MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up...

25
MIET-1081 Advanced Thermo-Fluid Mechanics Computer Lab ver 2019 Kiao INTHAVONG, Yihuan YAN, Jiawei MA RMIT University, School of Engineering

Transcript of MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up...

Page 1: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

MIET-1081 

Advanced Thermo-Fluid Mechanics  

Computer Lab ver 2019 

 

   

 

 

     

 

 

 

 

 

Kiao INTHAVONG, Yihuan YAN, Jiawei MA RMIT University, School of Engineering 

  

 

 

   

 

Page 2: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Information: 

COMPUTER LAB LOCATION: 253.02.14 

Computer Lab Sessions: 

Tuesday: 11:00 - 12:00  

Tuesday: 17:00-18:00 

Wednesday: 10:00 - 11:00 

Friday: 9:00 - 10:00    

 

*Computer lab is limited to max. 60 students in each session. Please attend your enrolled session.                               You only need to attend ONE of the above sessions. 

 

INSTRUCTORS 

Dr. Kiao Inthavong Email: [email protected] Office: 251.3.41 

Dr. Yihuan Yan Email: [email protected] Consultation times: Tuesdays 13:00 - 14:00 Office: 251.3.65 

Mr. Jiawei Ma Email: [email protected] Consultation times: Thursdays 11:00 - 12:00 Office: 251.2.44  

 

 

TEACHING ASSISTANTS: Xiang Fang, Jiang Li 

INSTRUCTIONS: Bring in this booklet each week. Fill in the answers in the spaces provided. You                               will also perform hand calculations to assist you in your learning. At the end of the semester this                                   booklet will serve as revision text for your exam.  

 

 

 

 

 

 

 

 

MIET-1081 Computer Lab Handout 2019     1  

 

Page 3: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

CL-01 Heat Conduction 1.1 Using FLUENT in MIET1081 Introduction to FLUENTs Text User Interface Ansys-FLUENT is a computational fluid dynamics program that provides colourful predictions of                       the physical behaviour of fluids, by numerically solving equations that govern the flow. In this                             course we are not interested in the details of the software, but in visualising the physical                               behaviour of fluid and heat transfer. Heat transfer cases will be available each week and we will                                 be using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. 

When you first start FLUENT, you are in the root menu and the menu prompt is simply an arrow                                     with a blinking cursor. > 

To generate a listing of the submenus and commands in the current menu, simply press <Enter>.                               You will get the following: define/ grid/ solve/ ... 

To execute a command, just type its name (or an abbreviation). To move into a submenu, enter its                                   name or an abbreviation. When you move into the submenu, the prompt will change to reflect the                                 current menu name. For example type disp and press <Enter>. To generate a listing of the                               submenus and commands in the current menu, simply press <Enter> again. To enter a submenu,                             enter its name, (e.g., type in set) and press <Enter>: > disp /display/set> 

To go back up a menu type q or quit at the prompt and press <Enter>.  

For example: Let’s define the material of the model as wood. 

a) Type define <Enter> followed by b-c <Enter>. Typing b-c is an abbreviation of the same as                               typing boundary-conditions.  

b) Type solid and <Enter>. A list of options follows.  c) Type in the responses as shown in bold font below. 

zone id/name [body] body material-name [aluminum]: Change current value? [no] yes material-name [aluminum]> wood Specify source terms? [no] no  Specify fixed values? [no] no Frame Motion? [no] no Use Profile for Reference Frame X-Origin of Rotation-Axis? [no] no Reference Frame X-Origin of Rotation-Axis (m) [0] 0 Use Profile for Reference Frame Y-Origin of Rotation-Axis? [no] no Reference Frame Y-Origin of Rotation-Axis (m) [0] 0 Mesh Motion? [no] no Deactivated Thread [no] no 

We can use journal text files to issue these commands automatically as a list of inputs. It is simply                                     a text file that sends commands. Enter the following command into Notepad, define/boundary-conditions/solid body yes wood n n n n 0 n 0 n n 

and save the file as week1.jou. The file should be saved in the same directory as the FLUENT case                                     (.cas) file. If you can’t find your file in a directory use pwd to show where it should be. 

 

MIET-1081 Computer Lab Handout 2019     2  

 

Page 4: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

1.2 1D Steady Heat Conduction 

Conduction is a heat transfer mode involving transfer of energy from more energetic particles of                             a substance to its neighbouring less energetic ones. Although conduction can occur in solids,                           liquids, or gases, it is most significant in solids through the lattice connection of electrons. In                               gases and liquids, conduction occurs through collisions and diffusion of molecules. The rate of                           heat conduction is dependent on its geometry, shape, its thickness, the material (which is its                             conductivity), and the temperature difference across the medium. 

