MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current...

11
March 2006 1 MIC920 MIC920 Micrel, Inc. MIC920 80MHz Low-Power SC-70 Op Amp General Description The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550µA supply current, and features the SC-70 package. Supply voltage range is from ±2.5V to ±9V, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. Features 80MHz gain bandwidth product • 115MHz –3dB bandwidth 550µA supply current • SC-70 or SOT-23-5 packages • 3000V/µs slew rate • Drives any capacitive load • Unity gain stable Applications • Video • Imaging • Ultrasound • Portable equipment • Line drivers Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com Pin Configuration IN+ V– OUT IN– 1 3 4 5 2 V+ A37 Part Identification SOT-23-5 or SC-70 Pin Description Pin Number Pin Name Pin Function 1 IN+ Noninverting Input 2 V– Negative Supply (Input) 3 IN– Inverting Input 4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input) Functional Pinout IN+ V– OUT IN– 1 3 4 5 2 V+ SOT-23-5 or SC-70 Ordering Information Part Number Ambient Temperature Package Standard Marking Pb-Free Marking MIC920BM5 A37 –40ºC to +85ºC SOT-23-5* MIC920BC5 A37 MIC920YC5 A37 –40ºC to +85ºC SC-70-5 * Contact factory for availability of SOT-23-5 package. Note: Underbar marking may not be to scale.

Transcript of MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current...

Page 1: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 1 MIC920

MIC920 Micrel, Inc.

MIC92080MHz Low-Power SC-70 Op Amp

General DescriptionThe MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550µA supply current, and features the SC-70 package.Supply voltage range is from ±2.5V to ±9V, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range.The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables.

Features• 80MHz gain bandwidth product• 115MHz –3dB bandwidth• 550µA supply current• SC-70 or SOT-23-5 packages• 3000V/µs slew rate• Drives any capacitive load• Unity gain stable

Applications• Video• Imaging• Ultrasound• Portable equipment• Line drivers

Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Pin ConfigurationIN+V–

OUT

IN–13

4 5

2

V+

A37

PartIdentification

SOT-23-5 or SC-70

Pin Description Pin Number Pin Name Pin Function 1 IN+ Noninverting Input 2 V– Negative Supply (Input) 3 IN– Inverting Input

4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input)

Functional PinoutIN+V–

OUT

IN–13

4 5

2

V+

SOT-23-5 or SC-70

Ordering InformationPart Number

Ambient Temperature PackageStandard Marking Pb-Free MarkingMIC920BM5 A37 –40ºC to +85ºC SOT-23-5*MIC920BC5 A37 MIC920YC5 A37 –40ºC to +85ºC SC-70-5

* Contact factory for availability of SOT-23-5 package.Note: Underbar marking may not be to scale.

Page 2: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

MIC920 Micrel, Inc.

MIC920 2 March 2006

Absolute Maximum Ratings (Note 1)Supply Voltage (VV+ – VV–) ........................................... 20VDifferentail Input Voltage (VIN+ – VIN–) ........... 4V, Note 3Input Common-Mode Range (VIN+, VIN–) ............VV+ to VV–Lead Temperature (soldering, 5 sec.) ........................ 260°CStorage Temperature (TS) ......................................... 150°CESD Rating, Note 4 ................................................... 1.5kV

Operating Ratings (Note 2)Supply Voltage (VS) .........................................±2.5V to ±9VJunction Temperature (TJ) .......................... –40°C to +85°CPackage Thermal Resistance ..............................................

SOT-23-5 ........................................................... 260°C/W SC-70-5 ............................................................. 450°C/W

Electrical Characteristics (±5V)V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.Symbol Parameter Condition Min Typ Max UnitsVOS Input Offset Voltage 0.43 5 mVVOS VOS Temperature Coefficient 1 µV/°CIB Input Bias Current 0.26 0.6 µAIOS Input Offset Current 0.04 0.3 µAVCM Input Common-Mode Range CMRR > 72dB –3.25 +3.25 VCMRR Common-Mode Rejection Ratio –2.5V < VCM < +2.5V 75 85 dBPSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 95 104 dBAVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V 65 82 dB RL = 100Ω, VOUT = ±1V 85 dBVOUT Maximum Output Voltage Swing positive, RL = 2kΩ +3.0 3.6 V negative, RL = 2kΩ –3.6 –3.0 V positive, RL = 200Ω +1.5 3.0 V negative, RL = 200Ω, Note 5 –2.5 –1.0 VGBW Unity Gain-Bandwidth Product CL = 1.7pF 67 MHzPM Phase Margin 32 °BW –3dB Bandwidth Av = 1, RL = 1kΩ, CL = 1.7pF 100 MHzSR Slew Rate C=1.7pF, Gain=1, VOUT=5V, peak to peak, 1350 V/µs positive SR = 1190V/µsISC Short-Circuit Output Current source 45 63 mA sink 20 45 mAIS Supply Current No Load 0.55 0.80 mA

