Michael Kr amer (RWTH Aachen) -...

75
Bethe Forum on LHC, Dark Matter and Unification, Bonn, November 2011 SUSY fits at the LHC Michael Kr¨ amer (RWTH Aachen) Work done in collaboration with P. Bechtle, J. Conley, K. Desch, H. Dreiner, L. Glaser, J. Lindert, B. O’Leary, C. Robens, B. Sarrazin, J.Tattersall and P. Wienemann. See arXiv:1003.2648, arXiv:1102.4693, arXiv:1105.5398, and arXiv:1110.1287. Supported by: SFB/TR 9 “Computational Particle Physics”, Helmholtz Alliance “Physics at the Terascale”, BMBF-Theorie-Verbund, Marie Curie Research Training Network “Heptools”, Graduiertenkolleg “Elementarteilchenphysik an der TeV-Skala” 1 / 63

Transcript of Michael Kr amer (RWTH Aachen) -...

  • Bethe Forum on LHC, Dark Matter and Unification, Bonn, November 2011

    SUSY fits at the LHC

    Michael Krämer (RWTH Aachen)

    Work done in collaboration with P. Bechtle, J. Conley, K. Desch, H. Dreiner,L. Glaser, J. Lindert, B. O’Leary, C. Robens, B. Sarrazin, J.Tattersall and P.Wienemann.

    See arXiv:1003.2648, arXiv:1102.4693, arXiv:1105.5398, and arXiv:1110.1287.

    Supported by:

    SFB/TR 9 “Computational Particle Physics”, Helmholtz Alliance “Physics at the Terascale”,

    BMBF-Theorie-Verbund, Marie Curie Research Training Network “Heptools”, Graduiertenkolleg

    “Elementarteilchenphysik an der TeV-Skala”

    1 / 63

  • From the motivation for a recent SUSY meeting at ICL:

    The non-observation of SUSY-like signatures in the first fb−1

    collected by ATLAS and CMS is in tension with the expectedranges of the parameters of constrained SUSY models like theCMSSM/mSUGRA or non-universal Higgs models. If noevidence of a missing energy signature is found by the end ofthe run year 2011, these constrained models will essentially beruled out, while a very large volume of the parameter space ofsimple SUSY will be excluded.

    2 / 63

  • SUSY searches: past, present, future

    I past: EWK & flavour observables, collider limits, ΩDM

    I present: ⊕ LHC SUSY and Higgs exclusions

    I future: ⊕ LHC discoveries. . .

    3 / 63

  • SUSY searches: past, present, future

    I past: EWK & flavour observables, collider limits, ΩDM

    I present: ⊕ LHC SUSY and Higgs exclusions

    I future: ⊕ LHC discoveries. . .

    4 / 63

  • Indirect SUSY searches

    There is a wealth of precision measurements

    from B/K physics, (g − 2), astrophysics (DM) and collider limitswhich show sensitivity to supersymmetry, in particular

    I (g − 2)µ

    I DM relic abundance

    5 / 63

  • Indirect SUSY searches: (g − 2)µ

    3.6/2.4σ discrepancy between experimental data and SM prediction

    Davier, Hoecker, Malaescu, Zhang, arXiv:1010.4180v1

    -700 -600 -500 -400 -300 -200 -100 0

    aµ – a

    µ exp ×

    10

    –11

    BN

    L-E

    821 2

    004

    HMNT 07 (e+e

    –-based)

    JN 09 (e+e

    –)

    Davier et al. 09/1 (τ-based)

    Davier et al. 09/1 (e+e

    –)

    Davier et al. 09/2 (e+e

    – w/ BABAR)

    HLMNT 10 (e+e

    – w/ BABAR)

    DHMZ 10 (τ newest)

    DHMZ 10 (e+e

    – newest)

    BNL-E821 (world average)

    –285 ±

    51

    –299 ±

    65

    –157 ±

    52

    –312 ±

    51

    –255 ±

    49

    –259 ±

    48

    –195 ±

    54

    –287 ±

    49

    0 ±

    63

    → SUSY loops: aSUSYµ ∼ sgn(µ) tanβM−2SUSY

    6 / 63

  • Indirect SUSY searches: (g − 2)µ

    3.6/2.4σ discrepancy between experimental data and SM prediction

    Davier, Hoecker, Malaescu, Zhang, arXiv:1010.4180v1

    -700 -600 -500 -400 -300 -200 -100 0

    aµ – a

    µ exp ×

    10

    –11

    BN

    L-E

    821 2

    004

    HMNT 07 (e+e

    –-based)

    JN 09 (e+e

    –)

    Davier et al. 09/1 (τ-based)

    Davier et al. 09/1 (e+e

    –)

    Davier et al. 09/2 (e+e

    – w/ BABAR)

    HLMNT 10 (e+e

    – w/ BABAR)

    DHMZ 10 (τ newest)

    DHMZ 10 (e+e

    – newest)

    BNL-E821 (world average)