 

Figure 1.1: Parameters influencing heat conduction 

Consider heat conduction through a large plane wall such as a brick wall of a house. In such a                                     geometry heat conduction can be approximated as one-dimensional since the conduction will be                         dominant in one direction and negligible in other directions. Fourier’s law of heat conduction is                             used to describe this mode of heat transfer 

 

Notes: 

● The conduction heat transfer area is always normal to the direction of heat transfer. ● The thickness of the wall is independent of the heat transfer area. ● Since heat transfer occurs in the direction of decreasing temperature, the resulting                       

temperature gradient becomes negative when temperature decreases in the direction of x                       i.e. increasing x.  

● This means that we need a negative sign to ensure that heat transfer in the positive x                                 direction gives a positive value. 

● dT/dx is the temperature gradient, which describes how the temperature changes in the                         x-direction 

The thermal conductivity, k is a measure of a material's ability to conduct heat. A high value for                                   thermal conductivity means that the material conducts heat well, and a low value indicates that                             the material resists heat conduction acting like an insulator. Intuitively we know that metals get                             hot very quickly from exposure to heat, while water takes longer to heat up and this is confirmed                                   by their conductivities: iron has k = 80 W/moC, and water has k =0.61 W/moC. 

Thermal conductivities of some materials 

Material  k (W/m.oC)  Material  k (W/m.oC)  Material  k (W/m.oC) 

Diamond  2300  Aluminium  237  Water, liquid  0.61 Silver  429  Steel  16.27  Wood, oak  0.17 Copper  387.6  Brick  1.31  Air, gas  0.026 Gold  317  Glass  0.78  Insulating foam  0.026 

 

MIET-1081 Computer Lab Handout 2019     3  

 

Page 5: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

 

Using FLUENT to Predict a Steady Heat Conduction Problem (Practices) Step-1: Open the file “CL01-2.cas” ensuring that the 2D option is selected. See the “ Appendix A ” at the back of the handout p.21 for loading the case. 

a.  Figure 1.2: 2D geometry of a plane wall problem 

 Step-2: Use the Excel journal script maker to create your journal file. Define the material body.                               The name of the material can be one of the following brick, wood, copper, aluminum.  

Step-3: Define the boundary conditions. • Boundaries are left, right which may be temperature, or heat-flux. • We also need to enter a value for the boundary condition selected: T, [oC] for 

temperature or q, [W/m2] for heat-flux  

Investigate the following cases.  

CASE 1 - copper bar (k =387.6 W/moC, you don’t need to enter this value since it is contained within the FLUENT material library) with: 

• Left end with a constant heat flux 3250 W/m2 

• Right end has a constant temperature 30oC  

CASE 2 - copper bar (k =387.6 W/moC) with: • Left end has a constant temperature 250oC • Right end has a constant temperature 30oC 

 CASE 3 - brick bar (k =1.31 W/moC ) with: 

• Left end with a constant heat flux 3250 W/m2 

• Right end has a constant temperature 30oC  

CASE 4 - brick bar(k =1.31 W/moC) with: • Left end has a constant temperature 250oC • Right end has a constant temperature 30oC 

Post-processing Use contours, xy-plots to investigate and answer the questions on the next page, (see the                             Appendix B at the back of the handout p.22 for post-processing procedures). 

    

 

MIET-1081 Computer Lab Handout 2019     4  

 

Page 6: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

QUESTIONS  

Q1 Using Fourier’s heat conduction equation calculate the following  

  Case 1  Case 2  Case 3  Case 4  

Tleft    

250    

250 

 q 

 3250 

   3250 

 

 Q2 Plot each of the temperature gradient for the four cases. 

  

Q3 Why are the dT/dx the same for Case 2 and Case 4?   

   

  

Q4 Which dT/dx has the highest gradient? Which has the flattest or smallest gradient? Why?  

  

  Q5 If we apply same wall temperature boundary conditions for the four different materials                           

(brick, wood, steel, and copper) what would their dT/dx look like. Explain why in terms of                               Fourier’s conduction equation. 

