Micro Energy Grid (MEG) Implementation

31
Micro Energy Grid (MEG): Implementa7on of Smart Distributed Energy 亚洲城市智慧能源及低碳执行策略 Green Ini(a(ves : Smart Ci(es 25/06/2015 Mark Cameron – Senior Consultant – Arup HK Building Sustainability

Transcript of Micro Energy Grid (MEG) Implementation

Micro  Energy  Grid  (MEG):    Implementa7on  of  Smart  Distributed  Energy  亚洲城市智慧能源及低碳执行策略�            Green  Ini(a(ves  :  Smart  Ci(es  25/06/2015    Mark  Cameron  –  Senior  Consultant  –  Arup  HK  Building  Sustainability      

§  Global  ac(on  to  limit  GHG  emissions  to  avoid  catastrophic  climate  change    全球性地限制温室气体排放,以避免灾难性的气候变化�

§  Electricity  genera(on  responsible  for  a  large  amount  of  emissions    发电导致大量温室气体排放�

Background  and  Drivers    微能源网格的国际发展走向�

Source:  IEA,  IPCC  

CO2  Discharged  (China  Aggregate    ~0.80  kg  CO2/kWh)

DEMAND  SIDE SUPPLY  SIDE

§  GHG  limi(ng  targets  adopted  interna(onally  –  China  to  limit  to  CO2  intensity  by  40%  by  2020    採用國際上限制溫室氣體排放目標 - 2020年前中國限制二氧化碳強度減少40%�

§  Supply  and  Demand  side  measures  required    需要供應和需求方面的措施�

§  Regulatory  focus  promo(ng  Distributed  Genera(on  –  United  States,  China,  Korea,  Japan    重點推廣分散式發電,包括美國,中國,韓國,日本等地方�

§  100+  new  Smart  Ci(es  to  be  developed  in  China    超過100個新智能城市準備在中國開發�

Response  微能源網格的國際發展走向�

Source:  IEA,  IPCC  

Genera7on Transmission Distribu7on Retail

What  is  a  Micro  Energy  Grid?    什么是微能源网格?  

 What  are  the  Benefits?  有什么优势?  

 How  to  Implement?  该如何实际执行?    

“Microgrids  are  electricity  distribu(on  systems  containing  loads  and  distributed  energy  resources,  (such  as  

distributed  generators,  storage  devices,  or  controllable  loads)  that  can  be  operated  in  a  controlled,  coordinated  way  either  while  connected  to  the  main  power  network  

or  while  islanded”    (CIGRÉ  C6.22  Working  Group).    

     

“A  Microgrid  is  a  group  of  interconnected  loads  and  distributed  energy  resources  within  clearly  defined  

electrical  boundaries  that  acts  as  a  single  controllable  en7ty  with  respect  to  the  grid.  A  Microgrid  can  connect  and  disconnect  from  the  grid  to  enable  it  to  operate  in  

both  grid-­‐connected  or  island-­‐mode”    (U.S.  DOE  Microgrids  Exchange  Group,  2010).    

MEG System Topology

Traditional System Topology

What  is  a  Micro  Energy  Grid?  什么是微能源网格? �

1.  Improved  Efficiencies  1.  效率提升� §  Typical  thermal  power  sta(on  is  only  ~40%  efficient  –      

large  por(on  of  energy  lost  as  heat    典型的热力发电厂效率大约只有40%�

– 能源大部分以热的方式丢失� §  Local  Distributed  Genera(on  over  >80%  efficiency  

 分布式发电超过80%的效率� §  ‘Waste  heat’  can  be  harnessed          “余热”可以被利用� §  Distributed  renewables  incorporated  and  serving  the  grid     分布式可再生能源发电结合整个电网� §  Clean  sources  of  fuel  are  simpler  to  implement  

� 使用清洁的能源较容易实现目标�

2.  Reduce  Installed  Capacity  2. 负荷计算:MEG节能成效�

Combined  load  

Winter  peak  day  loading  

Summer  peak  day  loading  

3.  Embrace  the  Smart  City  3. 微能源網格概念架構  §  How  does  MEG  fit  into  Smart  Grid?  

 微能源网络如何与智能电网相结合?  §  Distributed  energy  forms  part  of  the  Smart  Grid  –  small  districts  of  localized  energy  

interac7ng  with  the  grid  –  feeding  and  drawing  from  the  U7lity    分布式能源是智能电网的组成部分-­‐根据实际需求获取或者供应,二者相互配合  