    –285 ±

    51

    –299 ±

    65

    –157 ±

    52

    –312 ±

    51

    –255 ±

    49

    –259 ±

    48

    –195 ±

    54

    –287 ±

    49

    0 ±

    63

    → SUSY loops: aSUSYµ ∼ sgn(µ) tanβM−2SUSY

    6 / 63

  • Dark matter relic abundance ΩDM

    ΩDM is too large for large parts of the CMSSM parameter space, specialannihilation mechanisms are needed

    7 / 63

  • SUSY framework: the constrained MSSM

    Indirect SUSY searches are often interpreted in the constrained MSSM,

    where the breaking is universal at the GUT scale

    I universal scalar masses: M2Q̃

    , M2Ũ

    , M2D̃

    , M2L̃, M2

    Ẽ→ M20 at MGUT

    I universal gaugino masses: M1, M2, M3 → M1/2 at MGUTI universal trilinear couplings Aeij ,A

    dij ,A

    uij → A · heij ,A · hdij ,A · huij at MGUT

    In addition we have tanβ, and we fix sign(µ) = +

    In the CMSSM the sparticle masses are strongly correlated, e.g.

    Mg̃ ' 3Mχ̃± ' 3Mχ̃02 ' 6Mχ̃01and

    m2ũL ' M20 + 6.3 M21/2 + DũLm2ẽL ' M20 + 0.5 M21/2 + DẽL

    where Df̃L = M2Z cos(2β)(T3f − Qf sin(2θW ))

    8 / 63

  • SUSY framework: the constrained MSSM

    Indirect SUSY searches are often interpreted in the constrained MSSM,

    where the breaking is universal at the GUT scale

    I universal scalar masses: M2Q̃

    , M2Ũ

    , M2D̃

    , M2L̃, M2

    Ẽ→ M20 at MGUT

    I universal gaugino masses: M1, M2, M3 → M1/2 at MGUTI universal trilinear couplings Aeij ,A

    dij ,A

    uij → A · heij ,A · hdij ,A · huij at MGUT

    In addition we have tanβ, and we fix sign(µ) = +

    In the CMSSM the sparticle masses are strongly correlated, e.g.

    Mg̃ ' 3Mχ̃± ' 3Mχ̃02 ' 6Mχ̃01and

    m2ũL ' M20 + 6.3 M21/2 + DũLm2ẽL ' M20 + 0.5 M21/2 + DẽL

    where Df̃L = M2Z cos(2β)(T3f − Qf sin(2θW ))

    8 / 63

  • The Fittino CMSSM fits

    I For the calculation of non-LHC observables we have used

    – the spectrum generator SPheno;

    – the Mastercode compilation for (g − 2)µ, flavour and electroweakprecision observables;

    – MicrOMEGAs for the DM relic densities;

    – HiggsBounds for the Higgs limits.

    I We require that χ̃01 is the LSP.

    I We then calculate and minimize

    χ2 = (~Oobs − ~Oth(~P))T cov−1M (~Oobs − ~Oth(~P)) + limits

    for each point ~P in the CMSSM parameter space using the Fittinopackage.

    9 / 63

  • The Fittino CMSSM fits

    Our best fit point without LHC exclusions. . .

    0h 0A 0H +H10χ

    20χ

    30χ

    40χ

    1+χ

    2+χ

    Rl~

    Ll~

    1τ∼

    2τ∼

    Rq~

    Lq~

    1b~

    2b~

    1t~

    2t~ g~

    Par

    ticl

    e M

    ass

    [GeV

    ]

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Mass Spectrum of SUSY Particles no LHC

    Environmentσ1

    Environmentσ2

    Best Fit Value

    Mass Spectrum of SUSY Particles no LHC

    . . . points to a light sparticle spectrum with m̃ < 1 TeV

    10 / 63

  • SUSY searches: past, present, future

    I past: EWK & flavour observables, collider limits, ΩDM

    I present: ⊕ LHC SUSY and Higgs exclusions

    I future: ⊕ LHC discoveries. . .

    11 / 63

  • SUSY particle production at the LHC

    SUSY particles would be produced at the LHC via QCD processes

    [Beenakker, Brensing, MK, Laenen, Kulesza, Niessen ’09]

    q̃g̃

    q̃q̃

    q̃¯̃q

    g̃g̃

    mq̃ = mg̃

    NLO+NLL

    √s = 7TeV;

    σ (pp → g̃g̃/q̃¯̃q/q̃q̃/q̃g̃ + X) [pb]

    m [GeV]12001000800600400200

    1000

    100

    10

    1

    0.1

    0.01

    0.001

    → σ ≈ 100 fb for m ≈ 1000 GeV at√

    S = 7 TeV

    12 / 63

  • SUSY particle production at the LHC

    SUSY particles would be produced at the LHC via QCD processes

    [Beenakker, Brensing, MK, Laenen, Kulesza, Niessen ’09]

    q̃g̃

    q̃q̃

    q̃¯̃q

    g̃g̃

    mq̃ = mg̃

    NLO+NLL

    √s = 7TeV;

