Micro Valve

download Micro Valve

of 41

Transcript of Micro Valve

  • 7/30/2019 Micro Valve

    1/41

    Hub

    ScienceDirect

    Scopus

    Applications

    Register

    Login

    Go to SciVal Suite

    Top of Form

    login

    Username:

    Password:

    Remember me

    MiamiLogonURL http://w w w .scie http://w w w .scie

    Login

    | Not Registered?

    Bottom of Form

    Forgotten your username or password?

    Go to Athens / Institution login

    Home

    Browse

    Search

    My settings

    http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_activity=SciVerse&_origin=home&_zone=logo&_targetURL=http%3A%2F%2Fhub.sciverse.com&_acct=C000228598&_version=1&_userid=10&md5=cced16da74a9da8be1eb80304e4450dchttp://www.hub.sciverse.com/action/homehttp://www.scopus.com/http://www.applications.sciverse.com/action/userhomehttps://www.sciencedirect.com/science?_ob=RegistrationURL&_method=display&_type=ip&_returnURL=http%3A%2F%2Fwww.sciencedirect.com&_acct=C000053686&_version=1&_userid=1556284&md5=b0e57b2fce1a7f75b661b717a95218a7http://www.scival.com/https://www.sciencedirect.com/science?_ob=RegistrationURL&_method=display&_type=ip&_returnURL=http%3A%2F%2Fwww.sciencedirect.com&_acct=C000053686&_version=1&_userid=1556284&md5=b0e57b2fce1a7f75b661b717a95218a7http://www.sciencedirect.com/science?_ob=ReminderURL&_method=display&_acct=C000053686&_version=1&_userid=1556284&md5=7bb47497b89585ef4c60c99f9e991887http://www.sciencedirect.com/science?_ob=FederationURL&_method=display&_type=f&_acct=C000053686&_version=1&_userid=1556284&md5=6e3695f55e970c7d1edf837327462bb4http://www.sciencedirect.com/http://www.sciencedirect.com/science/browsehttp://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=d29f7c354f16a9a59d9281113d37f209http://www.sciencedirect.com/science?_ob=UserSubscriptionURL&_method=begin&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=550b3d9322cd2988debb16eb7eaa0910http://www.sciencedirect.com/science?_ob=UserSubscriptionURL&_method=begin&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=550b3d9322cd2988debb16eb7eaa0910http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=d29f7c354f16a9a59d9281113d37f209http://www.sciencedirect.com/science/browsehttp://www.sciencedirect.com/http://www.sciencedirect.com/science?_ob=FederationURL&_method=display&_type=f&_acct=C000053686&_version=1&_userid=1556284&md5=6e3695f55e970c7d1edf837327462bb4http://www.sciencedirect.com/science?_ob=ReminderURL&_method=display&_acct=C000053686&_version=1&_userid=1556284&md5=7bb47497b89585ef4c60c99f9e991887https://www.sciencedirect.com/science?_ob=RegistrationURL&_method=display&_type=ip&_returnURL=http%3A%2F%2Fwww.sciencedirect.com&_acct=C000053686&_version=1&_userid=1556284&md5=b0e57b2fce1a7f75b661b717a95218a7http://www.scival.com/https://www.sciencedirect.com/science?_ob=RegistrationURL&_method=display&_type=ip&_returnURL=http%3A%2F%2Fwww.sciencedirect.com&_acct=C000053686&_version=1&_userid=1556284&md5=b0e57b2fce1a7f75b661b717a95218a7http://www.applications.sciverse.com/action/userhomehttp://www.scopus.com/http://www.hub.sciverse.com/action/homehttp://www.sciencedirect.com/http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_activity=SciVerse&_origin=home&_zone=logo&_targetURL=http%3A%2F%2Fhub.sciverse.com&_acct=C000228598&_version=1&_userid=10&md5=cced16da74a9da8be1eb80304e4450dc
  • 7/30/2019 Micro Valve

    2/41

    My alerts

    Help

    Export citation

    PDF (237 K)

    More options...

    Email article

    Signed up for new volumes / issues [remove]

    Alert me about new volumes / issues

    Your selection(s) could not be saved due to an internal error. Please try again.

    Show thumbnail images

    Search ScienceDirectSearch

    Top of Form

    QuickSearchURL submitForm C000053686 artic le qSearch d5af7d5ee27760

    Articles

    All fields

    Auth

    or

    Advanced

    search

    Images Journal/Book

    title

    Volu

    me

    Issu

    e

    Pag

    eSearch

    Search tips

    Bottom of Form

    Show thumbnails in outline

    Article outline is loading...

