Methanol and gasoline blending - automotive

download Methanol and gasoline blending - automotive

of 111

description

This is the thesis work on the real work and research conducted on the petrol (gasoline) and methanol blending.

Transcript of Methanol and gasoline blending - automotive

  • Chivukula Venkata Kalyan

    REYST report 09-2011

    Chivukula V

    enkata Kalyan O

    ptimization of low

    volume Renew

    able Methanol blending

    RE

    YST

    report 09-2011

    Optimization of low volume Renewable Methanol blending

    REYKJAVK ENERGY GRADUATE SCHOOL OF SUSTAINABLE ENERGY

    Reykjavk Energy Graduate School of Sustainable Systems (REYST) combines the expertise of its partners: Reykjavk Energy, Reykjavk University and the University of Iceland.

    Objectives of REYST:Promote education and research in sustainable energy

    earth sciences

    REYST is an international graduate programme open for students holding BSc degrees in engineering, earth sciences or business.

    REYST offers graduate level education with emphasis on practicality, innovation and interdisciplinary thinking.

    REYST reports contain the masters theses of REYST graduates who earn their degrees from the University of Iceland and Reykjavk University.

  • Optimization of low volume Renewable Methanol blending

    by

    C V Kalyan

    Thesis

    Master of Science

    June 2011

  • MSc.Thesis20102011

    Optimization of low volume Renewable Methanol blending

    eftir

    C V Kalyan

    Ritger til

    meistaraprfs (MSc)

    Jn 2011

    2 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Optimization of low volume Renewable Methanol blending

    C V Kalyan

    Thesis submitted to the School of Science and Engineering

    at Reykjavk University in partial fulfillment

    of the requirements for the degree of

    Master of Science

    June 2011

    Supervisors:

    Dr. Gudrun Arnbjorg Saevarsdottir

    Assistant Professor, Reykjavk University, Iceland

    Mr. Kiran Kumar

    Director, Carbon Recycling International, Iceland

    Examiner:

    Dr. Halldor Palsson

    Associate Professor, University of Iceland, Iceland

    3 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    4 OptimizationoflowvolumeRenewableMethanolblending

    Optimization of low volume Renewable Methanol blending

    C V Kalyan

    Thesis submitted to the School of Science and Engineering

    at Reykjavk University in partial fulfillment

    of the requirements for the degree of

    Master of Science

    June 2011

    Student:

    ___________________________________________

    C V Kalyan

    Supervisors:

    ___________________________________________

    Dr. Gudrun Arnbjorg Saevarsdottir

    ___________________________________________

    Mr. Kiran Kumar

    Examiner:

    ___________________________________________

    Dr. Halldor Palsson

  • MSc.Thesis20102011

    5 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    6 OptimizationoflowvolumeRenewableMethanolblending

    ACKNOWLEDGEMENTS

    Firstandforemost,IwouldliketothankMr.KCTran,CEO,CarbonRecyclingInternational,Reykjavik, Iceland for givingme an opportunity to pursuemymasters thesis researchproject. I would like to express my sincere gratitude to my supervisor and advisorcommitteeDr.GudrunSaevarsdottir,Mr.KiranKumarandDr.AndriOttesenforgivingmeguidance,encouragementandmotivation.

    Iwouldalso like to thankMr.OmarSigurbjornsson forextendinghissupport toperformlaboratoryexperiments.IwanttothankEddaLiljaSveinsdottirforgivingmeanopportunitytobeapartofREYSTtopursuemymastersstudies.

    DuringmyresearchworkatCRIIhavegainedprofessionalandcorporateexperiencewhichbenefittedmewith personality development and inspiration to perform. Iwould like tothankmycolleaguesforsharingprofessionalexperiencesandmotivatingme.

  • MSc.Thesis20102011

    7 OptimizationoflowvolumeRenewableMethanolblending

    TableofContentsACKNOWLEDGEMENTS...............................................................................................................................6

    ABSTRACT.................................................................................................................................................11

    1 INTRODUCTION................................................................................................................................12

    1.1 ORIGINOFFOSSILFUELS..............................................................................................................................121.2 DEPLETIONOFFOSSILFUELS.........................................................................................................................121.3 GREENHOUSEGASEMISSIONSANDCLIMATECHANGE.......................................................................................131.4 GHGEMISSIONSINICELAND........................................................................................................................131.5 USEOFNONFOSSILFUELS...........................................................................................................................151.6 DEVELOPMENTOFBIOFUELS.........................................................................................................................151.7 SUMMARY................................................................................................................................................17

    2 BACKGROUNDANDPROBLEMSTATEMENT......................................................................................18

    2.1 RENEWABLEFUELSINICELAND......................................................................................................................182.2 METHANOLASATRANSPORTATIONFUEL.........................................................................................................192.3 HISTORYOFMETHANOLASFUEL....................................................................................................................202.4 PROBLEMSTATEMENT.................................................................................................................................212.5 RESEARCHMETHODOLOGY..........................................................................................................................222.6 SUMMARY................................................................................................................................................25

    3 RMBLENDINGEFFECTSONGASOLINEPROPERTIESSECONDARYRESEARCH....................................26

    3.1 OCTANENUMBER......................................................................................................................................273.2 VOLATILITY................................................................................................................................................283.3 STABILITYANDOTHERS................................................................................................................................313.4 PHASESTABILITY........................................................................................................................................343.5 SUMMARY................................................................................................................................................38

    4 DEVELOPMENTOFTHEBLENDTESTFACILITYATCRI.........................................................................40

    4.1 ESTABLISHMENTOFBLENDTESTFACILITY........................................................................................................414.2 QUALITYASSURANCEREPEATABILITY............................................................................................................454.3 SUMMARY................................................................................................................................................47

    5 RM3BLENDTESTINGEXPERIMENTSANDRESULTS.........................................................................48

    5.1 RESULTSFORREIDVAPOURPRESSURE(RVP)..................................................................................................485.2 RESULTSFORDISTILLATIONCHARACTERISTICS...................................................................................................505.3 RESULTSFORSTABILITYANDOTHERS..............................................................................................................535.4 RESULTSFORPHASESTABILITY......................................................................................................................555.5 SUMMARYOFRESULTS................................................................................................................................575.6 SUMMARY................................................................................................................................................60

  • MSc.Thesis20102011

    8 OptimizationoflowvolumeRenewableMethanolblending

    6 RM3BLENDOPTIMIZATION..............................................................................................................61

    6.1 ADDITIONOFCOSOLVENTSFORRVPREDUCTIONSECONDARYRESEARCH............................................................616.2 RVPTESTSWITHCOSOLVENTSFORSUMMERRM3BLENDRESULTS..................................................................616.3 RVPTESTSWITHCOSOLVENTSFORWINTERRM3BLENDRESULTS....................................................................656.4 LOWVAPOURPRESSUREBASEGASOLINESECONDARYRESEARCH......................................................................666.5 SUMMARY................................................................................................................................................67

    7 RM3BLENDEFFECTSONENGINEPERFORMANCEANDEMISSIONS....................................................68

    7.1 FUNDAMENTALSOFRMGASOLINEBLENDEFFECTSONENGINEPERFORMANCELITERATURESTUDY.........................697.2 RMGASOLNEBLENDEFFECTSONENGINETESTRESULTS.................................................................................697.3 RMGASOLINEBLENDEFFECTSONENGINEEMISSIONSLITERATURESTUDY..........................................................707.4 RMGASOLINEBLENDEFFECTSONENGINEEMISSIONSTESTRESULTS.................................................................727.5 SUMMARY................................................................................................................................................74