    σ (pp → g̃g̃/q̃¯̃q/q̃q̃/q̃g̃ + X) [pb]

    m [GeV]12001000800600400200

    1000

    100

    10

    1

    0.1

    0.01

    0.001

    → σ ≈ 100 fb for m ≈ 1000 GeV at√

    S = 7 TeV

    12 / 63

  • SUSY particle production at the LHC

    SUSY particles would be produced at the LHC via QCD processes

    [Beenakker, Brensing, MK, Laenen, Kulesza, Niessen ’09]

    q̃g̃

    q̃q̃

    q̃¯̃q

    g̃g̃

    mq̃ = mg̃

    NLO+NLL

    √s = 14TeV;

    σ (pp → g̃g̃/q̃¯̃q/q̃q̃/q̃g̃ + X) [pb]

    m [GeV]30002500200015001000500

    103

    101

    10

    1

    10−1

    10−2

    10−3

    10−4

    10−5

    → σ ≈ 2.5 pb for m ≈ 1000 GeV at√

    S = 14 TeV

    13 / 63

  • SUSY searches at hadron colliders

    Powerful MSSM signature at the LHC: cascade decays with ET,miss

    Generic signature for many new physics models which address

    – the hierarchy problem– the origin of dark matter

    → predict spectrum of new particles at the TeV-scalewith weakly interacting & stable particle (← discrete parity)

    14 / 63

  • SUSY searches at hadron colliders

    Powerful MSSM signature at the LHC: cascade decays with ET,miss

    Generic signature for many new physics models which address

    – the hierarchy problem– the origin of dark matter

    → predict spectrum of new particles at the TeV-scalewith weakly interacting & stable particle (← discrete parity)

    14 / 63

  • Squark and gluino searches at the LHC

    ATLAS limits (1 fb−1)

    → mq̃ ≈ mg̃ ∼> 980 GeV15 / 63

  • Squark and gluino searches at the LHC

    CMS limits (1 fb−1)

    )2 (GeV/c0m0 200 400 600 800 1000

    )2 (G

    eV/c

    1/2

    m

    200

    300

    400

    500

    600

    700

    (250)GeVq~

    (250)GeVg~

    (500)GeVq~

    (500)GeVg~

    (750)GeVq~

    (750)GeVg~

    (1000)GeVq~

    (1000)GeVg~

    (1250)GeVq~

    (1250)GeVg~

    Jets+MHT

    SS Dilepton

    OS Dilepton

    MT21 Lepton

    -1 = 7 TeV, Ldt = 1.1 fbs ∫CMS Preliminary

    > 0µ = 0, 0

    = 10, Aβtan

  • Direct SUSY searches at the LHC: expected limits

    The LHC is probing the preferred region of SUSY parameter spaceBechtle, Desch, Dreiner, MK, O’Leary, Robens, Sarrazin, Wienemann, arXiv:1102.4693 [hep-ph]

    [GeV]0M0 100 200 300 400 500 600 700 800

    [G

    eV]

    1/2

    M

    200

    300

    400

    500

    600

    700

    800

    [GeV]0M0 100 200 300 400 500 600 700 800

    [G

    eV]

    1/2

    M

    200

    300

    400

    500

    600

    700

    800

    2D 95% CL no LHC1D 68% CL no LHC

    -195% CL exclusion 35pb-195% CL exclusion 1fb-195% CL exclusion 2fb-195% CL exclusion 7fb

    17 / 63

  • Direct SUSY searches at the LHC: expected limits

    But what if we do not see any SUSY signal at the LHC?Bechtle, Desch, Dreiner, MK, O’Leary, Robens, Sarrazin, Wienemann, arXiv:1102.4693 [hep-ph]

    [GeV]0M0 100 200 300 400 500 600 700 800

    [G

    eV]

    1/2

    M

    200

    300

    400

    500

    600

    700

    800

    [GeV]0M0 100 200 300 400 500 600 700 800

    [G

    eV]

    1/2

    M

    200

    300

    400

    500

    600

    700

    800

    2D 95% CL no LHC1D 68% CL no LHC

    -195% CL exclusion 35pb-195% CL exclusion 1fb-195% CL exclusion 2fb-195% CL exclusion 7fb

    18 / 63

  • Direct SUSY searches at the LHC: expected limits

    We have considered the SUSY search in the 4 jets + ET ,miss signature

    with Meff =∑

    i pT ,i + ET ,miss:

    ATL-PHYS-PUB-2010-10

    19 / 63

  • Direct SUSY searches at the LHC: expected limits

    I We have calculated the CMSSM signal for a grid in (m0,m1/2) using

    – the spectrum generator SPheno;

    – the MC generator Herwig++;

    – NLO+NLL K-factors;

    – the fast detector simulation Delphes.

    I We consider ten bins in the range 0 < Meff < 4 TeV and calculate theχ2 from the number of signal and background events in each bin ofthe Meff distribution.

    I The SM background is taken from the ATLAS simulation. We assign30% systematic uncertainty to the SUSY signal cross-section, and 20%systematic uncertainty to the background.

