Microwave assisted organic synthesis

33
Microwave Dielectric heating in Synthetic Organic Chemistry Synthetic Organic Chemistry Bunyarat Rungtaweevoranit Bunyarat Rungtaweevoranit 7 January 2011 Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127-1139.

Transcript of Microwave assisted organic synthesis

Page 1: Microwave assisted organic synthesis

Microwave Dielectric heating inSynthetic Organic ChemistrySynthetic Organic Chemistry

Bunyarat RungtaweevoranitBunyarat Rungtaweevoranit7 January 2011

Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127-1139.

Page 2: Microwave assisted organic synthesis

Microwave-assisted organic synthesis

Theoretical background

Applications

2

Page 3: Microwave assisted organic synthesis

Microwave-assisted organic synthesis

Microwave basic theory

Theoretical background

Applications

3

Page 4: Microwave assisted organic synthesis

Where is microwave?

Microwave• 1 cm – 1 m1 cm 1 m

Commercial MW• 2.45 GHz2.45 GHz• 0.154 kJ mol-1

Brownian motion Hydrogen bonds Covalent bonds Ionic bonds

Energy (kJ mol-1) 1.64 3.8 - 42435 (C-H)

730

4Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH, 2002.

Energy (kJ mol ) 1.64 3.8 42 730368 (C-C)

Page 5: Microwave assisted organic synthesis

Heating mechanism

Electric component• Dipolar polarization• Conduction

Magnetic component• Ohmic heating

5C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 6: Microwave assisted organic synthesis

Heating mechanism

1. Dipolar polarization mechanism (electric component)

6C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 7: Microwave assisted organic synthesis

Heating mechanism

1. Dipolar polarization mechanism (electric component)

7C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 8: Microwave assisted organic synthesis

Heating mechanism

2. Conduction mechanism (electric component)

8C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 9: Microwave assisted organic synthesis

Heating mechanism

2. Conduction mechanism (electric component)

9C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 10: Microwave assisted organic synthesis

Heating mechanism

3. Ohmic heating mechanism (magnetic component)

Induced current

Thin metal

10C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 11: Microwave assisted organic synthesis

Loss tangent (tan )

Solvent tan δ (2.45 GHz)*

Ethylene glycol 1.350

E h l 0 941Ethanol 0.941

Dimethylsulfoxide 0.825

1,2-dichlorobenzene 0.280

tan

,

1,2-dichloroethane 0.127

Water 0.123 the loss factor, quantifies the efficiency by which the absorbed

Chlorobenzene 0.101

Chloroform 0.091

Acetonitrile 0 062

y yenergy is converted into heat

Dielectric constant or relative permittivity the ability of theAcetonitrile 0.062

Acetone 0.054

Dichloromethane 0.042

permittivity, the ability of the material to store electrical potential energy under the influence of an electric field

Toluene 0.040

Hexane 0.020

11Gabriel, C.; Gabriel, S.; H. Grant, E.; S. J. Halstead, B.; Michael P. Mingos, D. Chem. Soc. Rev. 1998, 27, 213.Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002.

*Loss tangents of different solvents (2.45 GHz, 20 °C)

Page 12: Microwave assisted organic synthesis

Instrumentation

1. Magnetron 2. Waveguide

12

Page 13: Microwave assisted organic synthesis

Instrumentation

1. Multimode

waveguide

used in domestic microwave oven used in MW batch reactorused in MW batch reactor

13C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 14: Microwave assisted organic synthesis

Instrumentation

2. Single-mode

used in dedicated microwave reactor for chemical synthesisused in dedicated microwave reactor for chemical synthesis

14C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 15: Microwave assisted organic synthesis

Sealed tube

Conventional heating- Vessel gets heated first- Both gas and solution phase get heated

T hi h E l i !- Too high pressure -> Explosion!

MW heating- Only solution gets heated

15

Page 16: Microwave assisted organic synthesis

Sealed tube

Solvent Temperature (°C)

Name bp(°C) 50 60 70 80 90 100 110  120 130 140 150 160 170 180 190 200 (°C)

N,N-dimethylformamide 153                                                 

Toluene 110                                                 

Water 100   

1,2-dichloroethane 83                                                 

Acetonitrile 81     < 1 bar                                       

Ethanol 78                 1-5 bar                           

Ethyl acetate 77                             5-10 bar 

           

Hexane 69 > 10 barHexane 69    > 10 bar

Tetrahydrofuran 65                                                 

Methanol 65                                                 

Acetone 56                                         > 20 bar

Dichloromethane 40                                         hazard!

16C. Oliver Kappe, D. D., and S. Shaun Murphee Practical Microwave Synthesis for Organic Chemists:Strategies, Instruments, and Protocals; Wiley-VCH, Weinheim, 2008.

Page 17: Microwave assisted organic synthesis

Microwave-assisted organic synthesis

Basic concepts in microwave synthesis

Theoretical background

Applications

17

Page 18: Microwave assisted organic synthesis

Reducing reaction times

Intramolecular Diels-Alder cycloaddition

ModeIntramolecular Diels-Alder Hydrolysis

ModeSolvent Temperature Reaction time Solvent Temperature Reaction time

Conventional Chlorobenzene reflux (132 °C) 1 day CHCl3 RT 18 h

D B W M R b t F J R V bi t B M P V d E k E V H t G J

Microwave 1,2-DCE 190 °C 8 min added H2O 130 °C 5 min

18

De Borggraeve, W. M.; Rombouts, F. J. R.; Verbist, B. M. P.; Van der Eycken, E. V.; Hoornaert, G. J. Tetrahedron Lett. 2002, 43, 447.Van der Eycken, E.; Appukkuttan, P.; De Borggraeve, W.; Dehaen, W.; Dallinger, D.; Kappe, C. O. J. Org. Chem. 2002, 67, 7904.