    8 RM3BLENDEFFECTSONVEHICLEDRIVEABILITYANDCOMPATIBILITY...............................................75

    8.1 EFFECTSOFSUMMERRM3ONDRIVEABILITY...................................................................................................758.2 EFFECTSOFWINTERRM3ONDRIVEABILITY....................................................................................................768.3 DRIVEABILITYOFTHEVEHICLESWITHRM3ASFUELLITERATURESTUDY..............................................................788.4 COMPATIBILITYOFRM3WITHFUELSYSTEMS..................................................................................................788.5 SUMMARY................................................................................................................................................88

    9 CONCLUSIONANDRECOMMENDATIONS..........................................................................................90

    9.1 CONCLUSIONS...........................................................................................................................................909.2 RECOMMENDATIONS..................................................................................................................................92

    REFERENCES..............................................................................................................................................96

    APPENDIX................................................................................................................................................100

    EXPERIMENTALPROCEDURES...............................................................................................................................100SAFETYREQUIREMENTS.......................................................................................................................................107

  • MSc.Thesis20102011

    9 OptimizationoflowvolumeRenewableMethanolblending

    ListofFigures

    FIGURE1WORLDFOSSILFUELCONSUMPTION................................................................................................................12FIGURE2CURRENTANDPROJECTEDSHAREOFBIOFUELSINTRANSPORTATIONSECTOR...........................................................16FIGURE3CRISPROCESSSTEPSFORPRODUCINGRENEWABLEMETHANOL..........................................................................19FIGURE4COMPARISONOFFUELPROPERTIESOFMETHANOL,ETHANOLANDGASOLINE...........................................................20FIGURE5EFFECTSOFALCOHOLADDITIONTOGASOLINERVP(1PSI=7KPA)........................................................................28FIGURE6SAMPLEDISTILLATIONCHARACTERISTICSOFGASOLINE........................................................................................29FIGURE7EFFECTOFALCOHOLADDITIONTOGASOLINEDISTILLATION..................................................................................30FIGURE8WATERTOLERANCEOFGASOLINEMETHANOLBLENDS(330%MEOH)..................................................................36FIGURE9RVPTESTFACILITY.......................................................................................................................................42FIGURE10DISTILLATIONCHARACTERISTICSTESTFACILITY.................................................................................................43FIGURE11WATERCONTENTTESTFACILITY....................................................................................................................44FIGURE12COOLINGFACILITY.....................................................................................................................................44FIGURE13RVPOFBASEGASOLINE&RM3(SUMMER)...................................................................................................49FIGURE14RVPOFBASEGASOLINE&RM3(WINTER)....................................................................................................50FIGURE15DISTILLATIONCURVEOFBASEGASOLINEVSRM3(SUMMER).............................................................................52FIGURE16DISTILLATIONCURVEOFBASEGASOLINEANDRM3(WINTER)............................................................................53FIGURE17RVPRESULTSFORRM3BLEND+(15%)OFETHANOL....................................................................................62FIGURE18RVPRESULTSFORRM3BLEND+(13%)OF1PROPANOL...............................................................................63FIGURE26CO,HCANDNOXEMISSIONSAT~2500RPMFORGASOLINE,RM3ANDRM10................................................73FIGURE26WATERTOLERANCEOFGASOLINEWITHCOSOLVENTS......................................................................................94

  • MSc.Thesis20102011

    10 OptimizationoflowvolumeRenewableMethanolblending

    ListofTables

    TABLE1R/PRATIO'SOFMAINFOSSILFUELS_________________________________________________________13TABLE2TOTAL EMISSIONSOFGHGBYSOURCESINICELANDIN19902008,CO2EQ.___________________________14TABLE3LEGALREQUIREMENTSOFGASOLINEPROPERTIESINICELANDANDIDENTIFICATIONOFPROPERTIESTHATCANBEEITHER

    CALCULATEDORREQUIREDEXPERIMENTATIONFORMEASUREMENTSAFTERRMBLENDING._____________________23TABLE4METHANOLSOLUBILITYBASEDONGASOLINECOMPOSITION_________________________________________35TABLE5REQUIREMENTANDTESTMETHODSFORUNLEADEDPETROL_________________________________________40TABLE6TESTSTANDARDSFORRM3BLENDPROPERTIESMEASUREMENT______________________________________41TABLE7REPEATABILITYTESTRESULTSOFVAPOURPRESSUREEQUIPMENT______________________________________45TABLE8REPEATABILITYRESULTSFORDISTILLATIONCHARACTERISTICS_________________________________________46TABLE9RVPRESULTSFORSUMMERBASEGASOLINE ___________________________________________________48TABLE10RVPRESULTSFORSUMMERRM3_________________________________________________________48TABLE11RVPRESULTSFORWINTERBASEGASOLINE ___________________________________________________49TABLE12RVPRESULTSFORWINTERRM3__________________________________________________________49TABLE13RESULTSFORDISTILLATIONCHARACTERISTICSOFGASOLINE(SUMMER)_________________________________51TABLE14RESULTSFORDISTILLATIONCHARACTERISTICSOFRM3(SUMMER)____________________________________51TABLE15RESULTSFORDISTILLATIONCHARACTERISTICSOFBASEGASOLINE(WINTER)______________________________52TABLE16RESULTSFORTHEDISTILLATIONCHARACTERISTICSOFRM3(WINTER)__________________________________53TABLE17RESULTFORCOPPERSTRIPCORROSIONFORSUMMERANDWINTER ___________________________________54TABLE18RESULTFOREXISTENTGUMCONTENTFORSUMMERANDWINTER ____________________________________54TABLE19RESULTFOREXISTENTGUMCONTENTFORSUMMERANDWINTER ____________________________________54TABLE20PHASESEPARATIONRESULTSFORSUMMERRM3ATROOMTEMPERATURE______________________________55TABLE21PHASESEPARATIONRESULTSFORSUMMERRM3AT300C________________________________________56TABLE22PHASESEPARATIONRESULTSFORWINTERRM3ATROOMTEMPERATURE_______________________________56TABLE23PHASESEPARATIONRESULTSFORWINTERRM3AT300C_________________________________________56TABLE24COMPILATIONOFRESULTSFORSUMMERRM3_________________________________________________58TABLE25RESULTSFORWINTERRM3(EN228SPECIFICATIONS)___________________________________________59TABLE26RESULTSFORSUMMERRM3WITHCOSOLVENTS_______________________________________________65TABLE27RESULTSFORTHERM3BLENDSWITHCOSOLVENTSFORWINTERGASOLINE_____________________________66TABLE28INTROMETSDATAONRVP(INKPA)OFBASEGASOLINEANDFINALBLENDS____________________________67TABLE29EMISSIONSAT~2500RPM_____________________________________________________________72TABLE30EMISSIONSAT~5000RPM_____________________________________________________________73TABLE31VAPOURLOCKINDEXRESULTSFORWINTERRM3_______________________________________________77TABLE32ELASTOMERSRESISTANCETOMETHANOL,ETHANOLANDGASOLINEDESIGNOFFLEETTESTINGPROGRAM__________80TABLE33PARTICIPANTSOFFLEETTESTINGPROGRAMANDDUTIES __________________________________________81TABLE34ACCEPTABILITYRESULTSFORSUMMERANDWINTERRM3_________________________________________90TABLE35RVPRESULTSFORSUMMERRM3WITHCOSOLVENTS ___________________________________________91TABLE36PHASESEPARATIONOFMETHANOLGASOLINEBLENDSATSPECIFIEDTEMPERATURESWITHWATERCONTENT ________93

