Metodo de Holtrop

12
MÉTODO DE HOLTROP TRABAJO PRÁCTICO N°2 AMATO, Tomás

description

Metodo de Holtrop

Transcript of Metodo de Holtrop

Page 1: Metodo de Holtrop

MÉTODO DE HOLTROPTRABAJO PRÁCTICO

N°2

AMATO, Tomás

Page 2: Metodo de Holtrop

MÉTODO DE HOLTROP

Primer análisis

Introducción

Holtrop fue un investigador holandés que tomó los ensayos del canal de Wageningen (Holanda) y, conocidos todos los parámetros geométricos de los modelos, los introdujo en una computadora.

Obtuvo las curvas de resistencia al avance con regresiones polinómicas, minimizando el error cuadrático medio.

Holtrop usó el método de Hughes para el cálculo general de la resistencia al avance y le agregó la resistencia por apéndices y demás formas especiales del buque.

Formulación

Holtrop calculó la resistencia total al avance, como:

Rt=(1+k ) Rf+Rw+Rapp+Rb+Rtr+Ra

Rf=¿Resistencia friccional calculada por ITTC ’57.

(1+k )=¿ Factor de forma del buque en relación con Rf .

Rw=¿ Resistencia por formación y rotura de olas.

Rapp=¿ Resistencia por apéndices.

Rb=¿Resistencia por proa bulbo.

Rtr=¿Resistencia por la forma del espejo de popa.

Ra=¿Resistencia por correlación buque-modelo.

El factor de forma se obtiene a partir de :

(1+k )=c13¿

En esta fórmula, C p es el coeficiente prismático longitudinal basado en la eslora de flotación L y lcb es la posición

longitudinal del baricentro tomada a proa a partir de 0.5 L, y como porcentaje de L. LR es un parámetro que refleja la eslora en marcha y se calcula de la siguiente manera:

LR /L=1−C p+0.06C plcb /(4C p−1)

1

Page 3: Metodo de Holtrop

El coeficiente c12 está definido como:

c12=¿ cuando T /L>0.05

c12=48.20¿ cuando 0.02<T /L<0.05

c12=0.479948 cuando T /L<0.02

En esta fórmula, T es el calado medio de diseño. El coeficiente c13=1+0.003C stern. Para este coeficiente C stern se proporcionan las siguientes guías:

Afterbody form (Forma de las secciones) C stern

V-Shaped sections (Secciones en V) -10Normal section shape (Secciones normales) 0U-Shaped sections with Hogner stern (Secciones en U, con espejo Hogner)

+10

La superficie mojada puede ser aproximada por:

S=L (2T+B ) √CM (0.453+0.4425CB−0.2862CM−0.003467B /T +0.3696C℘ )+2.38 ABT /CB

Siendo, Cm el coeficiente de sección maestra, Cb el coeficiente de block. C℘ es el coeficiente de flotación y ABT el área de sección transversal del bulbo cuando el agua intersecta la popa.

La resistencia por apéndices se determina por:

RAPP=0.5 ρV2S APP¿

Siendo ρ la densidad del agua, V la velocidad del buque, SAPP la superficie mojada de los apéndices, 1+k 2 el factor de

forma de los apéndices, y CF el coeficiente de resistencia friccionar de acuerdo a la fórmula de ITTC ’57.

En la tabla siguiente se dan valores tentativos de 1+k 2 para apéndices hidrodinámicos orientados con la dirección del flujo. Estos valores se obtuvieron de ensayos de modelos con y sin los apéndices. En muchos de estos ensayos se instalaron estimulantes de turbulencia en los bordes de ataque, para inducir flujos turbulentos sobre los apéndices.

Valores aproximados de 1+k 2Rudder behind skeg (Timón detrás de codaste) 1.5 – 2.0Rudder behind stern (Timón detrás de popa) 1.3 – 1.5Twin-screw balance rudders (Timón balanceado) 2.8Shaft brackets (Arbotante) 3.0Skeg (Codaste) 1.5 – 2.0Strut bossings (Barrilete) 3.0Hull bossings (Henchimiento) 2.0Shaft (Eje) 2.0 – 4.0Stabilizer fins (Aletas de estabilidad) 2.8Dome (Domo) 2.7Bilge keels (Quillas de balance) 1.4El término equivalente 1+k 2 para una combinación de apéndices, se determina de:

2

Page 4: Metodo de Holtrop

¿

La resistencia por apéndices se puede incrementar por la resistencia del túnel de hélice transversal de acuerdo con:

ρV 2π d2CBTO

Siento d el diámetro del túnel.