    20 / 63

  • Direct SUSY searches at the LHC: expected limits

    We find good agreement with the ATLAS simulation:

    FITTINO 4 jets 0 lepton LO

    FITTINO 4 jets 0 lepton NLO

    21 / 63

  • Direct SUSY searches at the LHC: expected limits

    The 4 jets +ET ,miss signature is rather independent of tanβ and A0:

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    SM=0

    0=10, Aβtan

    =10000

    =10, Aβtan =1000

    0=20, Aβtan

    =10000

    =30, Aβtan =1000

    0=40, Aβtan

    =10000

    =50, Aβtan

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    = 5001/2

    = 500, M0M

    22 / 63

  • Global SUSY fits with projected LHC exclusions: results

    Low-energy observables, DM, no LHC exclusions

    [GeV]0M100 200 300 400 500 600 700 800

    [G

    eV]

    1/2

    M

    200

    300

    400

    500

    600

    700

    800

    2D 95% CL no LHC

    1D 68% CL no LHC

    23 / 63

  • Global SUSY fits with projected LHC exclusions: results

    Low-energy observables, DM and LHC exclusions with 1 fb−1

    [GeV]0M0 500 1000 1500 2000 2500

    [G

    eV]

    1/2

    M

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    -12D 95% CL 1fb-11D 68% CL 1fb

    -195% CL exclusion 1fb

    24 / 63

  • Global SUSY fits with projected LHC exclusions: results

    Low-energy observables, DM and LHC exclusions with 2 fb−1

    [GeV]0M0 500 1000 1500 2000 2500 3000 3500

    [G

    eV]

    1/2

    M

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200-12D 95% CL 2fb-11D 68% CL 2fb

    -195% CL exclusion 2fb

    25 / 63

  • Global SUSY fits with projected LHC exclusions: results

    Low-energy observables, DM and LHC exclusions with 7 fb−1

    [GeV]0M0 500 1000 1500 2000 2500 3000 3500 4000 4500

    [G

    eV]

    1/2

    M

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200-12D 95% CL 7fb-11D 68% CL 7fb

    -195% CL exclusion 7fb

    26 / 63

  • Global SUSY fits with projected LHC exclusions: is there a tension?

    → LEOs prefer low mass scales (for non-coloured sector)→ LHC prefers high mass scales (for coloured sector)

    Is there a tension building up?

    Let us look at the best fit points:

    M0 M1/2 A0 tanβ χ2/ndf

    no LHC 77+114−31 333+89−87 426

    +70−735 13

    +10−8 19/20

    35 pb−1 126+189−54 400+109−40 724

    +722−780 17

    +14−9 20/21

    1 fb−1 235+389−103 601+148−63 627

    +1249−717 31

    +19−18 24/21

    2 fb−1 254+456−128 647+157−74 771

    +1254−879 30

    +20−19 24/21

    7 fb−1 403+436−281 744+142−150 781

    +1474−918 43

    +11−33 25/21

    → even the CMSSM would ”survive” the 2011/2012 LHC run

    27 / 63

  • Global SUSY fits with projected LHC exclusions: is there a tension?

    → LEOs prefer low mass scales (for non-coloured sector)→ LHC prefers high mass scales (for coloured sector)

    Is there a tension building up?

    Let us look at the best fit points:

    M0 M1/2 A0 tanβ χ2/ndf

    no LHC 77+114−31 333+89−87 426

    +70−735 13

    +10−8 19/20

    35 pb−1 126+189−54 400+109−40 724

    +722−780 17

    +14−9 20/21

    1 fb−1 235+389−103 601+148−63 627

    +1249−717 31

    +19−18 24/21

    2 fb−1 254+456−128 647+157−74 771

    +1254−879 30

    +20−19 24/21

    7 fb−1 403+436−281 744+142−150 781

    +1474−918 43

    +11−33 25/21

    → even the CMSSM would ”survive” the 2011/2012 LHC run

    27 / 63

  • Global SUSY fits with projected LHC exclusions: is there a tension?

    P-v

    alu

    e @

    bes

    t fi

    t p

    oin

    t

    0.2

    0.3

    0.4

    0.5

    0.6

    [GeV]0M0 200 400 600 800 1000

    [G

    eV]

    1/2

    M

    200

    400

    600

    800

    1000

    -11D 68% CL 7fb-11D 68% CL 2fb-11D 68% CL 1fb

    -11D 68% CL 35pb1D 68% CL no LHC

    28 / 63

  • Why do tan β and M1/2 move to larger values?

    I mainly due to aSUSYµ ∼ sgn(µ) tanβM−2SUSY and ΩDM

    I ΩDM is too large for large parts of the CMSSM parameter space,special annihilation mechanisms are needed

    29 / 63

  • Why do tan β and M1/2 move to larger values?

    I mainly due to aSUSYµ ∼ sgn(µ) tanβM−2SUSY and ΩDM

    I ΩDM is too large for large parts of the CMSSM parameter space,special annihilation mechanisms are needed

    29 / 63

  • Why do tan β and M1/2 move to larger values?

    30 / 63

  • Why do tan β and M1/2 move to larger values?

    31 / 63

  • Why do tan β and M1/2 move to larger values?

    32 / 63

  • Why do tan β and M1/2 move to larger values?

    33 / 63

  • Why do tan β and M1/2 move to larger values?