  • MSc.Thesis20102011

    11 OptimizationoflowvolumeRenewableMethanolblending

    ABSTRACT

    IcelandaspartofEuropeanEconomicArea(EEA)isboundtodeveloprenewableenergyforthetransportationsector.InIcelanditislessfeasibletodevelopbiofuelsfrombiomassthaninwarmer climatic regions.CarbonRecycling International (CRI) isproducingRenewableMethanol(RM)fromgeothermalsources in IcelandviarecyclingCO2through itspatentedtechnology.RMcanbeusedasfuelingasolinevehiclesthroughdirectblendingtogasolineathighor low levelblends.CRI isplanning toblendRM into gasoline at3% volume, todevelopanRM3blend,asallowedinEuropeanandIcelandiclegislationandstandards.Methanolhasa longhistoryofuse inracingvehicleswhere it isvaluedbothfor itspowerproducing properties and its safety aspects. There was significant interest in usingmethanolasagasolineblendingcomponentforitshigheroctanevalueandloweremissionscharacteristics,whichmakes it a very attractive fuelor fuelblend for Spark Ignition (SI)engines, intheU.S.when leadwasphasedoutofgasoline.Duringthe1980sandthroughmuch of the 1990s, most gasoline in Western Europe contained a small percent ofmethanol. Today, China is the leader in usingmethanol as a transportation fuelwherebetween3and5milliontonswereusedlastyear.InordertoimplementRM3blendasafuelinthemarket,itisimperativetounderstandthedetailedblendspecificationsand the influenceof theblendonvehicleperformance.ThefirstobjectiveofthecurrentresearchistodetermineiftheRM3blendmeetsthenecessaryrequirementsofgasolinefuelinIceland.Thesecondobjectiveistolookintothetechnicalmethodology and optimization of RM3 blend as necessary. The third objective of theresearchistoperformsecondaryresearchandteststounderstandthevehicleperformanceonRM3blendsforacceptability.RM3 for summer andwinterwas prepared and tested at laboratory developed at CRI.Optimizationtechniqueswerealso identifiedandtested.EnginetestswereconductedonRM3 forengineperformance,driveabilityandemissions.Test resultswere reviewedandvalidatedwithliterature.Furtherafleettestprogramwasdesignedaspartoftheresearchforimplementation.

  • MSc.Thesis20102011

    1 INTRODUCTION

    1.1 ORIGINOFFOSSILFUELS

    Fossil fuels are formed from dead organisms buried under layers ofmud, soil and rockdecomposed into organic material that transform into fossil fuels under differenttemperaturesandpressures.Themainfossilfuelsaregasoline,diesel,naturalgasandcoal.In todaysworld fossil fuelsare themajorsourceofenergy.Due to the rapid increase inglobaleconomicdevelopment,demand forenergy fromoilhas increased.Since1950theconsumptionoffossilfuelsquadrupledfrom~2000Mtoeto~8000Mtoeperyear.

    Figure1Worldfossilfuelconsumption

    The figure 1 is taken from the website article colossal energy consumption and theenvironment(Anon.,(n.d.))[1].

    Inparticular,thetransportationsectoraccountsfora largershareoffossilfuelutilization.TheTransportationsectorsshareoftheoilconsumptionincreasedfrom45.4%in1973to61.2%in2007(Rodrigue,JP.(n.d.))[2].

    1.2 DEPLETIONOFFOSSILFUELS

    Increasedextractionoffossilfuelsfromtheearthscrust iscausingdepletionofthefiniteavailable resources. Reserve to Production (R/P) ratio is a measure of availability ofresources in years. The statistical review ofworld energy in 2010 by British Petroleumpredicts that theoilreserveswillbedepletedwithinapproximately45yearswithrateofconsumption(table1).

    12 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    13 OptimizationoflowvolumeRenewableMethanolblending

    Table1R/Pratio'sofmainfossilfuels

    Fuel Reserves R/Pratio(Years)Oil(Thousandmilliontonnes)

    181.7 45.7

    Coal(milliontonnes)

    826001.0 119.0

    Naturalgas(Trillioncubicfeet)

    6621.2 62.8

    Thedatafortable1istakenfromthewebsitedocumentstatisticalReviewofworldEnergy,(BritishPetroleum,June2010)[3].

    1.3 GREENHOUSEGASEMISSIONSANDCLIMATECHANGE

    Accumulationofgreenhousegases in theatmospherehas risen theearths temperature,leadingtohotterperiods in lastcoupleofdecades. Increase inearthstemperature isthemajor cause formelting of polar ice caps and glaciers. Increasedmeltingwill cause sealevels to rise and submerging of landmass, posing threat to themankind and nature.Meltingofpolar ice is feared tocauseextinctionofsomeof the species.Also,change inclimatepatternswillhaveenvironmental,socialandeconomicalimpacts.

    Stepsweretakentoaddressclimatechangein1992UnitedNationsFrameworkConventiononClimateChange(UNFCCC)andthe1997KyotoProtocol.Especially,EuropeanUnionhaslaidroadmapstoimplementpoliciesandmeasurestocheckthegreenhousegasemissions.

    EU25countriesaresignatoriesofKyotoProtocoladoptedin1997.Signatoriestoprotocolare bound to reduce green house gas emissions viz. carbon dioxide,methane, nitrousoxide,hydrofluorocarbons,perfluorocarbonsandsulphurhexafluorideby5.2%belowtheemissionsof1990by2012.

    1.4 GHGEMISSIONSINICELAND

    The1992UnitedNationsFrameworkConventiononClimateChange(UNFCCC)wasratifiedby Iceland in 1993 and entered into force in 1994. In 1995 theGovernment of Icelandadopted an implementation strategy based on the commitments of the FrameworkConvention.(Anon.,DepartmentofEnvironment,(2007))[4].

  • MSc.Thesis20102011

    14 OptimizationoflowvolumeRenewableMethanolblending

    Thedomesticimplementationstrategywasrevisedin2002,basedonthecommitmentsoftheKyotoProtocol. Icelandacceded to theKyotoProtocolonMay23rd2002.TheKyotoProtocol commits the signatory parties to individual, legally binding targets for theirgreenhousegasemissions inthecommitmentperiod2008 2012.(Anon.,DepartmentofEnvironment,(2007))[4].One of Icelandsmain obligations according to the Kyoto Protocol is that for the firstcommitmentperiod, from2008to2012,thegreenhousegasemissionsshallnot increasemore than 10% from the level of emissions in 1990.However, under decision 14/ CP.7ImpactofsingleprojectonemissionsincommitmentperiodallowsIcelandtoreporttheindustrial emissions separately. The limit for carbon dioxide emissions shall not exceed8,000,000tonnes.(Anon.,DepartmentofEnvironment,(2007))[4].

    Total GHG emissions in 1990 in Iceland were 3415 CO2eq. According to the Kyotocommitment,totalGHGemissionsmustnotincrease10%from1990i.e.3756.5CO2eq.by2012.However,IcelandstotalGHGemissionswerealready43%greaterthan1990levelsin2008(4880CO2eq.).Fromthetable2itcanbeseenthatoneofthemajorcontributorsofGHG emissions is combustion from fuel. (Hallsdttir, Harardttir, Gumundsson,Snorrason,&rsson.(2010))[5].