    Abstract

    Keywords

    http://www.sciencedirect.com/science?_ob=MiamiSDIURL&_method=listAlerts&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=fc67514fc29b2c69fba9784d7280168bhttp://www.sciencedirect.com/science?_ob=HelpURL&_file=browse_open_doc.htm&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=5a544c9697203e873bf85441561971a2http://www.sciencedirect.com/science?_ob=DownloadURL&_method=confirm&_eidkey=1-s2.0-S092442470300534X&count=1&_docType=FLA&_zone=toolbar&_acct=C000053686&_version=1&_userid=1556284&md5=1d308af05dd0f011722bdc57bfd13f4ehttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S092442470300534X&_check=y&_origin=article&_zone=toolbar&_coverDate=01-Mar-2004&view=c&originContentFamily=serial&wchp=dGLzVlk-zSkzS&md5=a6e3914717f666fab51f19cf817072ff&pid=1-s2.0-S092442470300534X-main.pdfhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science?_ob=EmailFriendURL&_method=gatherInfo&refSource=html&count=1&_eidkey=1-s2.0-S092442470300534X&_acct=C000053686&_version=1&_userid=1556284&md5=11896e887f5a7a75578001d1e6d325e9http://www.sciencedirect.com/science?_ob=PublicationURL&newIssueAlert=2&_cid=271352&_pubType=J&_auth=y&originContentFamily=serial&_pii=S092442470300534X&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=cc8db1307e1a4718b5e10008d303b35bhttp://www.sciencedirect.com/science?_ob=PublicationURL&newIssueAlert=2&_cid=271352&_pubType=J&_auth=y&originContentFamily=serial&_pii=S092442470300534X&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=cc8db1307e1a4718b5e10008d303b35bhttp://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=358f9825ed99871f5345545e373fbdd5http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=358f9825ed99871f5345545e373fbdd5http://www.sciencedirect.com/science?_ob=HelpURL&_file=qs_tips.htm&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=39ef907ed3601646fba1bea7bed90e86http://www.sciencedirect.com/science?_ob=HelpURL&_file=qs_tips.htm&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=39ef907ed3601646fba1bea7bed90e86http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_abstracthttp://www.sciencedirect.com/science/article/pii/S092442470300534X#kwd_N3ceec270N55eabb1chttp://www.sciencedirect.com/science/article/pii/S092442470300534X#kwd_N3ceec270N55eabb1chttp://www.sciencedirect.com/science/article/pii/S092442470300534X#section_abstracthttp://www.sciencedirect.com/science?_ob=HelpURL&_file=qs_tips.htm&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=39ef907ed3601646fba1bea7bed90e86http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=358f9825ed99871f5345545e373fbdd5http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_btn=Y&_acct=C000053686&_version=1&_urlVersion=1&_userid=1556284&md5=358f9825ed99871f5345545e373fbdd5http://www.sciencedirect.com/science?_ob=PublicationURL&newIssueAlert=2&_cid=271352&_pubType=J&_auth=y&originContentFamily=serial&_pii=S092442470300534X&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=cc8db1307e1a4718b5e10008d303b35bhttp://www.sciencedirect.com/science?_ob=PublicationURL&newIssueAlert=2&_cid=271352&_pubType=J&_auth=y&originContentFamily=serial&_pii=S092442470300534X&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=cc8db1307e1a4718b5e10008d303b35bhttp://www.sciencedirect.com/science?_ob=EmailFriendURL&_method=gatherInfo&refSource=html&count=1&_eidkey=1-s2.0-S092442470300534X&_acct=C000053686&_version=1&_userid=1556284&md5=11896e887f5a7a75578001d1e6d325e9http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S092442470300534X&_check=y&_origin=article&_zone=toolbar&_coverDate=01-Mar-2004&view=c&originContentFamily=serial&wchp=dGLzVlk-zSkzS&md5=a6e3914717f666fab51f19cf817072ff&pid=1-s2.0-S092442470300534X-main.pdfhttp://www.sciencedirect.com/science?_ob=DownloadURL&_method=confirm&_eidkey=1-s2.0-S092442470300534X&count=1&_docType=FLA&_zone=toolbar&_acct=C000053686&_version=1&_userid=1556284&md5=1d308af05dd0f011722bdc57bfd13f4ehttp://www.sciencedirect.com/science?_ob=HelpURL&_file=browse_open_doc.htm&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=5a544c9697203e873bf85441561971a2http://www.sciencedirect.com/science?_ob=MiamiSDIURL&_method=listAlerts&_btn=Y&_zone=TopNavBar&_origin=article&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=fc67514fc29b2c69fba9784d7280168b
  • 7/30/2019 Micro Valve

    3/41

    1. Introduction

    2. Valve structure

    3. Processes

    4. Assembly sequences

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl1http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl2http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl3http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl4http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl4http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl3http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl2http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl1
  • 7/30/2019 Micro Valve

    4/41

    5. Test results

    6. Summary

    Acknowledgements

    References

    Sensors and Actuators A: Physical

    Volume 111, Issue 1, 1 March 2004, Pages 5156

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl5http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl6http://www.sciencedirect.com/science/article/pii/S092442470300534X#ack001http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_referenceshttp://www.sciencedirect.com/science/journal/09244247http://www.sciencedirect.com/science/journal/09244247/111/1http://www.sciencedirect.com/science/journal/09244247/111/1http://www.sciencedirect.com/science/journal/09244247http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_referenceshttp://www.sciencedirect.com/science/article/pii/S092442470300534X#ack001http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl6http://www.sciencedirect.com/science/article/pii/S092442470300534X#section_lbl5
  • 7/30/2019 Micro Valve

    5/41

    Micromechanics section of Sensors and Actuators, based on contributions revised from the Technical

    Digest of the 16th IEEE International conference on Micro Electro mechanical Systems (MEMS 2003)

    Fabrication of a high frequency piezoelectric microvalve

    H.Q Lia, ,

    D.C Robertsb,

    J.L Steyna,

    K.T Turnera,

    O Yaglioglua,

    N.W Hagoodb,

    S.M Spearinga,

    M.A Schmidta

    a Massachusetts Institute of Technology, Cambridge, MA 02139, USA

    b Continuum Photonics Inc. Billerica, MA 01821, USA

    Received 16 September 2003. Available online 31 January 2004.

    http://dx.doi.org/10.1016/j.sna.2003.10.013, How to Cite or Link Using DOI

    Cited by in Scopus (35)

    Permissions & Reprints

    Abstract

    The fabrication of an active MEMS microvalve driven by integrated bulk single crystal piezoelectric

    actuators is reported. The valve has a nine-layer structure composed of glass, silicon, and silicon on

    insulator (SOI) layers assembled by wafer-level fusion bonding and anodic bonding, as well as die-level

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF2http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF2http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://dx.doi.org/10.1016/j.sna.2003.10.013http://www.sciencedirect.com/science/help/doi.htmhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0442311891%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db7861cf5940f1add954679fccb1f0ef1&_acct=C000053686&_version=1&_userid=1556284&md5=f767669111355f889bbc3b865dfc7ae3http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=936&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_page&_targetURL=https%3A%2F%2Fs100.copyright.com%2FAppDispatchServlet%3FpublisherName%3DELS%26contentID%3DS092442470300534X%26orderBeanReset%3Dtrue&_acct=C000053686&_version=1&_userid=1556284&md5=7505a53264d29addb4a9b9dc0f779ea4http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=936&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_page&_targetURL=https%3A%2F%2Fs100.copyright.com%2FAppDispatchServlet%3FpublisherName%3DELS%26contentID%3DS092442470300534X%26orderBeanReset%3Dtrue&_acct=C000053686&_version=1&_userid=1556284&md5=7505a53264d29addb4a9b9dc0f779ea4http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0442311891%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db7861cf5940f1add954679fccb1f0ef1&_acct=C000053686&_version=1&_userid=1556284&md5=f767669111355f889bbc3b865dfc7ae3http://www.sciencedirect.com/science/help/doi.htmhttp://dx.doi.org/10.1016/j.sna.2003.10.013http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF2http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF2http://www.sciencedirect.com/science/article/pii/S092442470300534X#AFF1
  • 7/30/2019 Micro Valve

    6/41

    anodic bonding and eutectic bonding. Valve head strokes as large as 20m were realized through

    hydraulic amplification of the small stroke of the piezoelectric actuator. A flow rate of 0.21 ml/s was

    obtained at 1 kHz. The fabrication, bonding and assembly process, as well as some test results are

    described.