    34 / 63

  • Global SUSY fits with projected LHC exclusions: individual pulls

    no LHC

    σ|Meas.-Fit|/ 0 1 2 3

    2hCDMΩ 0.0135 ±0.1099 0.1125

    SMµ - aµa-10 10× 9.0) ±(30.2 -10 10×24.0

    )K∈C( 0.14 ±0.92 1.03

    ) ν l→(KBR 0.014 ±1.008 1.000

    )γ s→(bBR 0.122 ±1.117 1.022

    )ντ →(bBR 0.40 ±1.15 0.96

    ll)s X→s(BBR 0.32 ±0.99 0.99

    Bsm∆ 0.32 ±1.11 1.03

    Bdm∆/Bsm∆ 0.16 ±1.09 1.00

    [MeV] ZΓ 2.5 ±2495.2 2495.3

    [nb]0hadσ 0.037 ±41.540 41.484

    0lR 0.025 ±20.767 20.743

    0bR 0.00066 ±0.21629 0.21601

    0cR 0.0030 ±0.1721 0.1722

    lA 0.0021 ±0.1513 0.1482

    τA 0.0032 ±0.1465 0.1482

    bA 0.020 ±0.923 0.935

    cA 0.027 ±0.670 0.668

    FB0,l

    A 0.0010 ±0.0171 0.0165

    FB0,b

    A 0.0016 ±0.0992 0.1039

    FB0,c

    A 0.0035 ±0.0707 0.0743 leffθ

    2sin 0.0012 ±0.2324 0.2314

    [GeV] Wm 0.027 ±80.398 80.385

    [GeV] > hm 114.3 113.4

    no LHC

    35 / 63

  • Global SUSY fits with projected LHC exclusions: individual pulls

    -135 pb

    σ|Meas.-Fit|/ 0 1 2 3

    2hCDMΩ 0.0135 ±0.1099 0.1107

    SMµ - aµa-10 10× 9.0) ±(30.2 -10 10×21.4

    )K∈C( 0.14 ±0.92 1.02

    ) ν l→(KBR 0.014 ±1.008 1.000

    )γ s→(bBR 0.122 ±1.117 1.009

    )ντ →(bBR 0.40 ±1.15 0.945

    ll)s X→s(BBR 0.32 ±0.99 0.99

    Bsm∆ 0.32 ±1.11 1.02

    Bdm∆/Bsm∆ 0.16 ±1.09 1.00

    [MeV] ZΓ 2.5 ±2495.2 2495.0

    [nb]0hadσ 0.037 ±41.540 41.483

    0lR 0.025 ±20.767 20.743

    0bR 0.00066 ±0.21629 0.21600

    0cR 0.0030 ±0.1721 0.1722

    lA 0.0021 ±0.1513 0.1479

    τA 0.0032 ±0.1465 0.1479

    bA 0.020 ±0.923 0.935

    cA 0.027 ±0.670 0.668

    FB0,l

    A 0.0010 ±0.0171 0.0164

    FB0,b

    A 0.0016 ±0.0992 0.1037

    FB0,c

    A 0.0035 ±0.0707 0.0741 leffθ

    2sin 0.0012 ±0.2324 0.2314

    [GeV] Wm 0.027 ±80.398 80.377

    LHC

    -135 pb

    36 / 63

  • Global SUSY fits with projected LHC exclusions: individual pulls

    -11 fb

    σ|Meas.-Fit|/ 0 1 2 3

    2hCDMΩ 0.0135 ±0.1099 0.1063

    SMµ - aµa-10 10× 9.0) ±(30.2 -10 10×26.3

    )K∈C( 0.14 ±0.92 1.01

    ) ν l→(KBR 0.014 ±1.008 0.999

    )γ s→(bBR 0.122 ±1.117 0.952

    )ντ →(bBR 0.40 ±1.15 0.91

    ll)s X→s(BBR 0.32 ±0.99 0.99

    Bsm∆ 0.32 ±1.11 1.01

    Bdm∆/Bsm∆ 0.16 ±1.09 1.00

    [MeV] ZΓ 2.5 ±2495.2 2494.9

    [nb]0hadσ 0.037 ±41.540 41.482

    0lR 0.025 ±20.767 20.741

    0bR 0.00066 ±0.21629 0.21596

    0cR 0.0030 ±0.1721 0.1722

    lA 0.0021 ±0.1513 0.1476

    τA 0.0032 ±0.1465 0.1476

    bA 0.020 ±0.923 0.935

    cA 0.027 ±0.670 0.668

    FB0,l

    A 0.0010 ±0.0171 0.0163

    FB0,b

    A 0.0016 ±0.0992 0.1035

    FB0,c

    A 0.0035 ±0.0707 0.0739 leffθ

    2sin 0.0012 ±0.2324 0.2315

    [GeV] Wm 0.027 ±80.398 80.368

    LHC

    -11 fb

    37 / 63

  • Global SUSY fits with projected LHC exclusions: individual pulls

    -12 fb

    σ|Meas.-Fit|/ 0 1 2 3

    2hCDMΩ 0.0135 ±0.1099 0.1134

    SMµ - aµa-10 10× 9.0) ±(30.2 -10 10×13.7

    )K∈C( 0.14 ±0.92 1.01

    ) ν l→(KBR 0.014 ±1.008 0.999

    )γ s→(bBR 0.122 ±1.117 0.971

    )ντ →(bBR 0.40 ±1.15 0.913

    ll)s X→s(BBR 0.32 ±0.99 1.00

    Bsm∆ 0.32 ±1.11 1.01

    Bdm∆/Bsm∆ 0.16 ±1.09 1.00

    [MeV] ZΓ 2.5 ±2495.2 2494.4

    [nb]0hadσ 0.037 ±41.540 41.482

    0lR 0.025 ±20.767 20.741

    0bR 0.00066 ±0.21629 0.21596