    Table2Total emissionsofGHGbysourcesinIcelandin19902008,CO2eq.

    Source 1990 1995 2000 2005 2006 2007 2008Fishing+transport 1717 1837 1890 1978 2022 2083 1906Geothermalenergy 67 82 163 123 156 152 185Industrialprocesses 863 535 946 917 1334 1484 1992Solventandotherproductuse 14 14 15 16 9 12 9Agriculture 575 542 552 498 528 551 566Waste 180 194 201 194 213 226 221Total 3415 3204 3766 3727 4263 4508 4880

    The data in the table 2 is taken from the website document Iceland greenhouse gasemissions,(Hallsdttir,Harardttir,Gumundsson,Snorrason,&rsson.(2010))[5].

  • MSc.Thesis20102011

    15 OptimizationoflowvolumeRenewableMethanolblending

    1.5 USEOFNONFOSSILFUELS

    Researchers,environmentalistsandpolicymakersarekeentoreducethedependencyontheusageof thepolluting fossil fuel.Useofnonfossil fuels suchasbiofuels can reducedependencyontheimportofthefossilfuels.Furthernonfossilfuelsorrenewablefuelswillgenerate very low life cycleGHG emissions compared to fossil fuels. Different kinds ofbiofuelsareavailable.Biofuelsbycompositionarealcohols,ethers,estersetc.Commonlyavailable biofuels are ethanol,methanol and biodiesel etc. They can be produced fromvariousthermochemicalandbiochemicalprocesses.

    TherecentdirectivesoftheEuropeanUnionrelatedtotransportationsectorareaimedtoreducethedependencyonimportedfossilfuelsandincreasetheutilizationofenergyfromrenewable energy sources. Development of renewable sources of energy also plays animportant role in promoting the security of energy supply.Directive 2009/28/EC of TheEuropeanParliamentandoftheCouncilstipulatesthememberstatesoftheEUtoachievea targetof10%of renewableenergy tobeused in the transportation industryby2020.(Anon.,EuropeanParliament,(2009))[6].

    1.6 DEVELOPMENTOFBIOFUELS

    In the figure2 it canbe seen thatby theendof year2006 therewasonly3% shareofbiofuelsinthetransportationsectorbutitisexpectedtoriseto6.5%byyear2012and8.5%by2015.

  • MSc.Thesis20102011

    Figure2Currentandprojectedshareofbiofuelsintransportationsector

    Thefigure2istakenfromtheBritishPetroleumwebsiteforalternativefuels.Thisfigureshowstheworldstransportationfuelusage(Anon.,(n.d.))[7].

    Thereport fromGlobalBiofuelMarketAnalysisestimatesthatthe87%oftotalworldsbiofuel production is from USA and Brazil. It is estimated by the members of OECD(Organization forEconomicCooperationandDevelopment)andUnitedNationFoodandAgricultureOrganization thatglobalethanolproductionwilldoublebetweenyears20072017to125billionlitresandproductionofbiodieseltoincreasefrom11billionlitresto24billionlitres.

    China National Cereals, Oils and Foodstuff Corp. (COFCO) is investing USD 6.5 milliontowards building cellulosic ethanol pilot plant. India accounts for almost 4% of globalethanolproduction,productionofethanol is fromsugarcaneandbiodiesel from jatrophaseeds.BritishPetroleumwithAssociatedBritishFoods isdevelopinga$400millionworldscalebioethanolfacility.(Anon.,(n.d.))[8].

    Whileethanolandbiodieselconstitutethemajorityofbiofuelstodaynewtypeoffuelsarebeing researched to increase thediversity and improve thebiofuelpenetration into themarket. For example British Petroleum is building 20,000 liters per year biobutanoldemonstrationplantandisinpartnershipwithacademiaandjointventurestodevelopthetechnologiesforproductionofvariousbiofuels.(Anon.,(n.d.))[7].

    16 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    17 OptimizationoflowvolumeRenewableMethanolblending

    1.7 SUMMARY

    The consumptionof fossil fuels increased four times from1950 to 2008. Transportationsector accounts for majority of the fossil fuel consumption in the world today. Withincreasedconsumptionof fossil fuels it isexpected that the totalknown reserveswillbedepletedsoon.The increasedGHGemissionsfromthecombustionofthefossilfuelshaveenvironmental,socialandeconomicimpacts.

    Renewable fuelsandbiofuelscanreducedependencyonthe fossil fuelsandreduceGHGemissions. Presently,major producers of biofuels are USA and Brazil. Efforts are beingmade to increasebiofuelproduction inEuropeandAsia.TheEuropeanUnionhas laidaroadmap towards the reductionofGHGemissionsanddevelopmentof renewable fuelsandbiofuelsinthetransportationsector.

    Iceland,beingapartofEEA,iscommittedtosupportthedevelopmentofrenewablefuelsin the transportationsectorand thus in thisprocessalso reduce theGHGemissionsasapartofitsKyotocommitment.

  • MSc.Thesis20102011

    18 OptimizationoflowvolumeRenewableMethanolblending

    2 BACKGROUNDANDPROBLEMSTATEMENT

    2.1 RENEWABLEFUELSINICELAND

    Iceland is a part of European EconomicArea and is bound to the European regulationstowards development of renewable energy in transportation sector. Both ethanol andbiodiesel, the currentlymost accepted and utilized renewable fuels are produced frombiomasssuchasenergycrops,woodandvegetableoil. Weatherconditions inIcelandarenotidealforgrowingenergycropstoproduceeitherethanolorbiodiesel.However, several steps are being taken to reduce dependency on fossil fuel. Ethanol isbeingimportedintoIcelandsince2007andsoldasahighvolumeblend(E85).Biodieselisalsobeingimportedsince2004andblendedwithdiesel.Effortsarebeingmadetoproducelocalrenewablefuels.Methaneisbeingproducedfromwaste landfillsbySORPAand isbeingusedasalternative fuel inavery small fractionofvehiclesinIceland.CarbonRecyclingInternational(CRI)hasinitiatedproductionofRenewableMethanol(RM)by utilizing renewable geothermal sources in Iceland. In CRI, Renewable Methanol isproduced from CO2 using its patented technology. CO2 for the process can be capturedfromvariousemissionsourcessuchasaluminiumsmelters,geothermalpowerplants.Thechemical equation and process steps of producing RenewableMethanol from CO2 areshownbelow:

    (1)

    (2)

    (3)

  • MSc.Thesis20102011

    Figure3CRIsprocessstepsforproducingRenewableMethanol

    Thefigure3istakenfromthewebsiteCarbonRecyclingInternational.ThisfigureshowstheschematicoftheproductionofRManditsuse(Anon.,(n.d.))[9].

    CRI is currently constructing a plant on industrial scalewhich is expected to produce 5million litresofRenewableMethanolperyearandshallbecompletedbymid2011.Uponthesuccessofthe industrialscaleplant,CRI is furtherplanningtobuildcommercialscaleplantswithproductioncapacitiesof~50100millionlitresperyearofRenewableMethanolfrom2013.(Anon.,(n.d.))[9]RMcanpotentiallybeasustainablesourceofrenewablefuelforbothIcelandandEurope.