    Keywords

    MEMS;

    Microvalve;

    Piezoelectric;

    Hydraulic amplification;

    Multilayer

    1. Introduction

    In silicon on insulator (MHT) systems for high energy density actuation and power generation

    applications [1], a key component is actively controlled micro valves that regulate high liquid flow rates

    under high pressure and at high frequencies, have small volume, and consume minimum power. There

    have been many studies on various types of MEMS micro valves [2], [3], [4] and [5], but operation of the

    MHT devices demands a new approach in valve design and fabrication. The fabrication processes of the

    valve have to be compatible to those of the core units of the MHT devices to simplify the fabrication and

    device integration of the whole system. Since single crystal piezoelectric material is used in MHT devices

    for actuation, it was preferred that the valve uses the same in order to reduce redundant actuator

    integration and process development. Furthermore, piezoelectric materials offer high bandwidth, high

    force and good efficiency. The use of piezoelectric material brought about challenges of electrical

    contacts, insulation and integration of small bulk piezoelectric material pieces in a MEMS device.

    Another challenge is the conversion of the high frequency, small stroke motion of the piezoelectric

    material into a larger stroke motion required for the valve head. Our solution to this challenge is

    hydraulic amplification of the piezoelectric stroke. The design and testing of this valve is discussed in [6],

    and details pertaining to the hydraulic amplification chamber can be found in [7]. This paper presents

    the structure of the device, fabrication and assembly procedures, as well as some test results.

    2. Valve structure

    Fig. 1 shows the schematic cross-section of the device. It includes four Pyrex glass layers, L1, L3, L6, and

    L9, two Si layers, L2 and L8, and three silicon on insulator (SOI) layers, L4, L5, and L7. One or three

    actuators of single crystal piezoelectric material (PZN-PT) (14) are nested in holes in L3. Fig. 1 only shows

    one actuator for simplicity. The electrical contacts to the piezoelectric actuators are on L2 and the

    device layer of L4. Recessed seats are etched into L2 for actuator height compensation. In L4 and L5

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB1http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB2http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB3http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB4http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB5http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB6http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB6http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB5http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB4http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB3http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB2http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB1
  • 7/30/2019 Micro Valve

    7/41

    there is a bonded circular double layer piston (10), 6.8 mm in diameter and m thick,

    attached to annular SOI membranes (12), 10m thick and 225m wide, that allow vertical motion of

    the piston at the actuation of the piezoelectric material. The valve head, in L7, is composed of a circular

    piston (5), 0.5 mm in diameter and 310m thick, and is attached to an annular SOI membrane, 7m

    thick and 450m wide. The valve orifice (4) 470m in diameter, and flow inlet (2) and outlet (6) are in

    L8. The pistons and membranes in L4 and L5 are identical except for the venting channel (9) that is

    composed of a shallow lateral channel in L5 and a through hole in L4. Connecting the valve head and the

    drive piston is a hydraulic amplification chamber (HAC) in L6. It consists of a recessed volume (8) and

    through holes (11). The recessed volume (8) has a larger diameter than the drive membrane in L5 to

    allow the drive piston move up. A similar recessed volume is also formed in L3 for the downward motion

    of the drive piston. Glass is used for L6 to insulate the actuator electrode from the Si layer above. The

    HAC is filled with high bulk modulus silicone oil through a filling hole (7) and then sealed. When the

    piezoelectric actuator pushes the drive piston up, the silicone oil in the HAC in turn pushes the valve

    head up a much larger distance due to the area difference. Bubble-free filling is critical for high HAC

    stiffness and high frequency response of the valve to the piezoelectric actuation. Sealing without

    significant HAC volume change is important for membrane performance. A systematic study of the HAC,

    including filling and sealing techniques, was previously reported [7]. L9 covers the outlet channel and

    accommodates all the fluid ports, as well as a port for the inlet pressure sensor (1) built into L7 in the

    form of a SOI membrane. Observation windows (15) for drive piston deflection measurements are

    through L1 to L3. All the electric connections, (13) to L2 and (16) to L4, are arranged on the bottom of

    the device and all the fluid connections are arranged on the top of the device as seen in Fig. 1. The

    separation of the fluidic ports and electric ports simplify the testing of the micro valve.

    Fig. 1. Schematic cross-section view of the microvalve. Layers L1, L3, L6, and L9 are glass. Layers L2 and

    L8 are Si. Layers L4, L5, and L7 are SOI.

    View thumbnail images

    3. Processes

    All the glass layers were patterned using ultrasonic machining. The tolerance of this process is

    approximately 25m, much larger than that of contact photolithography that is used for the Si and SOI

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr1http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#gr1http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG1http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7
  • 7/30/2019 Micro Valve

    8/41

    wafers. Because of this, large tolerances were designed into critical features such as the recesses for the

    drive pistons in L3 and L6. Global align marks for wafer-level bonding alignment to the Si and SOI layers

    were patterned by photolithography and etched using a buffered oxide etch (BOE). All of the Si and SOI

    wafers were thermally oxidized at the beginning of the fabrication sequence to protect the bonding

    surfaces through the fabrication process. The oxide was removed immediately prior to fusion bonding

    revealing pristine surfaces and allowing high yield fusion bonds to be achieved. Twenty-two photo

    masks were used to pattern the Si and SOI wafers. Surface oxide and buried oxide in SOI wafers were

    etched using BOE. Deep Si features were etched by a deep reactive ion etch (DRIE) process using an STS

    Multiplex ICP etch tool. An oxide nested mask technique was used in situations where two deep etch

    levels were needed. As an example, Fig. 2 shows the process flow for L4 that includes the drive piston

    and its membrane, a key feature of the device. It starts, with a SOI wafer that has a 10m thick device

    layer, a 2m thick buried oxide layer, and a 440m thick handle layer. A 0.5m thick oxide layer

    was thermally grown on both sides of the wafer and then (not shown) bond alignment marks were

    etched on both sides, first through the oxide by BOE and then 0.20.3m into the Si by DRIE. In Step 2,

    23m deep electrode recesses were etched into Si by BOE and DRIE using mask 4-1. In Step 3, mask

    4-2, which defines the fusion bond venting holes, was used to etch the device layer by DRIE, the buried

    oxide layer by BOE, and the handle side by DRIE for 3040m. Etching a distance into the handle from

    the device side is a unique feature of the L4 process. The purpose is to compensate for RIE lag of the

    small venting holes relative to the larger piston membranes when etching from the handle side, so that

    the buried oxide of the L4 membranes starts to expose some time after the small venting holes are

    etched through. Therefore, the piston membrane fillet control is not affected by the longer etch time

    required to finish etching the venting holes. In Step 4, donut shaped oxide patterns offsetting the drive

    piston membranes by 6m were etched by BOE using mask 4-3. The DRIE etch of the drive piston

    membranes was done using mask 4-4 as shown in Step 5. The oxide offsetting from the membranes

    allows the membranes to be defined by thick resist patterns that are usually smoother. It is important tokeep the perimeter of the circular membranes as smooth as possible to avoid any stress concentrations.