  

 

 

MIET-1081 Computer Lab Handout 2019     5  

 

Page 7: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

1.3 Conduction and Thermal Resistance Equations Heat conduction through a plane wall can be described as 

 

If we are after a heat flux then the equations become 

 

For heat transfer in series, the resistance is 

 

For heat transfer in parallel, the resistance is 

Practices Step-1: Open “CL01-3.cas” file in FLUENT in 2D mode. The geometry is shown below: 

 

Figure 2.2: 2D geometry of a two materials in series   Step-2: Using the excel script maker file, investigate the following cases: 

Case 1: Body1 = copper Body2 = steel 

copper steel  

Tleft=175oC Tint Tright=25oC  

Case 2: Body1 = copper Body2 = brick 

copper brick  

Tleft=175oC Tint Tright=25oC  

Case 3: Body1 = copper Body2 = brick 

copper brick  

Tleft=45oC Tint ⬅ q=800W/m2 

 

MIET-1081 Computer Lab Handout 2019     6  

 

Page 8: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Questions  

Q1 Using the thermal resistance equations (Eqns 2.1 to 2.4) calculate the heat transfer, and                             the middle interface temperature for each case. The conductivities of the materials used                         are: kcopper =387.6 W/m.K; ksteel=16.27 W/m.K; kbrick =1.31 W/m.K: 

   Case 1  Case 2  Case 3 

Tint       

q      800 W/m2 

  

Q2 Plot the temperature gradient profiles for each case  

   

Q3 Explain what the temperature gradient of copper looks like for all the three cases and why this happens. 

  

   

   

Q4 Calculate by hand the heat transfer rate (q) for a i) copper (k = 387.6 W/m.K) and steel (k =                                         16.27 W/m.K), and ii) copper and brick (k = 1.31 W/m.K), in parallel mode,having the same                               temperature boundary conditions used earlier (175 0C, and 25 0C). 

   

   

 

MIET-1081 Computer Lab Handout 2019     7  

 

Page 9: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

CL-02 External Forced Convection - Flow over Cylinder 2.1 Introduction The flow over a circular cylinder is one of the most widely investigated engineering problems                             because of the many fluid dynamics properties that it exhibits. As the Reynolds number (Re)                             increases, the flow exhibits a series of different fluid structures (Figure 4.1). This includes                           separation, and vortex shedding in its wake, which all contribute to drag, lift and heat transfer. 

 

 Figure 4.1: Regimes of fluid flow across a smooth circular cylinder - image from Lienhard (1966) Synopsis of lift, 

drag, and vortex frequency data for rigid circular cylinders, Technical Extension Service 

The flow field over the cylinder is symmetric at low Reynolds number. As the Reynolds number                               increases, flow begins to separate behind the cylinder and vortex shedding occurs. Vortex                         shedding is an unsteady phenomenon. You will run simulations in steady state or unsteady (time                             dependent) solver to capture these effects. 

In this computer lab we investigate the influence of Re on the flow characteristics and how this                                 influences the heat transfer. This forms part of the external forced convection heat transfer                           topic. 

The lab report requirement consists of two parts: i) experimental measurements and its analysis                           from the wind tunnel experiments, and ii) CFD modelling. 

 

MIET-1081 Computer Lab Handout 2019     8  

 

Page 10: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

An infinitely long circular cylinder of diameter D = 0.01m sits in a uniform cross flow with velocity                                   U, modelled in 2D (Fig 4.2). There are two boundary conditions to define. Firstly the flow velocity                                 is defined at the inlet. Also when considering heat transfer we have to define temperature values                               for the inlet velocity, and the cylinder wall. The heat transfer then becomes an external forced                               convection heat transfer flow over a cylinder. In the labs you need to simulate the following                               cases: 

● Re = 1 (steady, laminar) ● Re = 100 (unsteady, laminar) ● Re = wind tunnel lab experiment, (steady, laminar) ● Re = 1e6 (steady turbulent; heat transfer) 

 

2.2 Reynolds number and Dynamic Similarity The Re number is a dimensionless number which we use to                     match flow properties. This means that even if the flow                   conditions exhibit different material properties, velocities and             dimensions - as long as the Re numbers are the same - then                         the fluid flow characteristics should remain the same. The Re                   number is defined as 

 

where D = 0.01m. 

The fluid material we are using is a customised one, called                     miet1081 where we will change its properties to easily                 calculate the Re number. For example, for Re = 1, we can                       define the material property as ⍴ = 1, D = 0.01, μ = 0.01 which                             produces 

 

This means that U = 1 to obtain Re = 1 and hence gives us a direct and convenient method for                                         defining Re based on changes in the velocity. Based on the Reynolds number the flow may be                                 laminar or turbulent. 

 

2.3 Running the simulation using the graphical interface. a) Select the Run Calculation option on the left panel b) Set the number of iterations  c) Click calculate. d) After the solution has converged save the data. Click File                   

Write -> Data. This will save the iterations that have been                     performed. 

The number of iterations you choose will depend on the                   convergence of the drag coefficient. Monitor the drag coefficient                 in Fluent's console until it converges. If it hasn't repeat the above                       iterations step and continue running the iterations. Note that if                   you initialize the case by using your setup journal file, then the                       solution iterations and the results are reset. 