    0cR 0.0030 ±0.1721 0.1722

    lA 0.0021 ±0.1513 0.1473

    τA 0.0032 ±0.1465 0.1473

    bA 0.020 ±0.923 0.935

    cA 0.027 ±0.670 0.668

    FB0,l

    A 0.0010 ±0.0171 0.0163

    FB0,b

    A 0.0016 ±0.0992 0.1033

    FB0,c

    A 0.0035 ±0.0707 0.0738 leffθ

    2sin 0.0012 ±0.2324 0.2315

    [GeV] Wm 0.027 ±80.398 80.366

    LHC

    -12 fb

    38 / 63

  • Global SUSY fits with projected LHC exclusions: individual pulls

    -17 fb

    σ|Meas.-Fit|/ 0 1 2 3

    2hCDMΩ 0.0135 ±0.1099 0.1095

    SMµ - aµa-10 10× 9.0) ±(30.2 -10 10×13.3

    )K∈C( 0.14 ±0.92 1.01

    ) ν l→(KBR 0.014 ±1.008 0.999

    )γ s→(bBR 0.122 ±1.117 0.948

    )ντ →(bBR 0.40 ±1.15 0.854

    ll)s X→s(BBR 0.32 ±0.99 1.00

    Bsm∆ 0.32 ±1.11 1.00

    Bdm∆/Bsm∆ 0.16 ±1.09 1.00

    [MeV] ZΓ 2.5 ±2495.2 2494.5

    [nb]0hadσ 0.037 ±41.540 41.482

    0lR 0.025 ±20.767 20.741

    0bR 0.00066 ±0.21629 0.21595

    0cR 0.0030 ±0.1721 0.1722

    lA 0.0021 ±0.1513 0.1473

    τA 0.0032 ±0.1465 0.1473

    bA 0.020 ±0.923 0.935

    cA 0.027 ±0.670 0.668

    FB0,l

    A 0.0010 ±0.0171 0.0163

    FB0,b

    A 0.0016 ±0.0992 0.1033

    FB0,c

    A 0.0035 ±0.0707 0.0738 leffθ

    2sin 0.0012 ±0.2324 0.2315

    [GeV] Wm 0.027 ±80.398 80.365

    LHC

    -17 fb

    39 / 63

  • Global SUSY fits with projected LHC exclusions: mass spectrum

    Low-energy observables, DM and LHC exclusions with 1 fb−1

    0h 0A 0H +H10χ

    20χ

    30χ

    40χ

    1+χ

    2+χ

    Rl~

    Ll~

    1τ∼

    2τ∼

    Rq~

    Lq~

    1b~

    2b~

    1t~

    2t~ g~

    Par

    ticl

    e M

    ass

    [GeV

    ]

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    -1 Mass Spectrum of SUSY Particles 1fb Environmentσ1

    Environmentσ2

    Best Fit Value

    -1 Mass Spectrum of SUSY Particles 1fb

    40 / 63

  • Global SUSY fits with projected LHC exclusions: mass spectrum

    Low-energy observables, DM and LHC exclusions with 2 fb−1

    0h 0A 0H +H10χ

    20χ

    30χ

    40χ

    1+χ

    2+χ

    Rl~

    Ll~

    1τ∼

    2τ∼

    Rq~

    Lq~

    1b~

    2b~

    1t~

    2t~ g~

    Par

    ticl

    e M

    ass

    [GeV

    ]

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    -1 Mass Spectrum of SUSY Particles 2fb Environmentσ1

    Environmentσ2

    Best Fit Value

    -1 Mass Spectrum of SUSY Particles 2fb

    41 / 63

  • Global SUSY fits with projected LHC exclusions: mass spectrum

    Low-energy observables, DM and LHC exclusions with 7 fb−1

    0h 0A 0H +H10χ

    20χ

    30χ

    40χ

    1+χ

    2+χ

    Rl~

    Ll~

    1τ∼

    2τ∼

    Rq~

    Lq~

    1b~

    2b~

    1t~

    2t~ g~

    Par

    ticl

    e M

    ass

    [GeV

    ]

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    -1 Mass Spectrum of SUSY Particles 7fb Environmentσ1

    Environmentσ2

    Best Fit Value

    -1 Mass Spectrum of SUSY Particles 7fb

    42 / 63

  • What is the role of the Higgs sector?

    A few comments:

    I the Higgs sector is strongly constrained in the CMSSM;

    I in our CMSSM fits, the light Higgs is very SM-like, and the heavyHiggses are beyond current (future?) reach;

    43 / 63

  • What is the role of the Higgs sector?

    44 / 63

  • What is the role of the Higgs sector?