Page 19: Microwave assisted organic synthesis

Reducing reaction times

Negishi couplings

Temperature Reaction time

Conventional 100 °C in sealed vessel 24 h

Microwave 175 °C in sealed vessel 10 min

19Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719.Walla, P.; Kappe, C. O. Chem. Commun. 2004, 564.

Page 20: Microwave assisted organic synthesis

Reducing reaction times

Relationship between temperature and time for a typical 1st order reaction

aERTk Ae

Temperature (°C) Rate constant*, k (s-1) Time (90% conversion)

27 1.55×10-7 68 d

77 4.76×10-5 13.4 h

127 3.49×10-3 11.4 min

177 9.86×10-2 23.4 s

227 1.43 1.61 s

*A = 4×1010 mol-1 s-1, Ea = 100 kJ mol-1

20Mingos, D. M. P.; Baghurst, D. R. Chem. Soc. Rev. 1991, 20, 1.

Page 21: Microwave assisted organic synthesis

Improving yields

Synthesis of quinoxalines

Temperature (°C) Reaction time Yield (%)

Conventional 100 2-12 h 32-85

Microwave 165 5 min 99

21Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873.

Page 22: Microwave assisted organic synthesis

Homogeneous heating provided by MW heating

The temperature profile after 60 sec of heating

Microwave irradiation Oil-bath heating

22Schanche, J. S. Mol. Diversity 2003, 7, 291.

Page 23: Microwave assisted organic synthesis

Influencing selectivity

Multi-component reactions

NN NH2

PhPh

O

O

Me+NaOEt, EtOH

heatN

NMe

OPhPh

+NH

NH2 OO

Meheat N

HNH MeOH

MW reflux

1310 11 12

PhPh OPhPh

MW150 °C, 20 min

reflux80 °C, 2 h

NN

NH

OMe

OHNH

NNH

Me

Me

15OMe

14

15

23Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.; Chernenko, V. N.; Shishkina, S. V.; Shishkin, O. V.; Kobzar,K. M.; Kappe, C. O. Org. Lett. 2007, 9, 1691.

Page 24: Microwave assisted organic synthesis

Influencing selectivity

Thermodynamic and kinetic control in bromination

24Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864.

Page 25: Microwave assisted organic synthesis

Microwave-assisted organic synthesis

Theoretical background

Applications

25

Page 26: Microwave assisted organic synthesis

SmI3 catalyzed Michael addition reaction

Entry Nucleophile Electrophile Product Yield (%)

1 83

2 76Ph

O

3 95Ph

Ph O

4 70

NH

26Zhan, Z. P.; Lang, K. Synlett 2005, 1551.

Page 27: Microwave assisted organic synthesis

Diels-Alder reaction

27Leadbeater, N. E.; Torenius, H. M. J. Org. Chem. 2002, 67, 3145.

Page 28: Microwave assisted organic synthesis

Ring closure metathesis

Ring-closure metathesis with concurrent removal of ethylene

MeEt3SiOH

H Me

HO

O

H

H + H C CH

1. Grubbs II catalysttoluene

OO

H

H MeO

O

H

H + H2C CH2oil bath, 80 °C

2. TBAF

25 26 27

Entry Conditions Time Yield (%)

1 10 mol % catalyst, N2 atmosphere 1 d 35

2 10 mol % catalyst, N2 sparging 1 d 66

3 15 mol % catalyst, N2 sparging 1 d 80

28Nosse, B.; Schall, A.; Jeong, W. B.; Reiser, O. Adv. Synth. Catal. 2005, 347, 1869.

Page 29: Microwave assisted organic synthesis

Ring closure metathesis

Ring-closure metathesis with concurrent removal of ethylene

MeEt3SiOH

O H Me

HO

O

H

H + H2C CH2

1. 15 mol % Grubbs II catalysttoluene

OO

HO

Hheat, Ar sparging

2. TBAF

25 26 27

Temperature Reaction time Yield (%)

Conventionalreflux (110 °C) 120 min 60

reflux (110 °C) 250 min 82

Microwave reflux (110 °C) 90 min 98

29Nosse, B.; Schall, A.; Jeong, W. B.; Reiser, O. Adv. Synth. Catal. 2005, 347, 1869.

Page 30: Microwave assisted organic synthesis

Suzuki coupling

Entry Aryl bromide Yield (%)

1 79

2 73

3 91COMe

Br

4 86

30Leadbeater, N. E.; Marco, M. J. Org. Chem. 2002, 68, 888.

Page 31: Microwave assisted organic synthesis

Synthesis of pyrrolo-fused ring systems

F

H

O

N

H

O

pyrrolidine, K2CO3, H2O

MW, 130 °C, 3 min

CH2(CN)2, H2O

MW, 100 °C, 10 min

N

CN

CN

MW, 200 °C, 3 min

31 32 33

1 drop of TFA

N

, 00 C, 3

CNCN

34(50% o erall ield)(50% overall yield)

31Kaval, N.; Dehaen, W.; Matyus, P.; Van der Eycken, E. Green Chem. 2004, 6, 125.

Page 32: Microwave assisted organic synthesis

MW assisted asymmetric Mannich reaction

Temperature Reaction time Yield (%) ee (%)

Conventional 60 °C 10 min 91 >99

Microwave 60 °C 10 min 90 >99

32Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C. O. J. Org. Chem. 2007, 72, 1417.

Page 33: Microwave assisted organic synthesis

Conclusion

• Microwave can be used in a reaction that requires heat.

• At least one of components in reaction mixtures must be responsive to microwave.

• In several cases, microwave can reduce reaction time and increase yield.

33