    2.2 METHANOLASATRANSPORTATIONFUEL

    Methanolhascertainpositivepropertieswhichcouldbeused insomewayasapotentialfuel.Though,neatmethanolcannotbeuseddirectly intheconventionalvehiclesbecausedifficultiesassociatedwithvolatilityandmaterialcompatibility,but itcouldbeusedasablendwithgasolineforitscharacteristicssuchashighoctanenumberandloweremissionsfromvehicles.Methanol isharderto ignite; itburnsmoreslowlyandemits lowerradiantenergy. Following are the main benefits of using methanol as a transportation fuel:(CassadyE.Philip(1975))[10].1. Lowemissions:Methanol fuelledvehicleshave lesseremissionsofcarbonmonoxide

    and total hydrocarbon emissions and particulate matter from the exhaust of thevehiclesascomparedtothegasolineanddieselfuelledengines.

    19 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    2. Octane Number: Methanol is used as a motor racing fuel for its high antiknock

    property.Methanolhashighblendingoctanevalue (BOV).Blending the lowerOctaneNumberfuelwiththemethanolwilleffectivelyincreasetheoctanenumberofthefuel.Methanolsallowanceforhighercompressionratiosresults inhigheroutputfromthecombustionofthefuel.

    3. Volatility:Methanol isavolatilesubstance, it readilyevaporates.Methanolcouldbe

    usedasagoodvolatile substance for thegasolinemethanolblend.However,excessvolatilitycausesdriveabilityproblemsincarburettorengines.

    Figure4Comparisonoffuelpropertiesofmethanol,ethanolandgasoline

    Thefigure4isfromresearchpaperProperties,Performance,andemissionsofmethanolgasolineblendsinasparkignitionengine(Qi,Liu,Zhang,Bian,(2004)[11]

    2.3 HISTORYOFMETHANOLASFUEL

    During 1980smethanol flexiblefuel vehicles (FFVs)were developedwhich could run ondifferentgasolineandmethanolmixtures.FFVsweredeveloped to runonboth the fuelsdepending on the availability of the fuel. In 1988 California Energy Commission (CEC)established the California Fuel Methanol Reserve to increase the availability of themethanol. The agencyentered in 10years leasewith theARCO,Chevron, Exxon,Mobil,Shell and Texaco for the installation ofmethanol storage tanks. By 1990s the number

    20 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    21 OptimizationoflowvolumeRenewableMethanolblending

    increased to 15,000 vehicles in California, by 1993, 12million gallons ofmethanolwasconsumedasatransportationfuel.

    FourmodelsofFFVssucceededtomakeittotheproductionlevel:1. FordTaurus2. ChryslerDodgeSpirit/PlymouthAcclaim3. ChryslerConcorde/Intrepid4. GeneralMotorsLumina

    InEuropeasmallpercentofmethanolwasaddedalongwith thecosolvents tomitigatethe properties of gasoline when lead was removed from gasoline due to health andenvironmentalreasons.Themaximumpermissiblelimitofmethanolingasolineblendis3%% v/v. Gasoline Methanol blending was first used in Germany in 1968, the gasolineavailableatthattimecontained23%ofthemethanolalongwithcosolventspresent,bytheendof1990thegasolineavailableintheEuropecontained23%ofmethanol.LaterthedirectivesoftheEuropeanEconomicCommunityauthorized lowblendupto3%.Gasolinefuel in the EEA region follows EN 228 standard. It is an official document drafted byEuropeanCommitteeforstandardizationoffuels.(Bechtold,Goodman&Timbario)(2007))[12].

    2.4 PROBLEMSTATEMENT

    Currently,CRI is planning to perform low volume blending ofRenewableMethanol intogasolineupto3%,introducingRenewableMethanolgasolineblendRM3intothemarket.Iceland importsallof itsgasolinewhichcomplieswiththeEN228standards.However,allthegasolineentering Icelandhas tobe legallycompliant to Icelandic law (nr.560/2007).Blending of RM would result in change of properties of the base gasoline. The firstobjective of the current research is to determine if the RM3 blend meets the legalrequirementsofgasolinefuelinIceland.

    Basegasoline(97%)+RM(3%)RM3tomeetnr.560/2007IncasetheRM3blenddoesnotmeetlegalrequirementsinIcelandthereisapossibilityoftechnicallybringingback theblend to legal requirements throughadditionofcosolvents

  • MSc.Thesis20102011

    22 OptimizationoflowvolumeRenewableMethanolblending

    and additives. The second objective is to look into the technical methodology andoptimizationofRM3blendtomeetthelegalrequirementsinIceland.

    Basegasoline(x%)+cosolvents(y%)+RM(3%)RM3tomeetnr.560/2007

    WhiletheRM3blendmeetsnecessary legalrequirementsit is imperativefortheblendtobecompatiblewiththeexistingvehicletechnologyandinfrastructure.RM3asafuelinthevehiclesmay affect the engines performance, driveability, compatibility and emissions.Thus,thethirdobjectiveoftheresearch istoconductsecondaryresearchandteststobeconductedtodeterminetheeffectsofRM3blendonengines.

    2.5 RESEARCHMETHODOLOGY

    2.5.1 Firstobjective

    Thetable3showsthelistofallthepropertiesofthegasolinewhicharelegalrequirementsin Iceland.BlendingofRM intogasolinewillbringchange inpropertiesoftheRM3blend.However, someof theproperty changes canbe calculateddirectlybyknowing theRMsandgasolinesqualityandquantity.Forexamplegivenbenzenecontentof0.8%V/Vinbasegasoline and 3% of RM added to it the final content of benzene in RM3 would be0.8/1.03=~0.78%V/VassumingnobenzenecontentinRM.Thismethodologywillapplyforallthepropertieswhosechangescanbecalculateddirectlymentionedinthetablebelow.

    Theremainingpropertieswhichcannotbecalculateddirectlywouldneedexperimentation.Especially, it is to be noted that at small volumes ofmethanol blended into gasoline itwouldmixnonlinearlyforminganazeotropicmixtureandthusmakingevensomesimpleproperties likedensitynonlinearandcanonlybeobtained throughexperimentation.AllthepropertiesthatneedexperimentationformeasurementafterRMblendingareshowninthetablebelow.

  • MSc.Thesis20102011

    23 OptimizationoflowvolumeRenewableMethanolblending

    Table3LegalrequirementsofgasolinepropertiesinIcelandandidentificationofpropertiesthatcanbeeithercalculatedorrequiredexperimentationformeasurementsafterRMblending.

    Property Units Limits

    ChangeinProperties

    Min Max Directcalculation

    Experimentation

    ResearchOctaneNumber 95 9 MotorOctaneNumber 85 9 Vapourpressure,summerperiod kPa 70 9 Distillation:

    Percentageevaporatedat100oC %V/V 46 9 Percentageevaporatedat150oC %V/V 75 9

    Hydrocarbonanalysis Olefins %V/V 18.0 9 Aromatics %V/V 35.0 9 Benzene %V/V 1.0 9

    Oxygencontent %m/m 2.7 9 Oxygenates

    Methanol %V/V 3 9 Ethanol %V/V 5 9 isoprpylalcohol %V/V 10 9 tertbutylalcohol %V/V 7 9 isobutylalcohol %V/V 10 9 etherscontaining5ormorecarbonatomspermolecule

    %V/V

    15 9

    otheroxygenates %V/V 10 9 Sulphurcontent Mg/kg 10 9 Leadcontent g/l 0.005 9

    The data in the table 3 is taken from the Icelandic fuel regulation document In. Nr.560/2007[13].