 

MIET-1081 Computer Lab Handout 2019     9  

 

Page 11: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

 

Monitoring the drag coefficient in Fluent console. 

 

2.4 Cases to investigate Open “CL02.cas” file in FLUENT in 2D mode. There are seven cases listed below. The flow                               conditions (i.e. laminar/turbulent, steady/unsteady and isothermal/thermal) are given in the                   case descriptions. Follow the below instructions and use the excel script maker to set up the                               cases. Check the Re in Fluent and simulate. 

❏ Isothermal Flows (Laminar vs. Turbulent)-Cases 1 & 2: 

***For isothermal flow, set the temperature of the cylinder wall to 20 oC (equal to the inlet                                 airflow temperature)*** 

Case 1: Re=1, steady, isothermal, laminar:  

● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get Re1.  

Case 2: Re=1,000,000, steady, isothermal, turbulent:  

● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get Re1e6. 

❏ Steady vs. Unsteady Flows-Cases 3 & 4: 

We have solved the steady flow for Re=100, and now will continue the simulation but in an                                 unsteady solution. This means we will look at the flow behaviour at incremental times defined                             by a time step Δt. If we choose a t that is too large we may not see the fluctuating vortices, and                                           if we choose one that is too small, then this will take much longer than needed. We have to                                     determine the fluctuating vortex frequency by using the dimensionless Strouhal (Sr) number.                       Experiments have found that the Strouhal number for flow past a cylinder is roughly 0.165 for a                                 Re=100. This means that 

 

D = 0.01, and let U = 1m/s (If you use a different velocity, then your Sr will change) 

 

A shedding cycle time is then 1/16.5 , and the suitable time step to capture the frequency is                                   then 

 

 

MIET-1081 Computer Lab Handout 2019     10  

 

Page 12: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

 

Case 3: Re=100, steady, isothermal, laminar:  

● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get Re100. 

Case 4: Re=100, unsteady, isothermal, laminar:  

● *YOU MUST RUN STEADY CASE BEFORE RUNNING UNSTEADY CASE* ● In order to sufficiently capture the vortex shedding you should have about 25 time steps                             

in one shedding cycle, and we should look at 5 cycles. Create an unsteady flow journal file                                 with the following lines: 

define/models/viscous laminar y define/models/unsteady-2nd-order y display/contour dynamic-press , , solve/animate/define define-mon , 1 n y 5 contour , , 

● Run the calculation with the below settings. 

 

1. Run calculation 2. Time Step Size: 0.0025 3. Number of Time Steps: 

125 4. Max Iterations:20 5. Calculate 

❏ Wind Tunnel Lab case-Case 5: 

Case 5: Re= Wind Tunnel Lab, steady,isothermal, laminar: 

● Calculate the Re based on the wind tunnel lab data.  ● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get the                                 

same Re as the Wind Tunnel Lab. 

❏ Flow with Heat Transfer (Laminar vs. Turbulent)-Cases 6 & 7: 

When we introduce heat transfer, we now must consider another dimensionless number, the                         Prandtl number (Pr), which we will cover in the topic of Forced Convection (Week 4-Week 9).                               The Prandtl number is a ratio of the momentum diffusivity (kinematic viscosity) to thermal                           diffusivity and it in influences the thermal boundary layer. This means that the Prandtl number                             must remain constant between the two heat transfer cases we are investigating. The Pr is                             defined as 

 

where Cp is specific heat, (SI units : J/(kg.K) ), μ is dynamic viscosity, and k is thermal                                   conductivity. Since is also used in the Re number we need to ensure that this value is constant                                   

 

MIET-1081 Computer Lab Handout 2019     11  

 

Page 13: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

for both cases to ensure that the thermal boundary layer is not in influenced by the material                                 properties. 

  μ  D  ρ  U  Re Re=20  0.00001  0.01  1  0.02  20 Re=1e6  0.00001  0.01  100  10  1,000,000 

 

 

***For heat transfer cases, the cylinder wall temperature is set to 100 oC. Plot temperature                             contour plot*** 

Case 6: Re=20, steady,heat transfer, laminar: 

● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get Re20. 

Case 7: Re=1,000,000, steady, heat transfer, turbulent:  

● Input the density (ρ), viscosity (μ) and velocity (U) in the excel script maker to get Re1e6. 