 

3.  Embrace  the  Smart  City  3. 微能源网格概念架构  

Data  Analysis  +  

Op(misa(on  

 

Benefits  of  Micro  Energy  Grid  Approach    微能源网格之优势

Tri  Genera7on

PV’s GRID

Electricity  Network  Heat  Network  

Buildings Cooling  Network  

Natural  Gas  

Buildings Buildings

Solar  Hot  Water

High  Efficiency  Chillers

Energy  Storage

Energy  Storage

Electricity  

§  Demand  response  reduces  peak  demand  on  local  u(li(es  &  carbon  emissions      为了响应需求,减少了对当地公用事业的峰值需求和碳排放�

§  Real7me  monitoring  and  response   实时监控及反应�

§  U(lise  energy  cascade  to  increase  efficiency  &  reduce  carbon  emissions   利用能源串级,以提高效率和减少碳排放�

§  Resilience  /  reliability  of  supply  to  ensure  no  down(me    有弹性/可靠地供应,保证没有间断�

§  Greater  user  understanding  of  consump(on  –  reduced  consump(on  through  behavior  change     对用户的消费有更多的了解-通过改变行为来降低消耗�

§  Reduced  u7lity  infrastructure  –  Offset  installed  capacity  for  u(lity  networks    减少公用基础设施 - 减少公用事业的装机容量�

§     Export  clean  energy  to  city  electricity  grid    推展清洁能源至城市电网�

§  Centralised  monitoring  &  control      集中监控和控制

Implementa(on  Case  Study  实际案例  

Hansung  City,  Qingdao,  PRC  中国大陆 青岛釜山市    

Qingdao  青島

Hansung  City,  Huangdao  釜山市

Project  Sta7s7cs  项目信息� Loca(on  –    Hansung  City,  Qingdao,  PRC  Site  size  –      376  Ha  (3.76  km2)  

GFA  –      3.2M  m2    

Popula(on  -­‐  100,000  Site  use  –      Mixed  use,  Healthcare,  

         Residen7al    

Hansung  City:  K-­‐MEG  :  Korea  Micro  Energy  Grid  釜山市: K-MEG 韩国微能源网格�

Objec(ves    目标�

§  Create  an  integrated  approach  to  energy  masterplanning  

创建一个整合式的能源总体规划�

§  Reduce  carbon  emissions,  energy  consump(on  &  pollu(on  

减少碳排放、能源消耗和污染�

§  Focus  on  Savings  Through  Efficient  ‘Supply  Side’  Measures  

       着重从”供应方”开始的节能效益与措施�

§  Create  a  viable  Business  Model   开创一个可复制的商业模式�

       

City  Masterplan  :  City  Composi(on    城市总体规划:城市组成�

Qingdao  Climate    青岛气候情况�

Load  Calcula(on  :  Daily  Load  Profiles      负荷计算:日负荷  

Electrical load

Heating load Cooling load

Technology Technical and Environmental Performance Commercial Viability

Occupant Satisfaction

Proven Technologies Space Take Replicability Score

Energy generation potential

Greenhouse gas production

Energy cascade potential Payback period

Noise Pollution, Air Pollution, Water

Pollution, etc. Reliability Commercial and

business viability Operational complexity

Geography dependencies

Weighted Average Score

Trigeneration High (3) Medium (2) Waste Heat to be reused (3) Medium (2) Air and noise

pollution (2) Relatively new (2) Large Plant (1) Easily replicable (3) Medium (2) Widely applicable (3) 23

Photovoltaics Medium (2) Zero (3) Stand alone (1) Long (1) Zero Emission (3) Widely used and matured (3)

Building integrated (2) Easily replicable (3) Easy (3) Depends on solar

intensity (2) 23 Solar Hot

Water System Medium (2) Zero (3) Waste Heat to be reused (3) Short (3) Zero Emission (3) Widely used and

matured (3) Minimal Space

Required (3) Easily replicable (3) Easy (3) Widely applicable (3) 29

Wind Turbines Medium (2) Zero (3) Stand alone system

(1) Long (1) Possible noise & visual impact (2)

Widely used and matured (3)

Large turbine for reasonable

energy generation (1)