    Further importantproperties related to fuels suchasexistentgum content, copper stripcorrosionandoxidationstabilitywhicharecurrentlynot regulatedby lawalsocannotbecalculated directly. To complete the first objective it is thus necessary to performexperimentstodeterminetheRMblendingeffectongasolineproperties.

    2.5.2 Secondobjective

    After performing the experiments based on the first objective there might be someproperties identified which do not comply with the regulation. It is very important to

  • MSc.Thesis20102011

    24 OptimizationoflowvolumeRenewableMethanolblending

    ensurethattheRM3blendmeettheregulation.Thus,thepossibilitiesofbringingtheblendincompliancewiththeregulationsareexploredandexplainedbelow.

    By implementing technicalmethods theproperties thatareoffspeccanbecontrolled incompliance with the regulations. For example an increase in vapour pressure can bebroughtdownbyusinghigheralcoholsascosolventsand increase incorrosion levelscanbecontrolledbyusingcorrosioninhibitors.

    After identifyingthetechnicalmethodsrelevantcosolventsoradditivesshallbeobtainedbased on existing literature and shall be tested by using the same experimentationmethodology from the first objective. In case ofmultiple options of reaching the finalobjective,optimizationshallbeperformedtoidentifythebesttechnicalsolutionbasedoncostandeaseofimplementation.

    2.5.3 Thirdobjective

    WhilethefirstandsecondobjectivesarefocussedontheRM3blendspecification,itisquiteessentialtostudytheeffectsofRM3blendson:

    Engineperformance

    1. Methanol has lower energy content (16MJ/L) than that of gasoline (32MJ/L).However, as studied earlier using methanol as transportation fuel has certainadvantagesespeciallywithitshighoctaneratingandefficientcombustion.Thus,itwould be advantageous to study engine performance parameters such poweroutput, torque, Break Mean Effective Pressure (BMEP), Basic Specific Fuelconsumption(BSFC)etc.(Bechtold,Goodman&Timbario)(2007))[12].

    2. DriveabilityDriveabilityofavehicle ismainlyaffectedby thevolatilityof the fuel.RM3blendhasdifferentvolatilitycharacteristicsthanthebasegasoline.Thus,itisessentialtoreviewtheRM3performanceondriveability issues likecoldstart,vapour lockandheatsoakbacketc.

    3. MaterialcompatibilityMethanol isacorrosivechemicalsubstance.Thereareconcernsregardingtheuseofmethanol as a fuel in the vehicles for compatibility issues with fuel system

  • MSc.Thesis20102011

    25 OptimizationoflowvolumeRenewableMethanolblending

    materials. Thus, it is essential to study the compatibility of RM3 in the existinginfrastructure.

    Furthertestsshallbeidentifiedandplannedtoperformindepthanalysisforeffectsontheenginesifnecessary.

    2.6 SUMMARY

    Iceland is developing renewable fuels for the transportation sector. Unlikemost othercountries,InIcelanditislessfeasibletodevelopethanolandbiodieselfrombiomassduetoits weather conditions. CRI in Iceland is producing Renewable Methanol (RM) fromgeothermalsourcesfrom itspatentedtechnology.CRI isplanningtouseRMasablend ingasoline forup to3%byvolume,makinganRM3blendproduct.RM canbeusedasanautomotive fuel because of its positive fuel properties. Blending of RM in gasolinewillchangethepropertiesoftheblend.ThepropertiesofthefinalRM3blendshouldmeetthelegislationrequirementsinIceland.

    Theproblemstatementforcurrentresearchisdividedintothreeareas:

    1. To determine if the RM3 blendmeets the legal requirements of gasoline fuel inIceland.

    2. TolookintothetechnicalmethodologyandoptimizationofRM3blendtomeetthelegalrequirementsinIceland.

    3. To conduct secondary researchand testshave tobe conducted todetermine theeffectsofRM3blendonengines.

    Properties of RM3 blendwere identifiedwhich can be calculated by directmethods orexperimentation.

  • MSc.Thesis20102011

    26 OptimizationoflowvolumeRenewableMethanolblending

    3 RM BLENDING EFFECTS ON GASOLINE PROPERTIES SECONDARYRESEARCH

    Gasoline fuel isamixtureofhydrocarbons,alcohols,oxygen,sulphur,olefinsandAlkenesetc.Boilingpointofgasolinerangesfrom250Cto2000C.Thepropertiesofthegasolinei.e.volatility,density, viscosity varywith thequantityof theelementsof themixturewhichamounttogasoline.

    Due to theadditionofRM intogasolinesomepropertiesof thegasolinemethanolblendmaychange.The intentionbehind theRM3samplespecificationanalysis is to investigateandidentifyanypossiblechangesinthepropertiesofthefuel.Themajorareaswheretestsaretobeconductedtoinvestigateandidentifyanypossiblechangeinthefuelblendareasfollows(In.Nr.560/2007)[13](Anon.,(2008))[14].

    x Octanenumber(Legislationrequirement)o ResearchOctaneNumber(RON)o MotorOctaneNumber(MON)

    x Volatility(Legislationrequirement)o VapourPressure,summerperiodo Distillation

    Percentageevaporatedat100oC(E100) Percentageevaporatedat150oC(E150)

    x Stabilityandothers(CRIsinterestformarketentry)o Oxidationstabilityo ResidueandExistentgumcontento Copperstripcorrosiono FinalBoilingPoint

    x Phasestability(CRIsinterestformarketentry)o Watercontento Phasestabilityatroomtemperatureo Phasestabilityatlowtemperature

    Thepropertieslistedabovecannotbecalculatedtheoreticallyfromthespecificationsofthebasegasolinefuel.So,itisnecessarytoconductpracticaltestsonthefuelblendsamples.

  • MSc.Thesis20102011

    27 OptimizationoflowvolumeRenewableMethanolblending

    3.1 OCTANENUMBER

    Octanenumber isameasureofgasolinesresistancetoauto ignition.Auto ignition intheenginecouldleadtononuniformcombustionandthusvibrationscouldpotentiallydamagetheengine.Thisphenomenoniscalledknocking.

    RON: Research Octane Number is an indicator of the fuels antiknock performance atlowerenginespeedandtypicalaccelerationconditions.

    MON:MotorOctaneNumberisanindicatorofthefuelsantiknockperformanceathigherenginespeedsandhigherloadconditions.

    Referencespecification

    Innr.560/2007 regulationof Iceland (In.Nr.560/2007) [13]minimumoctanenumberoffuelisgivenat95forRONand85forMON

    ChangeinpropertyduetoRMblending

    Alcoholsandethersingeneralhavehighantiknockpropertiesandforthisreasontheyarespecifically used in gasoline to provide higher efficiencies.Methanol being the smallestalcohol has one of the highest octane rating among the existing oxygenates that areallowed for blending in gasoline. Flame propagation in methanol is even, making thecombustioncharacteristicseven.

    Methanolhashigheroctane ratingsofRONandMON than the legislation requirements.Even though the final octane number of a given blend need not necessarily be a linearcalculationthefinaleffectoftheblendingtendstobetowardsthelinearcalculation.Thus,basedontheabovedataandpracticaltestsperformedfromliteratureitcanbeconcludedthatblendingofRM inexistinggasolinewhichalreadymeetsthe legislationrequirementswillhaveapositiveeffectontheoctanenumber.