 

2.5 Task to do: For Cases 1, 2 & 3, you need to: 

a) Change the velocity, density and viscosity in the excel script maker to get the Re 

b) Open “CL02.cas” file in FLUENT in 2D mode 

c) Load the journal file and then check the displayed Re from Fluent 

d) Run the calculation and then record the Cd values   

e) Plot velocity vectors in the vicinity of the cylinder wall  

f) Plot streamlines/pathlines across the cylinder 

g) Create velocity and pressure contours 

h) Plot XY-plots of skin friction coefficient over the cylinder 

i) Plot XY-plots of pressure coefficient over the cylinder 

For unsteady case 4 at Re=100 ONLY: 

j) Plot velocity or pressure contours at four different time steps to demonstrate the vortex                           

shedding phenomena 

k) Post-processing unsteady results Follow the steps shown below 

For case 5, Re=Wind Tunnel Lab: 

l) Run the calculation using the Re from wind tunnel lab and record Cd values. 

For heat transfer Cases 6 & 7: 

m) Create temperature contours around the cylinder 

* Guides for loading and post processings of the cases are available at Appendix A & B. Please                                   follow the instructions in the Appendix to generate the required results. * 

** REMEMBER TO SAVE ALL THE RESULTS! You will present those results in your lab report. **   

 

MIET-1081 Computer Lab Handout 2019     12  

 

Page 14: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

CL-03 Internal Pipe Flow 3.1 Internal Pipe Flow - Developing Flow Internal forced convection heat transfer occurs in various applications that involve pipe and duct                           flows, such as blood flow, oil and gas pipelines, and air conditioning and heating units.                             Convection heat transfer is complicated by the presence of fluid motion, and a boundary layer. 

In this exercise, a hot fluid flows through a straight circular pipe (with cold walls) of constant                                 radius of r=0.2m and a length of L=0.8m. The inlet velocity starts with a constant profile and as it                                     progresses downstream changes its profile shape. You are to observe this shape and understand                           its cause. Similarly a constant temperature profile is introduced at the inlet and as the fluid                               progresses downstream, a thermal boundary develops. The computational model considers half                     the circular pipe in 2D shown in Figure 5.1a. The effects of Prandtl number, and Reynolds number                                 on the developing flow profile are investigated. 

  

(a) Fluent computational domain  (b) developing velocity boundary layer Figure 5.1: Developing internal pipe flow 

 

Preliminary calculations We investigate three different materials, air, water, and oil, and observe how its fluid properties                             affects its flow behaviour. We make use of Fluent's material library database to select the                             predefined material properties. The values extracted from Fluent are given in the below: 

  µ [kg/ms]  Cp[J/kgK]  ρ [kg/m3]  k[W/mK] Air  1.79×10−5  1006  1.225  0.0242 

Water  0.001  4182  998  0.6 Oil  0.486  1910  884  0.144 

The Prandtl, and Reynolds numbers are defined as 

 

● Calculate the Pr and Re based on the geometry with diameter D = 2rmax = 0.4m. ● Calculate the required inlet velocity to achieve a Reynolds number of Re=100 for the three                             

fluids

  Pr  U, inlet velocity [m/s] Air     

Water     Oil     

 

 

MIET-1081 Computer Lab Handout 2019     13  

 

Page 15: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Model setup 

As an example let's calculate air. The Pr becomes: 

 

and the inlet velocity needs to be: 

Record the calculated velocities into the above table. Set-up cases for air, water, and oil flowing                               in the pipe at Re = 100 using the script maker in Excel. Open “CL03-1.cas” file in FLUENT in 2D                                       mode and load the journal files. 

Questions Q1 Draw the velocity and temperature profiles for air at these locations: inlet (x=0m, ‘inlet’),                             midpoint (x =0.4m), and outlet (x =0.8m) locations on the graphs below. Compare with Fluent                             results. Also for the water and the oil. 

An example of velocity profiles at location X1 (in the plots x-axis is Velocity and y-axis is Radius): 

 

 Q2 Describe the relative thicknesses of the velocity boundary layers for the three fluids at the outlet. 

Q3 Describe the relative thicknesses of the thermal boundary layers for the three fluids. 

Q4 Explain why there are differences or similarities between the relative boundary layer                         thicknesses between the three fluids. 

Q5 What would the thermal boundary layer thickness look like for oil, if the Reynolds number is                                 now Re = 1. Explain why. 

    

MIET-1081 Computer Lab Handout 2019     14  

 

Page 16: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

3.2 Internal Pipe Flow - Fully Developed Flow In this exercise, a hot fluid flows through a straight circular pipe (with cold walls) of constant                                 radius of r = 0.1m and a length of L=10m. The inlet velocity begins at the inlet with a constant                                       profile and becomes fully developed at some section downstream. Two real fluids, air and water,                             pass through the pipes. The inlet temperature is constant at 25oC while the pipe surface has a                                 constant surface wall temperature of 5oC. The fluid travels at a Reynolds number of 100. The                               computational model is similar to that from last week’s class. 