    The membrane DRIE of Step 5 was stopped when the etch reached the buried oxide layer. Care was

    taken to ensure the each membrane in a wafer has a 1520m fillet at the bottom. Any sharp corner

    and footing would greatly lower the strength of the membranes. Because of the non-uniformity of the

    DRIE process, dies around the edges of wafers typically finished earlier than the center dies, sometimes

    more than 10 min earlier. If the center dies were to be finished with good fillets, the edge dies would

    have sharp corners or footing in the membranes. One solution that was employed to achieve good fillet

    radii on all the membranes on the wafer was to frequently stop the etching near the end of etch, inspect

    the wafers under an optical microscope, cover the finished edge dies with resist, and etch the remaining

    dies.

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG2http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG2
  • 7/30/2019 Micro Valve

    9/41

    Fig. 2. The process flow of L4, a SOI layer with the drive piston and membrane. L5 and L7 use similar

    processes.

    View thumbnail images

    The process flows for L5 and L7 were designed to be similar to L4 process for fabrication simplicity. Si

    layers L2 and L8 use nested oxide masks that are patterned by a BOE etch prior to the first DRIE step and

    are used as the masks for the second deep DRIE steps.

    4. Assembly sequences

    The assembly of the device involves wafer-level fusion bonding and anodic bonding, die-level anodic

    bonding, and eutectic bonding, which is performed concurrently with the final anodic bond. For the

    assembly of this multilayer structure, it was decided to include die-level bonding steps to circumvent the

    problems associated with unmatched wafer-scale yield on wafers for which the fabrication processes

    were not yet well established. In this manner, the best dies from each wafer subassembly could be

    matched up to ensure that the final device would have the best chance of success. Therefore, die-level

    anodic bonding of glass to Si was selected for final device assembly.

    Fig. 3ad shows the assembly sequence of the micro-valve. First the glass wafers were ultrasonically

    machined and the Si and SOI wafers were etched. Fusion bonding on wafer-level was done to bond L4 to

    L5 and L7 to L8, as seen in Fig. 3a. The conditions for fusion bonding are 1100C anneal for 1 h after

    alignment and contacting using an EV Group aligner and bonder. Then, wafer-level anodic bonding was

    done to bond L1 to L2, and L6 to the stack of L4/L5, as shown in Fig. 3b, using the same alignment and

    bonding tool as was used in fusion bonding. The wafer-level anodic bonding was done at 300C and at

    a voltage of 800 V. Wafer-level bonding is necessary for these wafers because there are two valves in

    each die and that are laterally insulated in L2 and in L4/L5 stack by through etches across the die in the

    form of Y-shaped trenches. (See Fig. 4) The electrical separation is achieved after the dicing operation.The bonding of the L4/L5 stack to L6, and the bonding of L2 to L1 on the wafer-level ensure that the

    three electrically insulated sections of the device are held together after dicing.

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr2http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG4http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG4http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr2
  • 7/30/2019 Micro Valve

    10/41

    Fig. 3. The assembly sequence of the microvalve, (a) wafer-level fusion bonding of L4 to L5 and L7 to L8,

    (b) wafer-level anodic bonding of L6 to L4/L5 stack, flowed by dicing, cleaning, and electrode

    depositions, (c) die-level anodic bonding of layers L4 to L9 and L1 to L3, and (4) final anodic bonding of

    L3 to L4 and the eutectic bonding of piezoelectric actuators to the L2 and L4.

    View thumbnail images

    Fig. 4. Photograph of dies before assembly on die level. Clockwise from top left are bonded layers 1 and

    2 with layer 2 on top; layer 3, bonded layers 4, 5 and 6 with layer 4 on top; and bonded layers 7, 8 and 9

    with layer 7 on top. Gold films were deposited with shadow masks on layers 2 and 5 for electric contacts

    to the piezoelectric actuators. In each die there are two microvalve units.

    View thumbnail images

    All the wafers or wafer stacks were diced into mm dies. Next, 500 nm of gold film was

    deposited on L4 device side and top of L2 using different shadow masks by electron beam evaporation.

    The top and bottom surfaces of the piezoelectric material piece were coated with 2m of 8020% Au

    Tin alloys and 50 nm of gold film by sputtering. A thin Ti layer was deposited to serve as an adhesion

    layer and a platinum layer that acts as a diffusion barrier were deposited on the silicon and piezoelectric

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr3http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr4http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#gr4http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr3
  • 7/30/2019 Micro Valve

    11/41

    layers prior to the gold and goldtin deposition. One aspect to point out is that the cleaning after dicing

    is very important for high quality film deposition and anodic bonding. For the dicing operation, the

    device wafer stacks were covered on both sides with sacrificial Pyrex wafers, attached with a low

    temperature thermal wax, Crystalbond, in order to prevent any die-saw slurry or other debris entering

    the devices, to protect the fragile etched membrane structures and also to provide additional mounting

    and support for the dicing operation. After a thorough rinse with deionized water, the Crystalbond was

    dissolved in acetone to release the dies from the glass pieces. Cleaning of the dies was done by repeated

    acetone, methanol, and isopropanol soaking and rinsing. A photograph of the dies before die level

    bonding is shown in Fig. 4.

    All die level anodic bonds were performed at 300C and 1 kV. A bond was deemed to be complete

    after the bonding current dropped to approximately 1/10th of its original value. Care was taken not to

    apply the voltage for a too long time, as this would weaken a second bond on the cathode surface of the

    glass [8]. This procedure gave repeatable good bonds without excessive sodium hydroxide buildup on

    the glass surface for these device configurations and glass thickness, and was required whenever the

    cathode surface would be used for a subsequent bond (L3 and L6). First, L1-L3 and L4-L9 were anodically

    bonded respectively as shown in Fig. 3c. The piezoelectric actuators were then placed into holes in L3

    that are just slightly bigger than the largest dimensions of the actuators so no additional alignment is

    needed. Finally, as seen in Fig. 3d, the anodic bonding of L3 and L4 and the eutectic bonding of the

    piezoelectric actuators to L4 and L2 were done at the same time to finish the die assembly. The eutectic

    bonding process that was employed is described elsewhere [9]. Fig. 5 shows a valve device in the anodic

    bonding jig that was designed specifically for the purpose of aligning and bonding MHT devices. This jig

    has three glassmica machinable ceramic pins to kinematically constrain the dies in x and y translation

    and also rotation. Edge alignment was used, relying on dicing all wafers with the same blade to ensure

    that the dies are the same size. Using this technique, alignment accuracies of 50m or better were

    obtained. A completed die with two single valve heads is shown in the photograph in Fig. 6. At the top

    and bottom are 3 mm thick glass layers L9 and L1, respectively. Two curved bright features in the middle

    of the die are two HACs in L6.