    45 / 63

  • What is the role of the Higgs sector?

    A few more comments:

    I the Higgs sector is strongly constrained in the CMSSM;

    I in our CMSSM fits, the light Higgs is very SM-like, and the heavyHiggses are beyond current (future?) reach;

    I the exclusion of a Higgs with mh ∼< 140 GeV would probably be theonly way to exclude the MSSM;

    I SM Higgs searches may, however, not be sufficient to exclude a lightMSSM Higgs, e.g. because of invisible decays h→ χ̃χ̃;

    I the Higgs sector will play a crucial role for the assessment of SUSYin the near future!

    46 / 63

  • Future SUSY searches beyond MET

    I flavour constraints, e.g. Bs → µµ (LHCb)

    I direct dark matter searches (see e.g. Aprile et al: arXiv:1104.2549)

    47 / 63

  • Comparison of global CMSSM fits with and without LHC exclusions

    There has been a lot of activity recently (see e.g. arXiv:1109.3859v1)

    ]2 [GeV/c0m0 100 200 300 400 500 600 700 800 900 1000

    ]2 [

    GeV

    /c1/

    2m

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000 SPS1ABench B’’Allanach pre LHC

    tαAllanach CMS -1Allanach 35pb

    -1Bertone 35pb-1Farina 1fb

    Fittino pre LHC-1Fittino 35pb

    -1Fittino 1fb-1Fittino 2fb-1Fittino 7fb

    MC pre LHC

    tαMC CMS -1MC 35pb

    -1MC 1fbSuperBayes pre LHC

    → there is less agreement after the inclusion of LHC limits

    48 / 63

  • Comparison of global CMSSM fits with and without LHC exclusions

    There has been a lot of activity recently (see e.g. arXiv:1109.3859v1)

    ]2 [GeV/c1/2m0 100 200 300 400 500 600 700 800 900 1000

    )βta

    n(

    0

    10

    20

    30

    40

    50

    60 SPS1ABench B’’Allanach pre LHC

    tαAllanach CMS -1Allanach 35pb

    -1Bertone 35pb-1Farina 1fb

    Fittino pre LHC-1Fittino 35pb

    -1Fittino 1fb-1Fittino 2fb-1Fittino 7fb

    MC pre LHC

    tαMC CMS -1MC 35pb

    -1MC 1fbSuperBayes pre LHC

    → there is less agreement after the inclusion of LHC limits

    49 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    50 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    50 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    51 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    52 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    53 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    Let us look at the χ2 of the LHC exclusions along the red line:

    [GeV]0M0 500 1000 1500 2000 2500 3000 3500

    [G

    eV]

    1/2

    M

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200-12D 95% CL 2fb

    2D 95% CL no LHC

    route

    -195% CL exclusion 2fb

    54 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    We find a non-trivial shape of the LHC χ2:

    [GeV]0M210 310

    2 χ

    0

    2

    4

    6

    8

    10

    [GeV]0M210 310

    2 χ

    0

    2

    4

    6

    8

    10

    no LHC-1LHC 2fb-1total 2fb

    20.95z

    55 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    When we vary m0 and m1/2, both the SUSY rate as well as the shape ofthe Meff distribution change; SUSY signals with larger rate may becomemore background-like and thus harder to observe.

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    SM=0

    0=10, Aβtan

    =10000

    =10, Aβtan =1000

    0=20, Aβtan

    =10000

    =30, Aβtan =1000

    0=40, Aβtan

    =10000

    =50, Aβtan

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    = 5001/2

    = 500, M0M

    56 / 63

  • Global SUSY fits: the χ2 of the LHC exclusions

    When we vary m0 and m1/2, both the SUSY rate as well as the shape ofthe Meff distribution change; SUSY signals with larger rate may becomemore background-like and thus harder to observe.

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    SM=0

    0=10, Aβtan

    =00

    =30, Aβtan =0

    0=50, Aβtan

    =10000

    =10, Aβtan =1000

    0=30, Aβtan

    [GeV]effM0 500 1000 1500 2000 2500 3000 3500 4000

    -110

    1

    10

    210

    310

    = 4001/2

    = 200, M0M

    57 / 63

  • Comparison of global CMSSM fits with LHC exclusions

    I There is too wide a spread in global CMSSM fits with LHC exclusions.

    The different groups use different

    I LHC signatures;

    I levels of sophistication in the implementation of LHC limits.

    We should compare the LHC χ2 maps between the different groupsand identify problematic regions.

    I How can we optimize the LHC sensitivity?

    We observe

    I a reduced sensitivity when going from our analysis based on the Meffdistribution to the more recent analysis of ATLAS-CONF-2011-086 (prel.);

    I limitations of the sensitivity due to the systematic uncertainties of signaland background.

    We should compare the impact of different analyses (Meff , αT etc.) onglobal SUSY fits and include a combination of various LHC constraints.

    58 / 63

  • Comparison of global CMSSM fits with LHC exclusions

    I There is too wide a spread in global CMSSM fits with LHC exclusions.

    The different groups use different

    I LHC signatures;

    I levels of sophistication in the implementation of LHC limits.