 

Preliminary Calculations Since we are using a real fluid, we make use of Fluent’s material library database and select the                                   predefined material. The values extracted from Fluent are given in the table below: 

µ [kg/ms] Cp [J/kgK] ρ [kg/m3] k [W/mK] Air 1.79×10−5 1006 1.225 0.0242 Water 0.001 4182 998 0.6

 Based on the pipe diameter of D = 2rmax = 0.2m, calculate the Pr number and the required inlet                                     velocity to achieve a Reynolds number of Re=100 for the two fluids (Pr and Re equations given in                                   3.1). Note that this week’s pipe diameter (D=0.2m) is half of that from last week (D=0.4m). 

Pr U, inlet velocity [m/s] Air 0.744 0.0073 Water 6.97 0.0005

Model setup The boundary conditions will be similar to last week. But this time our pipe geometry is much                                 longer and we want to investigate the fully developed length and fully developed region.  

Use the velocities given in the above table, set-up cases for air and water flowing in the pipe at                                     Re = 100 using the script maker in Excel. Open “CL03-2.cas” file in FLUENT in 2D mode. You need                                     to export velocity and temperature profiles at different pipe locations downstream. Then                       normalise the variable against its maximum value. 

Questions Q1 What do you notice about the fully developed temperature profiles? Q2 What would happen if the fluid temperature < surface temperature? Q3 What do you notice about the velocity profiles for water and air in the fully developed region? 

* Guides for loading and post processings are available at Appendix C. Please follow the                             instructions in the Appendix to generate the required results. REMEMBER TO SAVE ALL THE                           RESULTS! *   

 

MIET-1081 Computer Lab Handout 2019     15  

 

Page 17: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

CL-04 Natural Convection and Radiation 4.1 Natural Convection (only) ***** Before you start the simulations, Sketch your convection currents first. Then we will run                             the simulations and compare with your sketches.***** 

Many heat transfer applications involve natural convection as the primary mechanism of heat                         transfer. As its name suggests it is a nature at work, occurring naturally without any forced                               influences. In this lab we use CFD to visualise different natural convection currents. The Grashof                             number is a dimensionless number. As before, this means it is ratio of two flow properties. It                                 represents the ratio of the buoyancy force to an opposing viscous force acting on the fluid. 

 

Natural convection heat transfer correlations are usually expressed with the Pr involved. When                         we combine the Gr with the Pr we get the Rayleigh number. 

 

Model setup 

We want to investigate the influence of the Rayleigh number on the convection currents. We use                               air as the base material but alter its viscosity to get the desired Ra number. use an artificial                                   viscosity. Real air has a viscosity of about 1.79e-5. (Note that we could change the temperatures                               which also affects the thermal expansion coefficient). 

Set-up cases using the script maker in Excel. Open “CL04-1-flatPlate.cas” file for cases 1 & 2 and                                 “CL04-1-rectangle.cas” file for cases 3 & 4 in FLUENT in 2D mode. 

 

Cases to investigate CASE 1: The physical model considered here is a two dimensional                     square cavity of length L with a heated thin plate of length h placed                           horizontally (see figure) or vertically at its center. The plate is                     isothermally maintained at a higher temperature Ts = 320K. The                   vertical walls are cooler at a constant temperature T1 = 300K while                       the horizontal walls are insulated. 

a. Run the case for a horizontal plate at Ra = 105. Plot its                         temperature contour and compare it with your sketched               natural convection currents. 

The Rayleigh number can be rewritten with the kinematic viscosity and the Pr number expanded                             out: 

 

Taking the characteristic length as L = 0.2m, density as = 1.225, Cp = 1006, and conductivity as k =                                       0.0242 the required viscosity can be determined by setting the Ra number to 1e7: 

 

Set the viscosity of air with an artificial value of 3.6e-3 and set the gravitational acceleration                               direction to be vertical (y-axis).  

 

MIET-1081 Computer Lab Handout 2019     16  

 

Page 18: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

 

b. Run the case again but for Ra = 107. Change the fluid material properties by increasing its                                 viscosity to 3.6e-5 script.  

Plot its vector plot on the cavity fluid surface (select cavity fluid surface), and also the                               temperature contour (don't select any surface). Compare what you see with your sketched                         natural convection currents. 

CASE 2: This time we want to simulate a vertical plate inside the                         square cavity. Instead of rebuilding the entire geometry again, we                   can simply change the boundary conditions and take advantage of                   the symmetrical features of the geometry. Make the top-bottom wall                   a temperature boundary while the left-right wall becomes adiabatic                 with a heat-flux condition of 0 W/m2. Also change the gravitational                     acceleration direction to be horizontal (x-axis). Run for the two                   Ra-number cases, a. Ra = 105 and b. Ra = 107. 

