

Dgd

Drain

Source

Gate

Dgd

Dgs

Drain

Source

Dgd

Gate Dgs

Convertional Proposed

Dgd : Gate to drain contact distance

Dgs : Gate to source contact distance

[6] N. Li, et al., ESSCIRC 2010

Page 15: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Dgd Optimization

14

+0.6 dB

MAG is improved by 0.6 dB.

Small Cgdsw will increase fmax

Larger Dgd (e.g. 200 nm)

Large Rs will degenerate the transistor

Smallest Dgs (e.g. 60 nm)

Cdb

CgdswRdsw

RsswCgssw

Csb

Gate

Drain

Source

Rd

Rs

Cgdsw

Cgssw

Page 16: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

15

Outline

• Motivation

& Brief introduction of 60GHz CMOS

transceiver

• Modeling issues

• Measurement issues

• Substrate modeling issues

• Layout optimization

• Transistor characterization

• Summary & Conclusion

Page 17: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

Summary & Conclusion

• Device models for mmW design are still

not developed well as compared with

lower frequency.

• L, Wf, #finger, VB, VS scalability

• Noise and linearity are also headachy.

16

Page 18: Millimeter-Wave CMOS Device Modeling and Issuesmos-ak.org/bordeaux/presentations/T08_Okada_MOS-AK... · 2 Motivation •60GHz CMOS transceiver for multi-Gbps wireless communication

17

Acknowledgement

This work was partially supported by MIC,

MEXT, STARC, NEDO, Canon Foundation, and

VDEC in collaboration with Cadence Design

Systems, Inc., and Agilent Technologies Japan,

Ltd. The authors thank Dr. Hirose, Dr. Suzuki,

Dr. Sato, and Dr. Kawano of Fujitsu

Laboratories, Ltd., Dr. Taniguchi of JRC, Dr.

Hirachi of AMMSys Inc., Prof. Suga of Aoyama

Gakuin University, Dr. Fukuzawa and Prof.

Ando of Tokyo Institute of Technology for their

valuable discussions and technical supports.