    PurposeofmeasurementforRMblend

    BasedontheabovediscussionRM3blendwoulddefinitelymeetthenecessary legislationrequirements for octane rating. Thus, for the purpose of this study it is identified thatmeasurementofoctanenumberofRM3blendisnotrequired.

  • MSc.Thesis20102011

    3.2 VOLATILITY

    The tendency of the fuel to vaporise is called volatility and themainmeasures of thevolatilityofthefuelarevapourpressureanddistillationcharacteristics.

    3.2.1 VapourPressure(alsoknownasReidVapourPressureRVP)

    Definition

    Itisvapourpressureofthefuelatstandardtemperatureof37.8oCinvacuum.

    Referencespecification

    Innr.560/2007regulationofIceland(In.Nr.560/2007)[13]vapourpressureisrequiredtobeatamaximumof70kPa forsummerperiods.Summerperiod isdefined tobeperiodbetweenJulytoAugust.

    ChangeinpropertyduetoRMblending

    RVP of pure RM is about 32kPa.Gasoline has RVP of about 4570 kPa during summer.However,blending3%ofRMingasolinewillincreasetheRVPofthegasolinebyupto35%this isdue to the fact thatmethanol formsnonlinearmixturewith gasoline.The actualincrease in the RVP is of course determined by the nature of the base gasoline viz.aromaticscontentandthetypeofotheroxygenatespresent.

    Figure5EffectsofalcoholadditiontogasolineRVP(1psi=7kPa)

    28 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Thefigure5istakenfromthewebsitedocumentUseofMethanolasaTransportationFuel(Bechtold.,Goodman&Timbario)(2007))[12].

    Measurement

    StandardtestasperEN228:2008EN130161

    Thebasictestforthiskindofmeasurementissampleofairfuelmixtureistakenintheratioof 4:1 at 37.8oC. Themixture is then filled in a chilled chamber and connecting to airchamberwhich is inturnconnectedtopressuregauge.Theapparatus is immersed inthewaterat37.8oCandshakenperiodicallyuntilconstantpressureisreached.

    PurposeofmeasurementforRM3blend

    TotestforthevariationinvaporizationofRM3blends

    3.2.2 Distillationcharacteristics

    Definition

    E70/E100/E150arethetemperatureregionswherecertainvolumeoffuelisevaporatedasshowninthefigure7.At700C,100Cand1500Cthepercentagevolumeoffuelevaporatedisapproximately25%,48%and88%respectivelyatatmosphericpressure.

    Figure6Sampledistillationcharacteristicsofgasoline

    Thefigure6istakenfromwebsitedocumentPropertiesofpetrol(Anon.,(2005))[14]

    29 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Referencespecifications

    Innr.560/2007standardspercentagevolumeofevaporation(In.Nr.560/2007)[13]

    x E100At1000Cminimumvolumeofevaporationshouldbe46%orabovebyvolumex E150At1500Cminimumvolumeofevaporationshouldbe75%orabovebyvolume

    ChangeinpropertyduetoRMblending

    Figure7Effectofalcoholadditiontogasolinedistillation

    30 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    31 OptimizationoflowvolumeRenewableMethanolblending

    Thefigure7istakenfromthewebsitedocumentUseofMethanolasaTransportationFuel(Bechtold.,Goodman&Timbario)(2007))[12]

    Thefigure7showstheeffectofblendingalcoholtothegasolinedistillation.Itcanbeseenthat themethanolhashighestdistortioneffecton thedistillation curvewhile thehigheralcoholshas lessereffect.This isduetomethanolformingazeotropicmixtureswithsomeelementsofgasoline.

    However, the above figure is for 15% blend ofmethanol into gasolinewhile CRIs finalproductisonlya3%blendandwoulddistortthecurvetoasmallextent.

    Measurement

    StandardtestasperEN228:2008ENISO3405

    Thebasicexperiment tomeasure thepercentage volumeof the fuelevaporation at thecertaintemperatureandatatmosphericpressurecanbemeasured.Inthisexperimentfuelis taken inacontainerandheat issupplied to thecontainerwithvaried temperaturesat1000C and1500C.The container is connected to the tubewhichpasses through the icewaterbath tocondense thevapourandeventually the fuel iscollected in themeasuringcylinder.

    PurposeofmeasurementforRMblend

    To determine the change in the evaporation of the RM3 blend at the specifiedtemperatures.

    3.3 STABILITYANDOTHERS

    3.3.1 OxidationStability

    Definition

    Theabilityofthegasolinetoresisttheformationofgum,sludgeanddepositionduringlongtermstorageduetooxidationiscalledoxidationstability.

    Referencespecification

    EN228:2008specificationmethodrequiresatleast360minutesofstorageoffuelsamplewithoxygenunderpressurewithoutforminganygum.(Anon.,(2008))[14].

  • MSc.Thesis20102011

    32 OptimizationoflowvolumeRenewableMethanolblending

    ChangeinpropertyduetoRMblending

    Alreadyexistingoxygencontentpresentingasolineduetomethanolcouldinhibitgumformationduringlongstorages.OxidationstabilityofRM3couldreducebuthoweveritcouldbeinsignificantandmeetthereferencerequirements.

    Measurement

    SpecifiedtestforEN228:2008ENISO7536

    Thetestmethodinvolvesinstorageofthegasolineinthepresenceofoxygenandthetimeismeasuredbeforetheoxygengetsabsorbedinthegasoline.(Anon.,(2008))[14].

    PurposeofmeasurementforRMblend

    Toidentifyanyadditivesrequiredtolimittheoxidationrate

    3.3.2 ResidueandExistentgumcontent

    Definition

    Residue is thepercentageofvolume remainingafter thedistillationendpoint is reachedandrepresentstheproportionofnonvolatilecomponentsinthefuel.Thismaterial,whichisprimarilywaxesandgums,mayformdepositsinenginefuelenginesystems.

    The residue is thenwashed in a solvent before drying andweighing to determine theamountofgumpresentwhichistheexistentgumcontent.(Anon.,(2008))[14].

    Referencespecification

    Residue:TheEN228specificationslimitthevolumeoftheresidueby2%byvolume.

    Existentgumcontent:Maximumallowablepresenceofexistentgum is5mg/100mloffuelaccordingtotheEN228specifications(Anon.,(2008))[14].

    ChangeinpropertyduetoRMblending

    Residue:ThequantityoftheresidueinRM3blendmaybelowerthantheresiduefromthebasegasolinebecause3%ofthegasolineisreplacedbymethanolwhichhaslowerboilingpointthanfinalboilingpointofgasoline.

  • MSc.Thesis20102011

    33 OptimizationoflowvolumeRenewableMethanolblending

    Existentgumcontent:Gumformationmightoccuringasolineinpresenceofmethanolduetotheincreasedoxygencontentofmethanol.However,at3%RMingasolinenoeffectsareexpectedonthegumcontent.

    Measurement

    Residue:SpecifiedtestforEN228:2008ENISO3405

    Existentgumcontent:SpecifiedtestforEN228:2008ENISO6246

    PurposeofmeasurementforRMblend

    ToidentifyifanyadditivesarerequiredtobeaddedtotheRM3blendtoinhibitthegumformationinthefuel.

    3.3.3 CopperStripCorrosion

    Definition

    Thecorrosivenessofthegasolinetocoppercontainingpartsofthevehiclesfuelsystemisexaminedbythecopperstripcorrosiontest.