Large capital investment (2) Easy (3) Depends on wind power

density of the region (2) 20

Concentrated Solar Medium (2) Zero (3) Medium (2) Long (1) Zero Emission (3) Reliable (3) Large Area (1)

Large capital investment. Not

easily replicable (1) Medium (2) Depends on solar

intensity (2) 20

Biofuels Low (1) Medium (2) Yes (3) Medium (2) Air pollution (1) Widely used and matured (3)

Storage space required (2)

Less commercially viable (2) Medium (2) Dependent on Biofuel

supply (1) 19

Fuel Cells High (3) Zero (3) Medium (2) Long (1) Zero Emission (3) Early adoption. TBC (2)

Sizeable additional space

required (2)

Payback to be explored. (2) Hard (1) Widely applicable (3) 22

Waste to energy High (3) High (1) Yes (3) Medium (2) Air pollution (1) Widely used and

matured (3)

Sizeable additional space

required (2) Easily replicable (3) Hard (1) Widely applicable (3) 22

Algae Biofuel Low (1) Medium (2) Yes (3) Long (1) Possible air pollution (2) Relatively new (2) Building

integrated (2)

Large capital investment. Not

easily replicable (1) Hard (1) Depends on solar

intensity (2) 17

Geoexchange System Medium (2) Zero (3) Stand alone (1) Long (1) Zero Emission (3) Widely used and

matured (3) Large area under

ground (1) Large capital

investment (2) Medium (2) Region Specific (2) 20 Electric

Vehicles to grid (V2G)

N/A Limited (3) N/A Medium (2) Indirect influence (2) Widely used and matured (3)

Minimal Space Required (3)

Large capital investment. Easily

replicable (2) Hard (1) Widely applicable (3) 19*

Vehicles Wireless Charging

N/A Limited (3) N/A Medium (2) Indirect influence (2) Relatively new (2) Space required

along the vehicle routes (3)

Required large capital (1) Easy (3) Widely applicable (3) 19*

Energy Storage N/A Indirectly reduced

(2) N/A Short (3) Zero Emission (3) Widely used and matured (3)

Sizeable additional space

required (2)

Large capital investment. Easily

replicable (2) Easy (3) Widely applicable (3) 21

Developing  the  MEG  :  Technology  Selec(on    发展MEG:技术选择�

Technology selection matrix

137,334    Equivalent    

Trees  of  Carbon  Saved  

MEG  Infrastructure  :  Integrated  Energy  Masterplan  MEG基础设施:能源整合总体规划�

Shandong  Electric  Carbon  

Intensity  :    0.81  kg.CO2  /  

kWh  

Hansung  City  MEG  Carbon  Intensity  :  

0.64  kg.CO2  /  kWh  

Tri-­‐Genera(on  –  36  MW  Energy  Storage  –  20  MW  Absorp(on  Chiller  –  30  MW  PV  –  5  MW  Solar  Hot  Water  –  5  MW  

Embracing  New  Technology  迎接新技术�

Vehicle  2  Grid  (v2g)  

Waste  to  Energy  

Wireless  Charging  

Opera(on  :  Model  Output  :  Flow  of  Energy    实际操作:模型输出及能源流动走向�

Base load by Tri-

Generation

Make up from top up boilers

Solar Hot Water Producing Heat

Battery recharge

when demand

drops overnight

Battery discharge at peak demand

Minimal cooling

load over winter Base load by

absorption chillers

Peak load by water cooled

chillers

Grid purchased power provides

peak load

Opera(on  :  Power  Quality  Modeling    实际操作:电能质量建模�

Voltage:  220V  (LV  supply) Devia(on:  +7%,  -­‐10% Frequency:  50Hz Devia(on:  +/-­‐0.5Hz Power  Factor: >0.9 The  user  provides  following  devices  for  connec(on  to  Grid:  Reac(ve  power  compensa(on  device    Harmonic  suppression  devices  Automa(c  voltage  control  device  Automa(c  low-­‐voltage  low-­‐frequency  load  shedding  devices,  Load  control  device

Power Quality Parameters for Hansung City MEG

CO2  Reduc(on  &  Energy  Reduc(on  :  Results  二氧化碳及能耗减量成果�

Tariff  Pricing  Structure    资费定价结构�

Ensuring  the  Business  Case  :  Financial  Analysis    财务分析�

Discount  Rate    (%)