    Fig. 5. Photograph of a microvalve chip in the die-level anodic bonding jig.

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG4http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB8http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG5http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG6http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG6http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG5http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG3http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB8http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG4
  • 7/30/2019 Micro Valve

    12/41

    View thumbnail images

    Fig. 6. Photograph of an assembled chip of about mm. The 3 mm thick glass

    wafers were used in layers 1 and 9 to give the device a stiff structural support.

    View thumbnail images

    The approach of die level bonding and assembly sequence described above has several advantages for

    this type of proof of concept device development. First, it provides the flexibility of choosing best dies in

    wafers of every layer to construct high quality devices, therefore increasing the yield. Secondly, it

    reduces the risk of losing all dies as in the event of wafer-level bonding and assembly failure. Thirdly,

    different components of a device can be constructed using dies in common layers and minimum new

    wafer fabrication. A component of the active valve, the HAC component device [7], shares L1 to L6 with

    the valve. In fact, the valve itself also only differs from the full MHT devices in layers L7 to L9.

    5. Test results

    After being mounted in a test jig, filled with silicone oil and sealed, the microvalve was tested for

    membrane deflection, flow rate and pressure for various voltages and frequencies. The first tests

    performed were static flow tests. Fig. 7, Fig. 8 and Fig. 9 describe some of the results obtained during

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr5http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr6http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG7http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG8http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG8http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG7http://www.sciencedirect.com/science/article/pii/S092442470300534X#BIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr6http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr5
  • 7/30/2019 Micro Valve

    13/41

    these tests. The valve was tested statically to a differential pressure of 210 kPa. A maximum flow rate of

    0.65 ml/s was observed. Under certain flow conditions, the valve exhibited oscillatory behavior. As is

    shown in Fig. 8, this behavior was categorized into three regimes:smooth,rough and

    oscillatory. When plotting the loss coefficient of this valve versus the orifice Reynolds number(Fig.

    9), it is found that the oscillatory behavior seems to occur mostly in the transition flow regime and the

    roughmotion mostly in the turbulent flow regime. This flow induced oscillation in the transition

    regime proved to be the limitation of this device, and the cause of failure at higher pressures. This

    limitation can be overcome with a suitable redesign of the valve to eliminate the structural mode in

    question.

    Fig. 7. Static flow test results for various valve openings and two different differential pressures.

    View thumbnail images

    Fig. 8. Valve cap response under different static flow conditions: (a) smooth, (b) rough, and (c)oscillatory.

    View thumbnail images

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG8http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr7http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr8http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#gr8http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr7http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG8
  • 7/30/2019 Micro Valve

    14/41

    Fig. 9. Summary of all static flow data on this microvalve. Fluidic oscillations, attributed to transition flow

    regime effects, limited the performance of this valve.

    View thumbnail images

    From deflection measurements of the valve membrane and the drive membrane using a laser

    vibrometer, an HAC amplification ratio of approximately 40 was obtained, consistent with calculations

    based on the device geometry. Two real time valve head motion curves under a differential pressure of

    35 kPa are shown in Fig. 10. The frequency of the voltage applied on the piezoelectric actuators is 1 kHz.

    As the drive voltage increases the valve opening increases until the valve head reaches the orifice. The

    flat tops of the curve at higher voltage indicate that the valve was in closed position. The dependence of

    flow rate on duty cycle is plotted in Fig. 11. A duty cycle of 0% means that the valve is fully closed and a

    duty cycle of 100% means that it is fully open. This figure proves that flow regulation was achieved at

    high frequency. The highest dynamic flow rate achieved in this device was 0.21 ml/s under the

    conditions of a differential pressure of 260 kPa, a 1 kHz peak-to-peak sinusoidal drive voltage of 500 V,

    and a peak valve opening of 17m.

    Fig. 10. Valve head motion curves at different actuation voltages at 1 kHz. The pressure differential

    across the valve membrane is 50 kPa. The flat tops of the curves at high voltages indicate that the valve

    head is in the closed position.

    View thumbnail images

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr9http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG10http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG11http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr10http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#gr10http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG11http://www.sciencedirect.com/science/article/pii/S092442470300534X#FIG10http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr9
  • 7/30/2019 Micro Valve

    15/41

    Fig. 11. Flow rate vs. duty cycle of a microvalve. The actuation frequency is 1 kHz, and the pressure

    differential is 35 kPa.

    View thumbnail images

    6. Summary

    In conclusion, we developed a reliable and flexible fabrication and assembly process and successfully

    fabricated a multilayer MEMS microvalve with piezoelectric actuation that was amplified at the valve

    head by a sealed hydraulic chamber. Combinations of wafer-level fusion bonding, wafer-level anodic

    bonding, and die-level anodic bonding contributes greatly in the success of the assembly of this

    multilayer structure. Large valve opening and large flow rate at high pressure and high frequency were

    achieved. The development of this microvalve paves the way for the development of full MHT devices

    that would combine two such valves with a main piston.

    Acknowledgements

    All microfabrication was done at the Microsystems Technology Laboratories at MIT. The Liou group at

    the University of Nebraska did all Au-Sn thin film deposition. B.C. Connelly, G. Gupta, and E.S. Stockhamprovided assistance with experimental setups and data acquisition under the MIT UROP program. D.

    Robertson provided laboratory assistance. Funding by ONR grants N00014-01-1-0857 and N00014-97-1-

    0880 and DARPA grant DAAG55-98-1-0361 is gratefully acknowledged.

    References

    [1]

    N.W. Hagood, D.C. Roberts, L. Saggere, K.S. Breuer, K.-S. Chen, J.A. Carretero, H.Q. Li, R. Mlcak, S.

    Pulitzer, M.A. Schmidt, S.M. Spearing, Y.-H. Su, Micro hydraulic transducer technology for actuation and

    power generation, in: Proceedings of the SPIE Seventh Annual International Symposium on Smart

    Structures and Materials, vol. 3985, Newport Beach, CA, 59 March 2000, pp. 680688.