Input Voltage Noise f = 10kHz 11 V/√Hz

Input Current Noise f = 10kHz 0.7 A/√Hz

Electrical CharacteristicsV+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless notedSymbol Parameter Condition Min Typ Max UnitsVOS Input Offset Voltage 0.3 5 mVVOS Input Offset Voltage 1 µV/°C Temperature CoefficientIB Input Bias Current 0.23 0.60 µAIOS Input Offset Current 0.04 0.3 µAVCM Input Common-Mode Range CMRR > 75dB –7.25 +7.25 VCMRR Common-Mode Rejection Ratio –6.5V < VCM < +6.5V 60 91 dBPSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 95 104 dB

Page 3: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 3 MIC920

MIC920 Micrel, Inc.

Symbol Parameter Condition Min Typ Max UnitsAVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V 75 84 dB RL = 100Ω, VOUT = ±1V 93 dBVOUT Maximum Output Voltage Swing positive, RL = 2kΩ 6.5 7.5 V negative, RL = 2kΩ –7.5 –6.2 VGBW Unity Gain-Bandwidth Product CL = 1.7pF 80 MHzPM Phase Margin 30 °BW –3dB Bandwidth AV = 1, RL = 1kΩ, CL = 1.7pF 115 MHzSR Slew Rate C=1.7pF, Gain=1, VOUT=5V, peak to peak, 3000 V/µs negative SR = 2500V/µsISC Short-Circuit Output Current source 50 65 mA sink 30 50 mAIS Supply Current No Load 0.55 0.8 mA

Input Voltage Noise f = 10kHz 10 V/√Hz

Input Current Noise f = 10kHz 0.8 A/√Hz

Note 1. Exceeding the absolute maximum rating may damage the device.Note 2. The device is not guaranteed to function outside its operating rating.Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is

likely to change).Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.Note 5. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.”

Page 4: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

MIC920 Micrel, Inc.

MIC920 4 March 2006

Test Circuits

2k10k

10k10k

0.1µF

0.1µF

0.1µF

10µF

50Ω

50

50Ω

0.1µF

10µFAll resistors:1% metal film

Output

Input

Input

V+

V–

MIC920 4

53

12

BNC

BNC

BNC

PSRR vs. Frequency

R2 4k

S2S1

0.1µF

10µF

0.1F

10µF10pF

10pF

V+

V–

MIC920 4

53

12

BNC

R4 27k

R3 27kR1

20Ω

R520Ω

100pF

ToDynamicAnalyzer

Noise Measurement

0.1µF

10µF

0.1µF

10µF

V+

V–

MIC920 4

53

12

BNCR7c 2k

R7b 200ΩR7a 100Ω

Input

R6

5k

R2

5k

R3200k

R4250Ω

R55k

Output

R1 5kBNC

All resistors 1%

V V R2R1

R2 R R4OUT ERROR= + + + +

1 5R7

CMRR vs. Frequency

V+

VIN

V–

MIC920 4

53

12

300Ω

50Ω

VOUTFET Probe

1k CL

0.1µµF

10µF

0.1µF

10µF

Closed Loop Frequency Response Measurement

Page 5: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 5 MIC920

MIC920 Micrel, Inc.

Typical Characteristics

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

-40 -20 0 20 40 60 80 100

)Vm(

EGATL

OVTE SFF

O

TEMPERATURE (°C)

Offset Voltagevs. Temperature

V± = ±2.5V

V± = ±5V

V± = ±9V

0.30

0.35

0.40

0.45

0.50

0.55

0.60

-40 -20 0 20 40 60 80 100

)Am(

TNE

RR

UC

YL PPU S

TEMPERATURE (°C)

Supply Currentvs. Temperature

V± = ±2.5V

V± = ±9VV± = ±5V

0.400.420.440.460.480.500.520.540.560.580.600.62

2.5 3.8 5.1 6.4 7.7 9

)Am(

TNE

RR

UC

YL PPU S

SUPPLY VOLTAGE (V)