Plot its vector plot on the cavity fluid surface (select cavity fluid                       surface), and also the temperature contour (don't select any surface). Compare what you see with                             your sketched natural convection currents. 

 

CASE 3: A rectangular enclosure is investigated. The side walls are adiabatic. A hot bottom wall                               has Tbottom=320K and a colder upper wall has Ttop=300K. Use the corresponding excel journal                           maker to generate the journal file and simulate. Set the gravitational acceleration direction to be                             vertical (y-axis).  

 

Plot vector and temperature contour plots and compare with what currents you sketched. 

CASE 4: As in Case-3, rotate the geometry by changing the boundary conditions and the                             gravitational acceleration direction to be horizontal (x-axis) so that the case now becomes a                           vertical enclosure. 

  

Tasks to do: 

❏ Practice your hand sketches first on the next page of the handout 

❏ Run the simulations, then plot velocity vector and temperature contour 

❏ Compare your hand sketches with the graphical results 

❏ Discuss the questions provide at the next page of the handout 

 

   

 

MIET-1081 Computer Lab Handout 2019     17  

 

Page 19: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Sketches Sketch your convection currents first! Then run the simulations and see how many you got right. 

 Questions Q1. The thinner thermal boundary layer occurs on (1)Ra=105 or (2)Ra=107 case? Why? What does it                               mean in terms of the heat transfer?   Q2. Describe the characteristics of natural convective currents in the horizontal enclosure (case                         3)and the vertical enclosure(case 4).   Q3. Describe the differences between the external natural convection and the internal                       convection (natural convection inside enclosures)?    

 

MIET-1081 Computer Lab Handout 2019     18  

 

Page 20: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

 4.2 Natural Convection and Radiation  ➝ Before running the simulation, sketch the flow patterns in the results section. ➝ Run the simulation, check your flow patterns the sketch the y-velocity profile.  

We have learnt that i) thermal radiation is emitted in the form of electromagnetic waves; ii) it                                 does not require a material medium for the wave to propagate from one surface to another; and                                 iii) it is directional in nature. In the lecture and tutorials we focus on surface to surface radiation                                   only, however we saw that the incident radiation (called irradiation, G) can be absorbed,                           reflected, and transmitted. These three properties also apply when radiation passes through a                         transparent medium such as fluids - most evident the scattering of sunlight through the                           atmosphere producing blue skies during the day and red sunsets. 

Problem description A square box has a hot right wall at Thot = 2000K and a                           cooler left wall at Tcold = 500K, while the upper and lower                       walls are insulated or adiabatic (i.e. no heat transfer). The                   default working fluid is air. Gravity is vertically down-                 wards and creates a buoyant flow due to thermally                 induced density gradients. The fluid has Pr ≈0.72, and the                   Rayleigh number based on L is 6 х107. Note that the values                       of the working fluid and gravity have been adjusted to                   achieve the desired Prandtl, and Rayleigh for natural               convection to occur with radiation heat transfer. For               Case-3 the medium contained in the box is assumed to be absorbing and emitting, so that the                                 radiant exchange between the walls is attenuated by absorption and augmented by emission in                           the medium. All walls are black. Cases to investigate 

In this lab we investigate the influence of radiation heat transfer in a 2D square box.  

Case-1 Simulate natural convection heat transfer only. 

Case-2 Include radiation from surface- to-surface only.  

Case-3 Include radiation with 5% absorption by the fluid. Set-up cases using the Excel script                             maker. Open “CL04-2.cas” file. 

The definition of the walls are the same as before where we set them as either a zero heat-flux or                                       a fixed temperature condition. Fluent provides five radiation models that allow us include                         radiation, with or without a participating medium. We simply make use of the Rosseland model                             which behaves sufficiently well for our case.  

For each case you can: ❑practice the hand sketch of the flow patterns, use velocity vectors to verify your sketch; ❑practice the hand sketch of the velocity profile along the horizontal centerline, and use velocity                             plots to verify your sketch; ❑use the velocity contours to find the maximum velocity; ❑use temperature contours to see the temperature distribution; ❑use the reports function to find the heat transfer rate at the hot wall (right wall) (screenshot                                 available on lab handout); 

 

MIET-1081 Computer Lab Handout 2019     19  

 

Page 21: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

1. Report 2. Fluxes 3. Set up 4. right 5. Compute 6. Results 

Sketch i) Sketch the flow patterns for the three cases. Record the maximum velocities and q_right for                               each case. 