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr11http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB1http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB1http://www.sciencedirect.com/science/article/pii/S092442470300534X#gr11
  • 7/30/2019 Micro Valve

    16/41

    [2]

    S Shoji, M Esashi

    Microflow devices and systems

    J. Micromech. Microeng., 4 (1994), pp. 157171

    View Record in Scopus

    |

    Full Text via CrossRef

    | Cited By in Scopus (298)

    [3]

    H van Lintel, F van de Pol, A Bouwstra

    piezoelectric micropump based on micromachining of silicon

    Sens. Actuators, 15 (1988), pp. 153167

    Article | PDF (1169 K) |

    View Record in Scopus

    | Cited By in Scopus (279)

    [4]

    V Gasss, B van der Schoot, S Jeanneret, N de Rooij

    Integrated flow-regulated silicon micropump

    Sens. Actuators A, 43 (1994), pp. 335338

    [5]

    M Koch, A.G.R Evans, A Brunnschweiler

    http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB2http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0028698702%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Ded3ddd0bee47b24f35110299e9ec3dfb&_acct=C000053686&_version=1&_userid=1556284&md5=898268afbacd0fe1dbb648ac4d2f2090http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1088%252F0960-1317%252F4%252F4%252F001&_acct=C000053686&_version=1&_userid=1556284&md5=0b846cd9d7f580449f406773d6543060http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0028698702%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Ded3ddd0bee47b24f35110299e9ec3dfb&_acct=C000053686&_version=1&_userid=1556284&md5=a1c3e34ef94d86770ded1a90ca40cf67http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB3http://www.sciencedirect.com/science/article/pii/0250687488870057http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=272258&_user=1556284&_pii=0250687488870057&_check=y&_coverDate=1988-10-01&view=c&wchp=dGLbVBA-zSkzS&md5=306267238f420f480805adafe17ab351&pid=1-s2.0-0250687488870057-main.pdfhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0024101674%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D624eeccc73e91c21766314ab11c8b1e6&_acct=C000053686&_version=1&_userid=1556284&md5=faef7d224fc330fd574bf071972dd1f9http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0024101674%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D624eeccc73e91c21766314ab11c8b1e6&_acct=C000053686&_version=1&_userid=1556284&md5=d8dac10f496272fcf2a9d91aac0d44adhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB4http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB5http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=272258&_user=1556284&_pii=0250687488870057&_check=y&_coverDate=1988-10-01&view=c&wchp=dGLbVBA-zSkzS&md5=306267238f420f480805adafe17ab351&pid=1-s2.0-0250687488870057-main.pdfhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB5http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB4http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0024101674%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D624eeccc73e91c21766314ab11c8b1e6&_acct=C000053686&_version=1&_userid=1556284&md5=d8dac10f496272fcf2a9d91aac0d44adhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0024101674%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D624eeccc73e91c21766314ab11c8b1e6&_acct=C000053686&_version=1&_userid=1556284&md5=faef7d224fc330fd574bf071972dd1f9http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=272258&_user=1556284&_pii=0250687488870057&_check=y&_coverDate=1988-10-01&view=c&wchp=dGLbVBA-zSkzS&md5=306267238f420f480805adafe17ab351&pid=1-s2.0-0250687488870057-main.pdfhttp://www.sciencedirect.com/science/article/pii/0250687488870057http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB3http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0028698702%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Ded3ddd0bee47b24f35110299e9ec3dfb&_acct=C000053686&_version=1&_userid=1556284&md5=a1c3e34ef94d86770ded1a90ca40cf67http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1088%252F0960-1317%252F4%252F4%252F001&_acct=C000053686&_version=1&_userid=1556284&md5=0b846cd9d7f580449f406773d6543060http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0028698702%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Ded3ddd0bee47b24f35110299e9ec3dfb&_acct=C000053686&_version=1&_userid=1556284&md5=898268afbacd0fe1dbb648ac4d2f2090http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB2
  • 7/30/2019 Micro Valve

    17/41

    The dynamic micropump driven with a screen printed PZT actuator

    J. Micromech. Microeng., 8 (1998), p. 119

    View Record in Scopus

    |

    Full Text via CrossRef

    | Cited By in Scopus (66)

    [6]

    D.C Roberts, H.Q Li, J.L Steyn, O Yaglioglu, S.M Spearing, M.A Schmidt, N.W Hagood

    A piezoelectric microvalve for compact high-frequency, high differential pressure micropumping systems

    J. Microelectromech. Syst., 12 (1) (2003), pp. 8192

    View Record in Scopus

    |

    Full Text via CrossRef

    | Cited By in Scopus (47)

    [7]

    J.L. Steyn, H.Q. Li, D.C. Roberts, R. Mlcak, K.T. Turner, O. Yaglioglu, Y.-S. Su, M.A. Schmidt, S.M. Spearing,

    N.W. Hagood, Hydraulic amplification devices for microscale actuation, in: Proceedings of the IEEE Solid-

    State Sensor and Actuator Workshop, Hilton Head, SC, 47 June 2002, pp. 5054.

    [8]

    M Despont, H Gross, F Arrouy, C Stebler, U Staufer

    Fabrication of a silicon-Pyrex-silicon stack by ac anodic bonding

    Sens. Actuators A, 55 (1996), pp. 219224

    http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0032092897%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db311c9a1e0e22170c053a27feec55a2e&_acct=C000053686&_version=1&_userid=1556284&md5=264012068a08a12411736eeb4c07e35chttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1088%252F0960-1317%252F8%252F2%252F019&_acct=C000053686&_version=1&_userid=1556284&md5=f2a83b0a1fdf7fe30f8f38e6656efb60http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0032092897%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db311c9a1e0e22170c053a27feec55a2e&_acct=C000053686&_version=1&_userid=1556284&md5=3adc91fb1d42a3785703c3655ad73cb2http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB6http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0037301524%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dc291b2a8e1111270a6507b5523fd5dc4&_acct=C000053686&_version=1&_userid=1556284&md5=2ba1a817a75861615eff43d5403d2c4bhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1109%252FJMEMS.2002.807471&_acct=C000053686&_version=1&_userid=1556284&md5=7b678a248b44d6026260bc734fe31ce3http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0037301524%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dc291b2a8e1111270a6507b5523fd5dc4&_acct=C000053686&_version=1&_userid=1556284&md5=8ce86c429bc2df1fb470665f902d3561http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB7http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB8http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB8http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB7http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0037301524%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dc291b2a8e1111270a6507b5523fd5dc4&_acct=C000053686&_version=1&_userid=1556284&md5=8ce86c429bc2df1fb470665f902d3561http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1109%252FJMEMS.2002.807471&_acct=C000053686&_version=1&_userid=1556284&md5=7b678a248b44d6026260bc734fe31ce3http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0037301524%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dc291b2a8e1111270a6507b5523fd5dc4&_acct=C000053686&_version=1&_userid=1556284&md5=2ba1a817a75861615eff43d5403d2c4bhttp://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB6http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0032092897%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db311c9a1e0e22170c053a27feec55a2e&_acct=C000053686&_version=1&_userid=1556284&md5=3adc91fb1d42a3785703c3655ad73cb2http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1088%252F0960-1317%252F8%252F2%252F019&_acct=C000053686&_version=1&_userid=1556284&md5=f2a83b0a1fdf7fe30f8f38e6656efb60http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0032092897%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db311c9a1e0e22170c053a27feec55a2e&_acct=C000053686&_version=1&_userid=1556284&md5=264012068a08a12411736eeb4c07e35c
  • 7/30/2019 Micro Valve