Supply Currentvs. Supply Voltage

–40°C

+85°C

+25°C

00.20.40.60.8

11.21.41.61.8

22.2

-900 -540 -180 180 540 900

)Vm(

EGATL

OVTES FF

O

COMMON-MODE VOLTAGE (V)

Offset Voltage vs.Common-Mode Voltage

–40°C

+85°C

+25°C

V± = ±2.5V

00.20.40.60.8

11.21.41.61.8

22.2

04.3-27.2-4 0.2-6 3.1-86.0-0 86. 063. 140.227.204. 3

)Vm(

EGATL

O VTESFF

O

COMMON-MODE VOLTAGE (V)

Offset Voltage vs.Common-Mode Voltage

–40°C

+85°C

+25°C

V± = ±5V

00.20.40.60.8

11.21.41.61.8

22.2

04.7-29.5-4 4.4-6 9.2-84.1-0 84.169.244.429.504.7

)Vm(

EGATL

OVTESFF

O

COMMON-MODE VOLTAGE (V)

Offset Voltage vs.Common-Mode Voltage

–40°C

+85°C

+25°C

V± = ±9V

404448525660646872768084

2.0 3.4 4.8 6.2 7.6 9.0

)Am(

TNE

RR

UC

TIU

CRI

C-TR

OHS

SUPPLY VOLTAGE (V)

Short-Circuit Current vs.Supply Voltage (Sourcing)

–40°C

85°C

25°C

504744413835322926232017

2.0 3.4 4.8 6.2 7.6 9.0

)Am(

TNE

RR

UC

TIU

CRI

C-TR

OHS

SUPPLY VOLTAGE (V)

Short-Circuit Current vs.Supply Voltage (Sinking)

–40°C

85°C25°C

0123456789

1011

0 8- 61-42-23-04-84-65-46-27-08-

) V(E

GAT LO V

TU

OTU

O

OUTPUT CURRENT (mA)

Output Voltage vs.Output Current (Sourcing)

–40°C

85°C

25°C

V± = ±9V

-10-9-8-7-6-5-4-3-2-101

05 54 04 53 03 5 2 02 5 1 01 5 0

)V(E

GATLOV

TU

OTU

O

OUTPUT CURRENT (mA)

Output Voltage vs.Output Current (Sinking)

–40°C

85°C

25°C V± = ±9V

-5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5

00.5

0.545.040.6 35.1 30.7 25.2 20.815.3 10.95.40

)V(E

GAT LOV

TUPTUO

OUTPUT CURRENT (mA)

Output Voltage vs.Output Current (Sinking)

25°C

85°C

–40°C

V± = ±5V

00.51.01.52.02.53.03.54.04.55.05.5

0 8- 61-42-23-04-84-65-46 -27 -08-

)V(E

GATLOV

TU PT

UO

OUTPUT CURRENT (mA)

Output Voltage vs.Output Current (Sourcing)

–40°C

85°C

25°C

V± = ±5V

Page 6: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

MIC920 Micrel, Inc.

MIC920 6 March 2006

-50-40-30-20-10

01020304050

1E+6 1E+7 1E+82E+8

)Bd(NIA

GP

OOL-

DESO L

C

FREQUENCY (Hz)

Closed-Loop Gainvs. Frequency

V± = ±9VAv = 1

1M 10M 100M

1000pF800pF

600pF

100pF

200pF

400pF

1.7pF

-50-40-30-20-10

01020304050

1E+6 10E+6 100E+6200E+6

)Bd(NIA

GP

OOL-

DESOL

C

FREQUENCY (Hz)

Closed-Loop Gainvs. Frequency

V± = ±5VAv = 1

1M 100M10M

1000pF800pF

600pF

400pF 200pF

0100pF

50

55

60

65

70

75

80

85

)zH

M(HT

DIW

DN AB

NI AG

Gain Bandwidth and PhaseMargin vs. Supply Voltage

25

27

29

31

33

35

37

0 1 2 3 4 5 6 7 8 9 10

(NI

GRA

MESA

HP° )

SUPPLY VOLTAGE (±V)

Phase Margin

Gain Bandwidth0

10

20

30

40

50

60

70

)zH

M(HT

DIW

DN AB

NI AG

Gain Bandwidth and PhaseMargin vs. Load

20

25

30

35

40

45

50

0 200 400 600 800 1000(

NIG

RAM

ESAHP

° )CAPACITIVE LOAD (pF)