 

max velocity: __________ : ______________ 

max velocity: __________ : ______________ 

max velocity: __________ : ______________ 

ii) Sketch the velocity profile along the horizontal centreline for Case 1 on the graph below: 

 Questions Q1 Which case exhibits the highest heat flux? Which case exhibits the highest flow velocity? Give                               an explanation for this. 

Q2 If the temperature difference remains the same, but now the temperatures are Tcold = 70oC                               and Thot = 1570oC, what happens to the radiation heat transfer? What happens to the natural                               convection heat transfer? Which exhibits the greater change? 

   

 

MIET-1081 Computer Lab Handout 2019     20  

 

Page 22: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Appendix A Loading files and running simulations  ❏ Open a new .cas file. 

 

1. Double click case file 

2. 2D 3. Serial 4. Display mesh 5. Ok 

❏ Copy and paste the generated script from excel maker to Notepad and save as .jou file 

 

In Notepad:  

1. save as: . jou 2. Save as type:     

All Files (*.*). 

❏ Read the journal file in Fluent 

 

1. Read 2. Journal 3. Select .jou file 4. Ok 

❏ Run the calculation and record the drag coefficient (CL-02) 

 

1. Calculation 2. Number of iterations: 2000 3. Calculate 

❏ Check Re and record the drag coefficient (CL-02) 

 1. Record Cd-1 

 

MIET-1081 Computer Lab Handout 2019     21  

 

Page 23: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Appendix B Post-processing guide (CL-02) 

❏ Plot vectors 1. Graphics 2. Vectors 3. Setup 4. Scale: the size of 

the vector arrows (recommended range: 0.002 to 0.005) Skip: to skip every n number of vectors; (recommended range: 1 to 5) 

5. Display 

❏ Plot flow streamlines across the cylinder. In Fluent these are referred as Pathlines.  

1. Graphics 2. Pathlines 3. Setup 4. Velocity 5. Release from 

Surfaces: inlet 6. Display 

❏ Plot velocity and pressure contours. 

1. Graphics 2. Contours 3. Setup 4. select variable 

(e.g. pressure, velocity and temperature) 

5. Display 

 

 

MIET-1081 Computer Lab Handout 2019     22  

 

Page 24: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

❏ Plot an XY-Plot of the skin friction coefficient over the cylinder.  

1. Plots 2. XY plot 3. Setup 4. Unclick Position 

on X Axis 5. Y Axis Function: 

Wall fluxes→ Skin Friction Coefficient 

6. Theta-radians 7. cylinder 

Post processing-Skin friction coefficient plot  

❏ Plot an XY-Plot of the pressure coefficient over the cylinder.  

1. Plots 2. XY plot 3. Setup 4. Unclick Position 

on X Axis 5. Y Axis Function: 

Pressure→ Pr. Coefficient 

6. Theta-radians 7. cylinder 

 

❏ For unsteady case: 

* If there is no file shown in Sequences, but you have made the files earlier,                               then you can read in the file by clicking Read, and the .cxa file within the same                                 folder as the Fluent case file. Use play and stop buttons to view the results. 

1. Animations 2. Solution 

Animation Playback 

3. Setup 4. Select the 

sequence* 5. Change write 

format to: Picture Files 

6. Picture options 7. Picture format: 

PNG or JPEG. 8. Apply 9. Close 10. Write 

 

MIET-1081 Computer Lab Handout 2019     23  

 

Page 25: MIET-1081 Advanced Thermo-Fluid Mechanicsbe using FLUENT’s text-user-interface (TUI), to set up and solve the heat transfer problem. When you first start FLUENT, you are in the root

 

Appendix C Loading and Post-processing guides (CL-03-3.2) 1. Run the simulation with the fluid of “air” 

- Set-up cases for air and water flowing in the pipe using the script maker in Excel - Open “CL03-2.cas” file in FLUENT in 2D mode. - Load the journal files and run the calculations. - Generate velocity XY-plots 

1. Plot 2. XY-plots 3. Set up 4. Select Velocity 5. Select a location  6. Click Node values 

and Position on X axis 

- For symmetry view: 

 

1. Viewing 2. Views 3. symmetry 4. Apply 

- Extract velocity profile data from Fluent 

 *Copy all the data (6&7) from Notepad into excel and plot the velocity profiles. 

1. Click Write to File 2. Select Velocity 3. Multi-select from 

x=0.01m to x=5m. 4. Write 5. File of type➝All 

files, rename the file with extension of . txt 

6. Location data (in radius) 

7. Velocity data* 

- Repeat the same approach for temperature profiles 

2. Run simulation with same approach for “water” 

 

MIET-1081 Computer Lab Handout 2019     24