    18/41

    Article | PDF (492 K) |

    View Record in Scopus

    | Cited By in Scopus (24)

    [9]

    K.T. Turner, R. Mlcak, D.C. Roberts, S.M. Spearing, Bonding of bulk piezoelectric material to silicon using

    a gold tin eutectic bond, in: Proceedings of the Materials Research Society Symposium, vol. 687, 2002,

    B3.2.1-6.

    Corresponding author.

    Copyright 2003 Published by Elsevier B.V.

    Supplementary content

    1 2 3 4 5

    I am the caption

    Related articles

    SOI micromachined 5-axis motion sensor using...

    Sensors and Actuators A: Physical

    An SOIMEMS technology using substrate lay...

    Sensors and Actuators A: Physical

    Fabrication of nanofluidic devices using gla...

    Sensors and Actuators A: Physical

    Anodic Bonding of Glass-to-Glass through Mag...

    Procedia Engineering

    Fabrication of a silicon-Pyrex-silicon stack...

    Sensors and Actuators A: Physical

    http://www.sciencedirect.com/science/article/pii/S0924424797800817http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S0924424797800817&_check=y&_coverDate=1996-07-31&view=c&wchp=dGLbVBA-zSkzS&md5=772cbbefd799dfcc9d3268f256667491&pid=1-s2.0-S0924424797800817-main.pdfhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0030181503%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dca2cd8e0553145ed10aeed084fcd9bc7&_acct=C000053686&_version=1&_userid=1556284&md5=050e987da632771baadea725e75acd3bhttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0030181503%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dca2cd8e0553145ed10aeed084fcd9bc7&_acct=C000053686&_version=1&_userid=1556284&md5=b1c809787d8a9723e460f8775e9a58fahttp://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB9http://www.sciencedirect.com/science/article/pii/S0924424705007089http://www.sciencedirect.com/science/article/pii/S0924424705007089http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424703007568http://www.sciencedirect.com/science/article/pii/S0924424703007568http://www.sciencedirect.com/science/article/pii/S1877705811060723http://www.sciencedirect.com/science/article/pii/S1877705811060723http://www.sciencedirect.com/science/article/pii/S0924424797800817http://www.sciencedirect.com/science/article/pii/S0924424797800817http://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S0924424797800817&_check=y&_coverDate=1996-07-31&view=c&wchp=dGLbVBA-zSkzS&md5=772cbbefd799dfcc9d3268f256667491&pid=1-s2.0-S0924424797800817-main.pdfhttp://www.sciencedirect.com/science/article/pii/S092442470300534Xhttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S0924424797800817&_check=y&_coverDate=1996-07-31&view=c&wchp=dGLbVBA-zSkzS&md5=772cbbefd799dfcc9d3268f256667491&pid=1-s2.0-S0924424797800817-main.pdfhttp://www.sciencedirect.com/science/article/pii/S0924424797800817http://www.sciencedirect.com/science/article/pii/S0924424797800817http://www.sciencedirect.com/science/article/pii/S1877705811060723http://www.sciencedirect.com/science/article/pii/S1877705811060723http://www.sciencedirect.com/science/article/pii/S0924424703007568http://www.sciencedirect.com/science/article/pii/S0924424703007568http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424701007610http://www.sciencedirect.com/science/article/pii/S0924424705007089http://www.sciencedirect.com/science/article/pii/S0924424705007089http://www.sciencedirect.com/science/article/pii/S092442470300534X#bBIB9http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0030181503%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dca2cd8e0553145ed10aeed084fcd9bc7&_acct=C000053686&_version=1&_userid=1556284&md5=b1c809787d8a9723e460f8775e9a58fahttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0030181503%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dca2cd8e0553145ed10aeed084fcd9bc7&_acct=C000053686&_version=1&_userid=1556284&md5=050e987da632771baadea725e75acd3bhttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271352&_user=1556284&_pii=S0924424797800817&_check=y&_coverDate=1996-07-31&view=c&wchp=dGLbVBA-zSkzS&md5=772cbbefd799dfcc9d3268f256667491&pid=1-s2.0-S0924424797800817-main.pdfhttp://www.sciencedirect.com/science/article/pii/S0924424797800817
  • 7/30/2019 Micro Valve

    19/41

    View more related articles

    Table Download

    MostDownloaded

    http://www.sciencedirect.com/science?_ob=RelatedArtURL&_pii=S092442470300534X&_orig=article&_origin=article&_zone=related_art&_mlktType=NoRefwork&_isSubscribed=N&_acct=C000053686&_version=1&_userid=1556284&md5=1952bc45047b6bb41eaa9bf7c97723a9http://www.sciencedirect.com/science?_ob=RelatedArtURL&_pii=S092442470300534X&_orig=article&_origin=article&_zone=related_art&_mlktType=NoRefwork&_isSubscribed=N&_acct=C000053686&_version=1&_userid=1556284&md5=1952bc45047b6bb41eaa9bf7c97723a9
  • 7/30/2019 Micro Valve

    20/41

    Share

    + Show more applications

    - Show fewer applications

    Add apps Help

    Related reference work articles

    e.g. encyclopedias

    Silicon-on-insulator

    Encyclopedia of Materials: Science and Techn...