Phase Margin

GainBandwidth

V± = ±5V

0102030405060708090

)zH

M(HT

DIW

DNA B

NIAG

Gain Bandwidth and PhaseMargin vs. Load

20

25

30

35

40

45

50

55

0 200 400 600 800 1000

(NI

GRA

MESA

HP° )

CAPACITIVE LOAD (pF)

Phase Margin

GainBandwidth

V± = ±9V

-25-20-15-10-505

10152025

1E+6 10E+6 100E+6200E+6

)Bd(NIA

G

FREQUENCY (Hz)

Closed-Loop FrequencyResponse

Av =–1R+ = RI = 475Ω

±9.0V

±2.5V

±5.0V

100M1M 10M

-50-40-30-20-10

01020304050

1x106 10x106 100x106200x106

)Bd(NIA

GP

OOL-

NEPO

FREQUENCY (Hz)

Open-Loop Gainvs. Frequency

V± = ±5V

100M10M1M

1.7pF50pF

121pF

471pF200pF

1000pF

-50-40-30-20-10

01020304050

1x106 10x106 100x106200x106

)Bd(NIA

GP

OO L-

NEPO

FREQUENCY (Hz)

Open-Loop Gainvs. Frequency

V± = ±9V

100M10M1M

1.7pF50pF

121pF

471pF200pF

1000pF

-100-80-60-40-20

020406080

100

)Bd(

HT

DIW

DN

AB

NIA

G

Open-Loop FrequencyResponse

-225-180-135-90-4504590135180225

(NI

GR

AM

ES

AH

P°)

CAPACITIVE LOAD (pF)

Phase

Gain

V± = ±5V

100Ω

100Ω

No Load

100k 1M 10M 100M

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-40 -20 0 20 40 60 80 100

(T

NER

RU

CSAIB

µ)A

TEMPERATURE (°C)

Bias Current vs.Temperature

±9V

±5V

-25-20-15-10-505

10152025

1E+6 10E+6 100E+6200E+6

)Bd(NIA

G

FREQUENCY (Hz)

Closed-Loop FrequencyResponse

Av = 2RF = RI = 475Ω

±9.0V

±2.5V

±5.0V

100M1M 10M

-100-80-60-40-20

020406080

100

)Bd(HT

DIW

DNAB

NIAG

Open-Loop FrequencyResponse

-225-180-135-90-4504590135180225

(NI

GRA

MESA

HP° )

CAPACITIVE LOAD (pF)

Phase

Gain

V± = ±9V

100Ω

100Ω

No Load

100k 1M 10M 100M

Page 7: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 7 MIC920

MIC920 Micrel, Inc.

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000

/V(ETA

RWELS

µ)s

LOAD CAPACITANCE (pF)

Positive Slew RateV± = ±9V

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

/V(ETA

RWELS

µ) s

LOAD CAPACITANCE (pF)

Negative Slew RateV± = ±9V

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

/V(ETA

RWELS

µ) s

LOAD CAPACITANCE (pF)

Positive Slew RateV± = ±5V

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

/V(ETA

RWELS

µ) s

LOAD CAPACITANCE (pF)

Negative Slew RateV± = ±5V

0102030405060708090

100

100x100 1x103 10x103 100x103 1x106 10x106

)Bd(R

RM

C

FREQUENCY (Hz)

Common-ModeRejection Ratio

V± = ±9V

100 1k 10k 100k 1M 10M0

102030405060708090

100

100x100 1x103 10x103 100x103 1x106 10x106

)Bd(R

RM

C

FREQUENCY (Hz)

Common-ModeRejection Ratio

V± = ±5V

100 1k 10k 100k 1M 10M

0

20

40

60

80

100

120

)Bd(R

RSP

FREQUENCY (kHz)

Negative PSRRvs. Frequency

V± = ±5V

0.1 1 10 100 1k 10k

0

20

40

60

80

100

120

)Bd(R

RSP

FREQUENCY (kHz)

Negative PSRRvs. Frequency

V± = ±9V

0.1 1 10 100 1k 10k

0

20

40

60

80

100

120

)Bd(R

RSP

FREQUENCY (kHz)

Positive PSRRvs. Frequency

V± = ±5V

0.1 1 10 100 1k 10k0

20

40

60

80

100

120

)Bd(R

RSP

FREQUENCY (kHz)

Positive PSRRvs. Frequency

V± = ±9V

0.1 1 10 100 1k 10k

0

10

20

30

40

50

60

70

10 100 1000 10000 100000

zH/Vn(

EGATL

OVESI

ON

2/ 1)

FREQUENCY (Hz)

Voltage Noise Densityvs. Frequency

0

0.5

1.0

1.5

2.0

2.5

10 100 1000 10000 100000

zH/Ap(

TNE

RR

UC

ESIO

N2/1)

FREQUENCY (Hz)

Current Noise Densityvs. Frequency

Page 8: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

MIC920 Micrel, Inc.