El coeficiente CBTO va desde 0.003 hasta 0.012. Para aberturas en la parte cilíndrica de la proba bulbo, se deben usar los menores valores.

La resistencia por formación de olas se calcula como:

RW=c1 . c2 .c5 .∇ . ρ . g .exp¿

Con:

c1=2223105c73.78613¿

c7=0.229577¿ cuando B/L<0.11

c7=B/L cuando 0.11<B /L<0.25

c7=0.5−0.0625 L/B cuando B/L>0.25

c2=exp (−1.89√c3)

c5=1−0.8 AT /(BT CM)

En estas expresiones c2 es un parámetro que tiene en cuenta la reducción de la resistencia de olas debido a la acción de

la proa bulbo. De igual manera, c5 expresa la influencia del espejo de popa en la resistencia de olas. La expresión AT representa la parte inmersa del espejo a velocidad 0.

En la fórmula de resistencia de olas, Fn es el número de Froude para la eslora en flotación. Otros parámetros se determinan según:

λ=1.446C p−0.03 L/B cuando L/B<12

λ=1.446C p−0.36 cuando L/B>12

m1=0.0140407 L/T−1.75254∇1 /3/L+4.79323 B/L−c16

c16=8.07981CP−13.8673CP2+6.984388CP

3

cuando CP<0.80

c16=1.73017−0.7067CP cuando CP>0.80

m2=c15C P2exp (−0.1Fn

−2)

3

Page 5: Metodo de Holtrop

c15=−1.69385 cuando L3/∇<512

c15=0.0 cuando L3/∇>1727

c15=−1.69385+(L/∇1/3−8.0)/2.36

iE es el doble del ángulo de la línea de agua de la flotación, en la proa; expresada en grados, en referencia con el plano de crujía.

Si se desconoce iE, se puede calcular del a siguiente forma:

iE=1+89exp¿

Esta fórmula, fue obtenida por análisis regresivo de más de 200 formas de casco, los valores de iEvarían entre 1° y 90°.

El coeficiente que determina la influencia del bulbo de proa en la resistencia de olas se define por:

c3=0.56 ABT1.5 /¿

Donde hB es la posición del centro de área transversal ABT por encima de la línea de quilla, y T F es el calado a proa del buque.

La resistencia adicional debido a la presencia del bulbo se determina por:

RB=0.11exp (−3 PB−2)F¿

3 ABT1.5 ρg/(1+Fn i

2)

Donde el coeficiente PB es una medida de la parte que emerge del bulbo y F ¿ es el numero de Froude basado en la inmersión:

PB=0.56√ABT /(T F−1.5hB)

Y

F ¿=V /√g (T F−hb−0.25√ABT )+0.15V 2

De forma similar, la resistencia por presión debida a la inmersión del espejo se determina por:

RTR=0.5 ρV2 AT c6

El coeficientec6 se relaciona con el numero de Froude basándose en la inmersión del espejo:

c6=0.2(1−0.2 FnT) cuando FnT<5

c6=0 cuando FnT<5

FnT se define por:

FnT=V /√2 g AT / (B+BC℘)

4

Page 6: Metodo de Holtrop

En esta definición, C℘ es el coeficiente de flotación.

La resistencia por correlación modelo-buque RA siendo:

RA=12ρV 2SC A

describe principalmente el efecto de la rugosidad del casco y la resistencia del aire. Para un análisis de los resultados de ensayos de velocidad, que se corrigen desde condiciones ideales, la siguiente formula:

C A=0.006¿

Con

c4=T F /L cuando T F /L≤0.04

c4=0.04 cuando T F /L>0.04

Corrección a primer análisis

INTRODUCCION

En la publicación anterior fue presentado un método de predicción de potencia que se basa en un análisis de regresión de datos de modelos arbitrarios con escala de prueba natural. Para varias combinaciones de dimensiones principales y coeficientes de forma el método tuvo que ser ajustado para poder probar resultados obtenidos. A pesar de estas adaptaciones del método aún no tiene la suficiente exactitud para algunas clases de barcos. Sobre todo para embarcaciones veloces, con números de encima de 0.5, las predicciones de potencia eran a menudo incorrectas. Con el objetivo de mejorar el método, la muestra de datos fue ampliada cubriendo las más amplias gamas de los parámetros de interés. En esta extensión de la muestra de datos se han incluido los resultados publicados de las formas de los cascos de la Serie 64. El análisis de regresión se basa ahora en los resultados de las pruebas de 334 modelos. Junto a estos análisis de las propiedades de resistencia y propulsión fue ideado un método por el cual se puede tomar en cuenta la influencia de la cavitación de la hélice. Además, se dan algunas fórmulas por las cuales el efecto de la inmersión parcial de la puede ser estimado. Estas fórmulas se han obtenido en un estudio llevado a cabo en el programa de Investigación Cooperativa MARIN. Se agradece el permiso para publicar estos resultados.