Government  Subsidy    

(RMB/kWh)

IRR Discounted  payback    (yrs)

Scenario  1.1 3% 0.00 10.1% 17.00 Scenario  2.1 5% 0.00 10.1% 21.00 Scenario  3.1 7% 0.00 10.1% 25.00 Scenario  4.1 10% 0.00 10.1% 35.00 Scenario  5.1 12% 0.00 10.1% >60.00 Scenario  6.1 15% 0.00 10.1% >60.00   Scenario  1.2 3% 0.25 12.6% 14.00 Scenario  2.2 5% 0.25 12.6% 15.00 Scenario  3.2 7% 0.25 12.6% 18.00 Scenario  4.2 10% 0.25 12.6% 22.00 Scenario  5.2 12% 0.25 12.6% >50.00 Scenario  6.2 15% 0.25 12.6% >50.00   Scenario  1.3 3% 0.35 13.8% 11.00 Scenario  2.3 5% 0.35 13.8% 13.00 Scenario  3.3 7% 0.35 13.8% 16.00 Scenario  4.3 10% 0.35 13.8% 20.00 Scenario  5.3 12% 0.35 13.8% >50.00 Scenario  6.3 15% 0.35 13.8% >50.00

IRR 10%

Payback Period

25 yrs

Cashflow  Analysis  现金流量分析�

Lifecycle Cash Flow Analysis

Breakeven Point

Initial Capital Expenditure

(Phase 1) Initial Capital Expenditure

(Phase 2)

Operation Expenditure Positive (income) : Revenue from

sales, government subsidy Negative (outgoing) : Purchased

power, maintenance, staff, equipment replacement (end of life)

Hansung  City  KMEG  :  Summary � 总结�

§  Reduces  Carbon  Emissions,  Peak  Power  demand      减少碳排放及尖峰时段的用电需求�

§  Provides  clean,  resilient,  cost  effec(ve  energy  to  the  city      提供干净、弹性、高成本效益的城市能源�

§  Integrates  with  city  management  –  support  Smart  city  concepts                                                                                                            与城市管理整合 - 支持智能城市的概念�

§  Promotes  truly  sustainable  development  –  Technology  and  Behaviour  change                                                                  促进真正的永续发展 - 科技与行为改变�

§  Improves  maintenance  –  Preventa(ve  maintenance  and  fault  finding                                                                                            提高维护效益 - 预防性维护和故障查明�

Towards  Successful  Implementa(on    成功执行的基础  §  U7li7es  and  state  grid    公营事业和国家电网

§  Buy-­‐in  from  U(lity    §  Nego(a(on  of  tariff  for  purchasing  power  §  Nego(a(on  on  maintenance  cost  of  u(lity  network  (ren(ng  of  transmission)  

§  Government    政府 §  Discussions  and  buy-­‐in  from  government  bodies  needed  §  Nego(a(on  on  contract  Terms  and  Condi(ons  

§  Contractual  合约相关内容 §  Many  forms  of  contract  can  be  adopted  -­‐  DBOT  is  most  common  §  Nego(ate  Terms  and  Condi(ons  with  government  §  Sesng  of  energy  tariffs  –  responding  to  increased  fuel  costs  §  Nego(ate  Government  Subsidies  (GS)  and  incen(ves  §  Create  contract  for  end  users  

§  MEG  Construc7on  and  opera7onal  risk      MEG建设及运营风险 §  Increase  in  fuel  costs    §  Development  Phasing  §  Quality  /  ability  of  maintenance  staff  

 

The  Future  :  Conclusion    成功执行的基础 �

§  Distributed  Genera(on  will  form  a  part  of  the  future  energy  market    分布式发电将会成为未来能源市场的一部分�

§  Both  Supply  and  Demand  side  measures  are  needed    需要供应和需求两者的措施�

§  Open  discussion  needed  on  the  role  of  DG  &  Tradi(onal  U(li(es    需要公开讨论分布式与传统式发电之间的作用�

§  Technological  breakthroughs  will  speed  up  adop(on  –  par(cularly  electricity  storage    技术上的突破将加快通过策略- 特别是电力储存方面�

 

Thank  You  谢谢!              Green  Ini(a(ves  :  Smart  Ci(es  25/06/2015    Mark  Cameron  –  Senior  Consultant  –  Arup  HK  Building  Sustainability