Michael Prerau, MS

28
Zen, and the Art of Neural Decoding using an EM Algorithm Parameterized Kalman Filter and Gaussian Spatial Smoothing Michael Prerau, MS

description

Zen, and the Art of Neural Decoding using an EM Algorithm Parameterized Kalman Filter and Gaussian Spatial Smoothing. Michael Prerau, MS. Encoding/Decoding Process. Generate a smoothed Gaussian white noise stimulus - PowerPoint PPT Presentation

Transcript of Michael Prerau, MS

Page 1: Michael Prerau, MS

Zen, and the Art of Neural Decoding using an EM Algorithm

Parameterized Kalman Filter and Gaussian Spatial Smoothing

Michael Prerau, MS

Page 2: Michael Prerau, MS

Encoding/Decoding Process

Generate a smoothed Gaussian white noise stimulus

Generate a random kernel, D and convolve with the stimulus to generate a spike rate

Drive Poisson spike generator Decode and find K

Use K to decode from new stimuli “real time”

( )( )

( )rsQK

Q

%

%%

rate stim D

Page 3: Michael Prerau, MS

Encoding/Decoding Process

Gaussian NoiseStimulus

Random D

Cell Matrix

Poisson SpikeGenerator

Calculate Kernel K

Encode Decode

Kernel K

Cell Matrix

Poisson SpikeGenerator

Stimulus Output

Decoding “Real Time”

Page 4: Michael Prerau, MS

Encoding/Decoding

Page 5: Michael Prerau, MS

Stimulus

Page 6: Michael Prerau, MS

Decoded Estimate

Page 7: Michael Prerau, MS

State-Space Modeling

( , )kS x yHidden State: Where sputnik really is ( , )x y

( , )k x yO o oObservations: What the towers see

1( )k k sS PHYSICS S

State equation: How sputnik ideally moves

k k oO S

Observation equation: If we knew where sputnik was, how would that relate to our observations?

{ , , }s o Parameters:

Page 8: Michael Prerau, MS

State-Space Modeling

Observations

State estimate

Page 9: Michael Prerau, MS

The Kalman Filter

Gaussian state The actual stimulus intensity

Gaussian observations The filtered estimate

1k k kx Ax w State Equation

k k kz Hx Observation Equation

ˆ ˆ ˆ( )k k k kx x K z Hx State Estimate

Page 10: Michael Prerau, MS

State Equation: Random Walk AR Model

Observation Equation: Linear Model

Parameters

The Kalman Filter Application to the Intensity Estimate

1k k kx x 2(0, )k N where

k k kz x 2(0, )k N where

2 2( , , , )v

Page 11: Michael Prerau, MS

Complete Data Likelihood

Log-likelihood

12

12

2 2 1 2

1

2 2 1 21

1

( ) (2 ) exp{( 2 ) ( ) }

(2 ) exp{( 2 ) ( ) }

K

k kk

K

k kk

p Z x z x

x x

221

0 2 2| 1

( ) ( )1 1log( ( | ))

2 2k k k k

k kk k

x x z xp x Z

The Kalman Filter Application to the Intensity Estimate

Page 12: Michael Prerau, MS

Forward Filter Derivation

221

0 2 2| 1

( ) ( )1 1log( ( | ))

2 2k k k k

k kk k

x x z xp x Z

Most likely hidden state will maximize log-likelihood:

0 12 2| 1

log( ( | )) ( )k k k k k k

k k k

p x R x x z x

x

22| 1

12 2 2 2 2 2| 1 | 1

ˆ k kk k k

k k k k

x x z

Maximize for xk and solve:

2| 1

1 12 2 2| 1

( )ˆk k

k k k kk k

x z xx

Arrange Kalman style:

Page 13: Michael Prerau, MS

For hidden state variance, first take the 2nd derivative of the log likelihood:

Then take the negative of the inverse for the variance of the hidden state:

2 20

2 2 2| 1

log( ( | )) 1k k

k k k

p x Z

x

2 2| 12

2 2 2| 1

ˆ k kk

k k

Forward Filter Derivation

Page 14: Michael Prerau, MS

The EM Algorithm

Suppose we don’t know the parameter values? Use the Expectation Maximization (EM)

Algorithm (Dempster, Laird, and Rubin, 1977) Iterative maximization

E-step: Take the most likely (Expected value) value of the state process given the parameters

M-step: Maximize for the most likely parameters given the estimated state values

Page 15: Michael Prerau, MS

E-Step for Intensity Model

( )

22 ( )2

1

22 ( )12

1

log ( ) ||

1 1log(2 ) ( ) ||

2 2

1 1log(2 ) ( ) ||

2 2

K

k kk

K

k kk

E p Z x Z

E K z x Z

E K x x Z

l

l

l

( )

2 ( )

( )11

||

||

||

k K k

kk K

k kk k K

x E x Z

W E x Z

W E x x Z

l

l

l

Take the expected value of the joint likelihood:

We will encounter terms such as:

Can be solved with the state-space covariance algorithm (De Jong and MacKinnon, 1988)

Page 16: Michael Prerau, MS

Example :

M-Step for Intensity Model

For the M-Step, maximize with respect to each parameter.

Set equal to zero and solve

2

222 2

1

2 2 ( 1) 2( 1) 22 2

1 1 1

( 1) 2( 12 2|2 2

1 1 1

1 1log(2 ) ( )

2 2

1 1{ [ log(2 ) [ 2 ]}

2 2

1 1{ log(2 ) [ 22 2

K

k kk

K K K

k k k kk k k

K K K

k k K kk k k

E K z x

E K z x z x

K z x z

l l

l l )|

2 ( 1) 2( 1)| |22 2

1 1 1

]}

1[ 2 ]

2 2( )

k K

K K K

k k K k k Kk k k

W

Kz x z W

l l

2 ( 1) 2( 1)| |22 2

1 1 1

2 ( 1) 2( 1)2( 1) 1|

1 1 1

10 [ 2 ]

2 2( )

2

K K K

k k K k k Kk k k

K K K

k k K k k Kk k k

Kz x z W

K z x z W

l l

l ll

Page 17: Michael Prerau, MS

M-Step for Intensity Model

1

1 11 1

K K

k k K k Kk k

W W

22 11 1

1

2K

k K k k K k Kk

K W W W

1

( 1)|

11

KK

k K kk Kkk

x zW

l

2 ( 1) 2( 1)2( 1) 1|

1 1 1

2K K K

k k K k k Kk k k

K z x z W

l ll

M-Step Summary:

Page 18: Michael Prerau, MS

The EM Algorithm

Page 19: Michael Prerau, MS

The EM Algorithm

Page 20: Michael Prerau, MS

Kalman Estimate

Page 21: Michael Prerau, MS

convolution =

2D Gaussian Spatial Smoothing

Page 22: Michael Prerau, MS

Gaussian Spatially Smoothed Estimate

Page 23: Michael Prerau, MS

Kalman Filtering the Gaussian Smoothed Estimate

Page 24: Michael Prerau, MS

Kalman Filtering the Gaussian Smoothed Estimate

Page 25: Michael Prerau, MS

Comparison

Page 26: Michael Prerau, MS

Comparison

Page 27: Michael Prerau, MS

Comparison

Stimulus

Sest Kalman GaussianSmoothed

SmoothedKalman

Page 28: Michael Prerau, MS

fin