FORMULACION

Los resultados fueron analizados usando la misma subdivisión en componentes que la usada en el análisis original:

5

Page 7: Metodo de Holtrop

Donde:

Resistencia friccional de acuerdo a la formula ITTC-1957

Factor de forma del casco.

Resistencia de los apéndices.

Resistencia de olas.

Resistencia de presión adicional del bulbo cerca de la superficie de agua.

Resistencia de presión adicional debido a inmersión del espejo.

Resistencia por correlación buque-modelo.

Un análisis de regresión proporcionó una nueva fórmula para el factor de forma del casco:

En esta fórmula la B y la T son la manga moldeada y el calado, respectivamente. L es la eslora en flotación y V es el volumen de desplazamiento moldeado. Cp es el coeficiente prismático basado en la eslora en flotación.

Lr se define como:

Donde lcb es la posición longitudinal del centro de flotación, medido como porcentaje de la eslora desde sección media hacia la proa.

El coeficiente C14 considera la forma de la popa. Éste depende del coeficiente de forma de la popa Cstern para el cuál se pueden dar la siguientes cifras provisionales:

6

Page 8: Metodo de Holtrop

En cuanto a la resistencia de los apéndices no se ha hecho ningún nuevo análisis. Para predecir la resistencia de los apendices usar las formulas del análisis original.

Fue hecho un nuevo análisis de la resistencia de olas. Una nueva fórmula general fue sacada de la muestra de datos de 334 modelos pero los cálculos mostraron que esta nueva fórmula de predicción no era mejor en la gama de velocidades hasta aproximadamente Fn = 0.5. Los resultados de estos cálculos indicaron que probablemente se podía obtener una mejor fórmula de predicción para la resistencia de olas en la gama de altas velocidades si no eran tenido en cuenta los datos de las bajas velocidades en el análisis de regresión.

Por ser deducida de esta manera, la siguiente fórmula de resistencia de olas puede ser utilizada para velocidades en las que Fn> 0.55.

Donde:

7

Page 9: Metodo de Holtrop

Los coeficientes C2, C5, d y λ se definen igual que en el análisis original:

El coeficiente de sección media Cm y el área transversal sumergida del espejo con la marea tranquila At y el área transversal del bulbo ABT tienen el mismo significado que en el análisis original. La posición vertical del centro de ABT

sobre el plano de la quilla es hb. El valor de hb no debe exceder de 0,6 Tf (calado de proa).

Como los intentos de sacar fórmulas de predicción para la resistencia de olas en velocidades bajas y moderadas no dieron buenos resultados, se aconseja usar para la estimación de la resistencia de onda hasta un numero de Froude de 0.4 una fórmula que se parece a la fórmula original. La única modificación consiste en una adaptación del coeficiente que causa las lomas y huecos sobre las curvas de resistencia. Esta fórmula, que es ligeramente más precisa que el original se lee:

8

Page 10: Metodo de Holtrop

m4: como en la fórmula de Rw para la gama de alta velocidad.

Para el rango de velocidad de 0,40 <Fn <0,55 se sugiere utilizar una fórmula de interpolación más o menos arbitraria:

Aquí es la predicción de la resistencia de olas para un Fn= 0.40 y es la resistencia de olas para Fn= 0.55 de acuerdo a sus respectivas fórmulas. No se hicieron intentos para sacar nuevas formulaciones para la resistencia de presión del espejo y la resistencia de olas adicional debido a un bulbo cerca de la superficie libre. El material disponible para desarrollar tales fórmulas es bastante escaso.

En cuanto a la altura del centro del área transversal del bulbo hb se recomienda obedecer el límite superior de 0,6 Tf en el cálculo de la resistencia de olas adicionales debido a la presencia del bulbo.

Habiendo calculado la Resistencia total (Rt), la Potencia efectiva necesaria (EHP) se calcula:

EHP=Rt xV

Y se grafican lo datos obtenidos, en función de la velocidad (V ) del buque.

9