    We should compare the LHC χ2 maps between the different groupsand identify problematic regions.

    I How can we optimize the LHC sensitivity?

    We observe

    I a reduced sensitivity when going from our analysis based on the Meffdistribution to the more recent analysis of ATLAS-CONF-2011-086 (prel.);

    I limitations of the sensitivity due to the systematic uncertainties of signaland background.

    We should compare the impact of different analyses (Meff , αT etc.) onglobal SUSY fits and include a combination of various LHC constraints.

    58 / 63

  • SUSY searches: past, present, future

    I past: EWK & flavour observables, collider limits, ΩDM

    I present: ⊕ LHC SUSY and Higgs exclusions

    I future: ⊕ LHC discoveries. . .

    59 / 63

  • SUSY parameter determination at the LHC

    Mass measurements from cascade decays, e.g.

    → kinematic endpoints sensitive to masses:

    (m2ll)max = (m2χ̃02

    −m2l̃R )(m2l̃R−m2χ̃01)/m

    2l̃R

    (m2qll)max = (m2q̃L −m

    2χ̃02

    )(m2χ̃02−m2χ̃01)/m

    2χ̃02

    (m2ql,min)max = (m2q̃L −m

    2χ̃02

    )(m2χ̃02−m2l̃R )/m

    2χ̃02

    (m2ql,max)max = (m2q̃L −m

    2χ̃02

    )(m2l̃R −m2χ̃01

    )/m2l̃R

    60 / 63

  • SUSY parameter determination with cross sections

    How well could we do at 7 TeV and 1 fb−1? [Dreiner, MK, Lindert, O’Leary]

    [cf. Baer et al., Altunkaynak et al., . . . ]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    SPS1a with 4 kinematic edges only

    → no stable fit→ add cross sections:

    sensitive to masses and spins

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    kinematic edges ⊕ cross sections→ m0 = 99± 9 GeVm1/2 = 250± 7 GeVtanβ = 11± 6

    → cross sections are crucial to determine BSM parameters

    61 / 63

  • SUSY parameter determination with cross sections

    How well could we do at 7 TeV and 1 fb−1? [Dreiner, MK, Lindert, O’Leary]

    [cf. Baer et al., Altunkaynak et al., . . . ]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    SPS1a with 4 kinematic edges only

    → no stable fit→ add cross sections:

    sensitive to masses and spins

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    kinematic edges ⊕ cross sections→ m0 = 99± 9 GeVm1/2 = 250± 7 GeVtanβ = 11± 6

    → cross sections are crucial to determine BSM parameters

    61 / 63

  • SUSY parameter determination with cross sections

    How well could we do at 7 TeV and 1 fb−1? [Dreiner, MK, Lindert, O’Leary]

    [cf. Baer et al., Altunkaynak et al., . . . ]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    SPS1a with 4 kinematic edges only

    → no stable fit→ add cross sections:

    sensitive to masses and spins

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    kinematic edges ⊕ cross sections→ m0 = 99± 9 GeVm1/2 = 250± 7 GeVtanβ = 11± 6

    → cross sections are crucial to determine BSM parameters

    61 / 63

  • SUSY parameter determination with cross sections

    How well could we do at 7 TeV and 1 fb−1? [Dreiner, MK, Lindert, O’Leary]

    [cf. Baer et al., Altunkaynak et al., . . . ]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    SPS1a with 4 kinematic edges only

    → no stable fit→ add cross sections:

    sensitive to masses and spins

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    (GeV)1/2M150 200 250 300 350

    (G

    eV)

    0M

    20

    40

    60

    80

    100

    120

    140

    160

    kinematic edges ⊕ cross sections→ m0 = 99± 9 GeVm1/2 = 250± 7 GeVtanβ = 11± 6

    → cross sections are crucial to determine BSM parameters61 / 63

  • SUSY parameter determination with cross sections

    Beyond mSUGRA: explore mirage mediation models[Choi, Nilles, Falkowski, Ratz, Loewen and many others]

    → characteristic pattern of soft SUSY-breaking termsM1 : M2 : M3 ' (1 + 0.66α) : (2 + 0.2α) : (6− 1.8α)

    → relative size of modulus and anomaly mediation controlled by αHow well can we determine α from future LHC data?

    Assume LHC @ 14 TeV with 1 fb−1

    kinematic edges only

    [Conley, Dreiner, Glaser, MK, Tattersall]

    kinematic edges ⊕ cross sections→ α = 5± 0.3

    62 / 63

  • SUSY parameter determination with cross sections

    Beyond mSUGRA: explore mirage mediation models[Choi, Nilles, Falkowski, Ratz, Loewen and many others]

    → characteristic pattern of soft SUSY-breaking termsM1 : M2 : M3 ' (1 + 0.66α) : (2 + 0.2α) : (6− 1.8α)

    → relative size of modulus and anomaly mediation controlled by αHow well can we determine α from future LHC data?

    Assume LHC @ 14 TeV with 1 fb−1

    kinematic edges only

    [Conley, Dreiner, Glaser, MK, Tattersall]

    kinematic edges ⊕ cross sections→ α = 5± 0.3

    62 / 63

  • backup

    63 / 63