    1.15 - Packaging

    Comprehensive Microsystems

    1.09 - Wafer Bonding

    Comprehensive Microsystems

    More related reference work articles

    View Record in Scopus

    Thin FilmsSIMS/SNMS Surface Analysis

    http://www.sciencedirect.com/science/article/pii/B0080431526015345http://www.sciencedirect.com/science/article/pii/B0080431526015345http://www.sciencedirect.com/science/article/pii/B9780444521903000197http://www.sciencedirect.com/science/article/pii/B9780444521903000197http://www.sciencedirect.com/science/article/pii/B9780444521903000082http://www.sciencedirect.com/science/article/pii/B9780444521903000082http://www.sciencedirect.com/science?_ob=RelatedArtURL&_pii=S092442470300534X&_orig=article&_origin=article&_zone=related_ref&_mlktType=Refwork&_isSubscribed=N&_acct=C000053686&_version=1&_userid=1556284&md5=7590616d4258b5c58abf620dfdfb982ehttp://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0442311891%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db7861cf5940f1add954679fccb1f0ef1&_acct=C000053686&_version=1&_userid=1556284&md5=8fab6308dc928b1c0bac43b204fabb47http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fthin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fthin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fthin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/thin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=5978&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http://linkinghub.pangaea.de/elsevier/redirectToSupplement/10.1016/j.sna.2003.10.013&_acct=C000053686&_version=1&_userid=1556284&md5=c06803fbf88d452bfb8279e2823eedc0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fthin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=0http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fthin-films.htm&categories=926&location=a664735b-3cdf-48a2-9eea-13a811bcf24e&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=0http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_eid=1-s2.0-S092442470300534X&_pii=S092442470300534X&_origin=article&_zone=art_rightCol&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0442311891%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Db7861cf5940f1add954679fccb1f0ef1&_acct=C000053686&_version=1&_userid=1556284&md5=8fab6308dc928b1c0bac43b204fabb47http://www.sciencedirect.com/science?_ob=RelatedArtURL&_pii=S092442470300534X&_orig=article&_origin=article&_zone=related_ref&_mlktType=Refwork&_isSubscribed=N&_acct=C000053686&_version=1&_userid=1556284&md5=7590616d4258b5c58abf620dfdfb982ehttp://www.sciencedirect.com/science/article/pii/B9780444521903000082http://www.sciencedirect.com/science/article/pii/B9780444521903000082http://www.sciencedirect.com/science/article/pii/B9780444521903000197http://www.sciencedirect.com/science/article/pii/B9780444521903000197http://www.sciencedirect.com/science/article/pii/B0080431526015345http://www.sciencedirect.com/science/article/pii/B0080431526015345
  • 7/30/2019 Micro Valve

    21/41

    Surface Science SIMSSecondary ion mass spectrometer for depth profile and chemical

    image analysis of thin films.

    NanoInk ApplicationsNanoInk provides a new generation of DPN instrument systems for

    biomaterials & cell biology!

    About NanoInkLearn more about NanoInk, Inc., an emerging growth technology company,

    here!

    About ScienceDirect

    About Elsevier

    Contact and support

    Information for advertisers

    Terms and conditions

    Privacy policy

    Copyright 2012 Elsevier B.V. All rights reserved. SciVerse is a registered trademark of Elsevier

    Properties S.A., used under license. ScienceDirect is a registered trademark of Elsevier B.V.

    Top of Form

    Fabrication of a

    Bottom of Form

    http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=1http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=1http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=1http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=1http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fdpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fdpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fnanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fnanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=3http://www.info.sciverse.com/sciencedirect?utm_source=sciencedirect&utm_medium=link&utm_campaign=aboutsdhttp://www.elsevier.com/?utm_source=sciencedirect&utm_medium=link&utm_campaign=aboutelsevierhttp://www.sciencedirect.com/science/contactushttp://www.elsevierscitech.com/forms/sd/form.html?utm_source=sciencedirect&utm_medium=link&utm_campaign=adverthttp://www.elsevier.com/locate/termsandconditions?utm_source=sciencedirect&utm_medium=link&utm_campaign=termshttp://www.elsevier.com/privacypolicy?utm_source=sciencedirect&utm_medium=link&utm_campaign=privacyhttp://www.elsevier.com/http://www.elsevierpublishingsolutions.com/searchAdvertising.asphttp://www.elsevier.com/http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/nanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/dpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/surface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=1http://www.elsevierpublishingsolutions.com/searchAdvertising.asphttp://www.elsevier.com/http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/nanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/dpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/surface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=1http://www.elsevierpublishingsolutions.com/searchAdvertising.asphttp://www.elsevier.com/http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/nanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/dpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/surface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=1http://www.elsevierpublishingsolutions.com/searchAdvertising.asphttp://www.elsevier.com/http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/nanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/dpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/surface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=1http://www.elsevierpublishingsolutions.com/searchAdvertising.asphttp://www.elsevier.com/http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/nanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/NanoInk+Inc/dpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http://sciencedirect.verticalsearchworks.com/EN/Microsites/1/Hiden+Analytical/surface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http://www.sciencedirect.com/science/article/pii/S092442470300534X&blockindex=0&adindex=1http://www.elsevier.com/http://www.elsevier.com/privacypolicy?utm_source=sciencedirect&utm_medium=link&utm_campaign=privacyhttp://www.elsevier.com/locate/termsandconditions?utm_source=sciencedirect&utm_medium=link&utm_campaign=termshttp://www.elsevierscitech.com/forms/sd/form.html?utm_source=sciencedirect&utm_medium=link&utm_campaign=adverthttp://www.sciencedirect.com/science/contactushttp://www.elsevier.com/?utm_source=sciencedirect&utm_medium=link&utm_campaign=aboutelsevierhttp://www.info.sciverse.com/sciencedirect?utm_source=sciencedirect&utm_medium=link&utm_campaign=aboutsdhttp://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fnanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fnanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fnanometer-scale-manufacturing-development.htm&categories=861&location=b1fe3b08-c944-4e0a-8966-e3caaa1d617f&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=3http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fdpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fdpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fNanoInk%2bInc%2fdpn-for-microstructure-functionalization-cell-biology-multiplexed-protein-analysis.htm&categories=861&location=f9ebf64d-73fa-406f-ae57-e385b8092d5e&type=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=2http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&dl=1&referrer=http%3a%2f%2fwww.sciencedirect.com%2fscience%2farticle%2fpii%2fS092442470300534X&blockindex=0&adindex=1http://sciencedirect.verticalsearchworks.com/EN/Interface/Redirect.htm?dest=http%3a%2f%2fsciencedirect.verticalsearchworks.com%2fEN%2fMicrosites%2f1%2fHiden%2bAnalytical%2fsurface-science-sims.htm&categories=926&location=b9a5b1a6-a6e8-4858-90dd-bd6545339a17&type=1&