MIC920 8 March 2006

Functional Characteristics

TIME (100ns/div)

VCC = ±9.0VCL = 1.7µFAv = 1.0V/V

Small Signal Response

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

TIME (100ns/div)

VCC = ±5.0VCL = 1.7µFAv = 1.0V/V

Small Signal Response

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

TIME (100ns/div)

Small Signal Response

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

VCC = ±9.0VCL = 100pFAv = +1

TIME (100ns/div)

Small Signal Response

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

VCC = ±5.0VCL = 100pFAv = +1V/V

Small Signal Response

TIME (100ns/div)

VCC = ±9.0VCL = 1000pFAv = +1V/V

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

Small Signal Response

TIME (100ns/div)

INP

UT

(50m

V/d

iv)

OU

TPU

T(5

0mV

/div

)

VCC = ±5.0VCL = 1000pFAv = +1V/V

Page 9: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 9 MIC920

MIC920 Micrel, Inc.

Large Signal Response

TIME (10ns/div)

V = ±5VCL = 1.7pF

Av = 1Positive SR = 1350V/µsecNegative SR = 1190V/sec

OU

TPU

T(2

V/d

iv)

Large Signal Response

TIME (10ns/div)

V = ±9VCL = 1.7pF

Av = 1Positive SR = 3000V/µsec

Negative SR = 2500V/µsec

OU

TPU

T(2

V/d

iv)

Large Signal Reponse

TIME (50ns/div)

V = ±5VCL = 100pF

Av = 1Positive SR = 373V/µsecNegative SR = 290V/sec

OU

TPU

T(2

V/d

iv)

Large Signal Response

TIME (50ns/div)

V = ±9VCL = 100pF

Av = 1Positive SR = 672V/µsecNegative SR = 424V/sec

OU

TPU

T(2

V/d

iv)

Large Signal Response

TIME (100ns/div)

V = ±5VCL = 1000pF

Av = 1Positive SR = 75V/µsecNegative SR = 41V/sec

Out

put

(2V

/div

)

Large Signal Response

TIME (100ns/div)

V = ±9VCL = 1000pF

Av = 1Positive SR = 97V/µsecNegative SR = 60V/sec

OU

TPU

T(2

V/d

iv)

Page 10: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

MIC920 Micrel, Inc.

MIC920 10 March 2006

Applications InformationThe MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads.Driving High CapacitanceThe MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capaci-tance loads. Most high-speed op amps are only able to drive limited capacitance.

Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by add-ing a small resistor (<100Ω) in series with the output.

Feedback Resistor SelectionConventional op amp gain configurations and resistor selec-tion apply, the MIC920 is NOT a current feedback device.Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470Ω is ideal. To use the part as a follower, the output should be connected to input via a short wire.Layout ConsiderationsAll high speed devices require careful PCB layout. The follow-ing guidelines should be observed: Capacitance, par-ticularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane.It is important to ensure adequate supply bypassing capaci-tors are located close to the device.

Power Supply BypassingRegular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best perfor-mance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resis-tance). Surface-mount ceramic capacitors are ideal.Thermal ConsiderationsThe SC70-5 package and the SOT-23-5 package, like all small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in par-ticular CMRR will reduce.An MIC920 with no load, dissipates power equal to the qui-escent supply current × supply voltage

PD(no load) = VV+ – VV- IS( )

When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current.

PD(output stage) = VV+ – VOUT IOUT( )

Total Power Dissipation = PD(no load) + PD(output stage)

Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 pack-age has a thermal resistance of 450°C/W.

Max. Allowable Power Dissipation =

TJ(max) – TA(max)

450°C/W

Page 11: MIC920 Micrel, Inc. MIC920ww1.microchip.com/downloads/en/DeviceDoc/mic920.pdfIB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR

March 2006 11 MIC920

MIC920 Micrel, Inc.

Package Information

SOT-23-5 (M5)

SC-70 (C5)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USATEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.

© 2001 Micrel, Inc.