Microelettronica (part 1)

31
EE141 Microelettronica Mi Mi cr cr oelettronica oelettronica (part 1) (part 1) J. M. Rabaey, "Digital integrated circuits: a design perspective", Second Edition, ed. Prentice Hall, 2003.

Transcript of Microelettronica (part 1)

Page 1: Microelettronica (part 1)

EE141Microelettronica

MiMicrcroelettronica oelettronica (part 1)(part 1)

J. M. Rabaey, "Digital integrated circuits: a design perspective",Second Edition, ed. Prentice Hall, 2003.

Page 2: Microelettronica (part 1)

EE141Microelettronica

IntroductionIntroduction

Why is designing digital ICs different today than it was before?

Will it change in future?

Page 3: Microelettronica (part 1)

EE141Microelettronica

The First ComputerThe First Computer

The BabbageDifference Engine(1832)25,000 partscost: £17,470

Page 4: Microelettronica (part 1)

EE141Microelettronica

ENIAC ENIAC -- The first electronic computer (1946)The first electronic computer (1946)

Page 5: Microelettronica (part 1)

EE141Microelettronica

The Transistor RevolutionThe Transistor Revolution

First transistorBell Labs, 1948

Page 6: Microelettronica (part 1)

EE141Microelettronica

The First Integrated Circuits The First Integrated Circuits

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

Page 7: Microelettronica (part 1)

EE141Microelettronica

Intel 4004 MicroIntel 4004 Micro--ProcessorProcessor

19711000 transistors1 MHz operation

Page 8: Microelettronica (part 1)

EE141Microelettronica

Intel Pentium (IV) microprocessorIntel Pentium (IV) microprocessor

200042 M transistors1.7 GHz clock-rate

Page 9: Microelettronica (part 1)

EE141Microelettronica

MooreMoore’’s Laws Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

He made a prediction that semiconductor technology will double its effectiveness every 18 months

Page 10: Microelettronica (part 1)

EE141Microelettronica

MooreMoore’’s Laws Law16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LOG

2 OF

THE

NU

MB

ER O

FC

OM

PON

ENTS

PER

INTE

GR

ATE

D F

UN

CTI

ON

Electronics, April 19, 1965.

Page 11: Microelettronica (part 1)

EE141Microelettronica

Trends in logic IC ComplexityTrends in logic IC Complexity

Page 12: Microelettronica (part 1)

EE141Microelettronica

Trends in Memory ComplexityTrends in Memory Complexity

Page 13: Microelettronica (part 1)

EE141Microelettronica

MooreMoore’’s law in Microprocessorss law in Microprocessors

400480088080

8085 8086286

386486 Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tran

sist

ors

(MT)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Page 14: Microelettronica (part 1)

EE141Microelettronica

MooreMoore’’s Laws Law

(data from Intel)

Page 15: Microelettronica (part 1)

EE141Microelettronica

FrequencyFrequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Freq

uenc

y (M

hz)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

Page 16: Microelettronica (part 1)

EE141Microelettronica

Die Size GrowthDie Size Growth

40048008

80808085

8086286

386486 Pentium ® procP6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

Page 17: Microelettronica (part 1)

EE141Microelettronica

Power DissipationPower Dissipation

P6Pentium ® proc

486386

2868086

808580808008

4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er (W

atts

)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

Page 18: Microelettronica (part 1)

EE141Microelettronica

Power will be a major problemPower will be a major problem

5KW 18KW

1.5KW 500W

4004800880808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Pow

er (W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Courtesy, Intel

Page 19: Microelettronica (part 1)

EE141Microelettronica

Power densityPower density

400480088080

8085

8086

286 386486

Pentium® procP6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Pow

er D

ensi

ty (W

/cm

2)

Hot Plate

Power density too high to keep junctions at low tempPower density too high to keep junctions at low temp

Page 20: Microelettronica (part 1)

EE141Microelettronica

Not Only MicroprocessorsNot Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)(data from Texas Instruments)

CellPhone

Page 21: Microelettronica (part 1)

EE141Microelettronica

Why Scaling?Why Scaling?Technology shrinks by 0.7/generationWith every generation can integrate 2x more functions per chip; chip cost does not increase significantlyCost of a function decreases by 2xBut …

How to design chips with more and more functions?Design engineering population does not double every two years…

Hence, a need for more efficient design methodsExploit different levels of abstraction

Page 22: Microelettronica (part 1)

EE141Microelettronica

Design Abstraction LevelsDesign Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

Page 23: Microelettronica (part 1)

EE141Microelettronica

Design MetricsDesign Metrics

How to evaluate performance of a digital circuit (gate, block, …)?

CostReliabilityScalabilitySpeed (delay, operating frequency) Power dissipationEnergy to perform a function

Page 24: Microelettronica (part 1)

EE141Microelettronica

Cost of Integrated CircuitsCost of Integrated Circuits

NRE (non-recurrent engineering) costsdesign time and effort, mask generationone-time cost factor

Recurrent costssilicon processing, packaging, testproportional to volumeproportional to chip area

Page 25: Microelettronica (part 1)

EE141Microelettronica

NRE Cost is IncreasingNRE Cost is Increasing

Page 26: Microelettronica (part 1)

EE141Microelettronica

Cost per TransistorCost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore’s law)

Page 27: Microelettronica (part 1)

EE141Microelettronica

Die CostDie Cost

Single die

Wafer

Going up to 12” (30cm)

Page 28: Microelettronica (part 1)

EE141Microelettronica

YieldYield%100

per wafer chips ofnumber Totalper wafer chips good of No.

×=Y

yield Dieper wafer DiescostWafer cost Die×

=

( )area die2

diameterwafer area die

diameter/2wafer per wafer Dies2

××π

−×π

=

Page 29: Microelettronica (part 1)

EE141Microelettronica

DefectsDefects

α−⎟⎠⎞

⎜⎝⎛

α×

+=area dieareaunit per defects1yield die

α is approximately 3

4area) (die cost die f=

Page 30: Microelettronica (part 1)

EE141Microelettronica

Some Examples (1994)Some Examples (1994)Chip Metal

layersLine width

Wafer cost

Def./ cm2

Area mm2

Dies/wafer

Yield Die cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 601

4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

Page 31: Microelettronica (part 1)

EE141Microelettronica

ReliabilityReliability――Noise in Digital Integrated CircuitsNoise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and groundnoise

v(t) VDD