    Referencespecification

    Copperstripcorrosiontestrequirestheratingclass1,at500Cfor3hrs.(Anon.,(2008))[15].

    ChangeinpropertyduetoRMblending

    RateofcorrosivenessisexpectedtoincreaseintheRM3blendduetoincreasedoxygencontentbymethanoladdition.However,at3%RMingasolinenoeffectsareexpectedincorrosionduetotheRM3blend.

    MeasurementSpecifiedtestforEN228:2008ENISO2160

    Astripofcopperisimmersedinthesampleoffuelforadefinitetimeandataconstanttemperaturethentocomparethestripwiththecolourstocalibratetherateofthecorrosion.

    PurposeofmeasurementforRMblend

  • MSc.Thesis20102011

    34 OptimizationoflowvolumeRenewableMethanolblending

    Todeterminetheclassofcorrosionandtoidentifyifanyrequiredadditivesarerequiredtostallthecorrosion

    3.3.4 FinalBoilingPoint(FBP)

    Definition

    FinalBoilingPointisatemperatureatwhichthelastdropletevaporatesinthedistillationofgasoline.

    Referencespecifications

    TheEN228specificationgivesthefinalboilingtemperatureatmaximum2100C.(Anon.,(2008))[14].

    ChangeinpropertyduetoRMblending

    PossibleriseinFBPcouldindicateformationofgumandincreasedresidueduetooxygencontentofmethanolpresentingasoline.However,at3%ofRMblendedingasolinethefinalboilingpointisnotexpectedtochange.

    Measurement

    StandardtestasperEN228:2008ENISO3405

    PurposeofmeasurementforRM3blend

    TodeterminethechangeinthefinalboilingpointduetothemixtureformedbyEN228standards.

    3.4 PHASESTABILITY

    Waterpresent intheRMblendcouldseparategasolineandmethanolduetothepolaritydifferencesbetween thewaterand the fuel.Thiscould lead to increasecorrosiondue tomethanolwatermixturesseparatingoutinthefuelsystemsandcausecorrosion.Toleranceof gasoline methanol blends to the water also depends upon the base gasolinespecificationsasshownintable4:

  • MSc.Thesis20102011

    Table4Methanolsolubilitybasedongasolinecomposition

    Thetable4istakenfromthedocumentUseofMethanolasaTransportationFuel(Bechtold.Goodman&Timbario)(2007))[12].

    Further water tolerance of gasoline methanol blends also depends on the amount ofmethanolblendedtogasoline fortemperatureshigherthan8oC (45oF) it isobservedthatwiththeincreaseinmethanolcontentingasolinethewatertoleranceincreases(seefigure8). However, for temperatures less than 8oC the water tolerance decreases with theincreasedmethanolcontent.

    Basedontheabove informationanRM3blendwouldhavebetterphasestabilityat lowertemperaturesandpossibilityofbetterphasestabilityathighertemperaturesbasedonthebasegasolinecompositions.

    Ingeneralthebasegasolinecontains0.0012%w/wofwater.CRIsRMconsists lessthan0.1%w/wwater,which corresponds to 0.003% for the total RM3 blend. Thus the RM3blendisexpectedtohave0.0042%w/wwater.

    35 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Figure8Watertoleranceofgasolinemethanolblends(330%meoh)

    Thefigure8istakenfromthedocumentUseofMethanolasaTransportationFuel(Bechtold.,Goodman&Timbario)(2007))[12].

    ToensurephasestabilityoftheRM3blenditisnecessarytoperformthefollowingtests:

    1. Measurementofwatercontent2. Phaseseparationoftheblendatroomtemperaturebyaddingwater3. Phaseseparationoftheblendat30oC

    TheaboverequirementstoensurephasestabilityarereferencesfromChinesemethanolgasolineblendstandardsasimplementedinShanxiprovince.(Anon.,(2008))[16].

    3.4.1 Watercontent

    Definition

    TestforthewatercontentintheRM3blend.

    ChangeinpropertyduetoRMblending

    NoincreasedpresenceofwaterisexpectedintheRM3blendbecauseCRIsRMconsistsoflessthan0.1%w/wwater,whichcorrespondsto0.003%forthetotalRM3blendwhichisnegligible.

    36 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    37 OptimizationoflowvolumeRenewableMethanolblending

    Measurement

    StandardKarlFischertitration

    PurposeofmeasurementforRMblend

    Todetermineanywaterpresentinthemethanolgasolineblend.

    1. Phaseseparationbyadditionofwateratroomtemperature(Anon.,(2008))[16].

    Definition

    Experiment for phase separation by additionof 0.2%w/w (0.15% v/v) ofwater toRM3blend.

    ChangeinpropertyduetoRMblending

    Phase separationmay occur at 3% RM blending into gasolinewhen 0.2%w/wwater isadded toRM3 blend at room temperature (25oC/77oF).However, phase separation alsodependsonthebasegasolinespecifications,whichmayimprovephasestabilityinspecificcases.

    Measurement

    Measurementismadebyvisualinspectionofphaseseparation.

    PurposeofmeasurementforRMblend

    Testforthephaseseparationintheblendfuel.

    3.4.2 Phasestabilityat300C

    Definition

    PhasestabilitytestontheRMblendfuelat300C(Anon.,(2008))[16].

    ChangeinpropertyduetoRMblending

    Phaseseparationmaynotoccurat30oCasRM3blendhasbetterwatertolerance(0.04%w/w)thanhighermethanolblends.However,phaseseparationalsodependsuponthebasegasolinespecificationsandtheamountofwaterpresent inthebasegasoline itself. Ifthe

  • MSc.Thesis20102011

    38 OptimizationoflowvolumeRenewableMethanolblending

    base gasoline is ensured to have very lowwater content, less than 0.04%w/w, phaseseparationmaynotoccur.

    Measurement

    Measurementismadebyvisualinspectionofphaseseparation.

    PurposeofmeasurementforRMblend

    Todetermineoccurrenceofanyphaseseparationat300C.

    3.5 SUMMARY

    Allthepropertiesofthegasolinemethanolblendsthataresubjectedtochangeandneedexperimentation formeasurements are studied.While some of the properties are legalrequirementsCRIisinterestedinunderstandingsomemorepropertiesforitsmarketentry.It isunderstood thatadditionofRM togasolinewouldhaveapositiveeffectonOctaneNumber and thus it is identified that it is not necessary for measurement throughexperimentationforthescopeofthisstudy.AddingRMtogasolinehasthehighesteffectonthevolatilitypropertiesofthe finalRM3blend. Especially, RVP of the RM3 blend is expected to rise up to 35% from its basegasoline.At3%RMblending intogasolinethedistillationcharacteristicsarenotexpectedtochangemuch.There would be an increase in the oxygen content of the RM3 blend because of themethanoladdition.Ingeneralincreasedoxygencontentinthefuelisexpectedtodecreasethestabilityofthefuel.However,at3%lowlevelblendingofRMintogasolinethestabilityofRM3isexpectedtobewithintherequirements.Duetothepolardifferencesbetweenthegasolineandmethanol,presenceofwaterinthelowvolumemethanolblendedgasolinecouldcausephaseseparation,leadingtoproblemsinthevehicleperformance.It is ingeneralexpectedthatRM3blendwouldhave0.0042%w/wwaterundernormalconditionsofRMandgasolineblendingunder theseconditionsphaseseparation isnotexpectedtohappeneitheratnormaland lowtemperatures.AlsoRM3blendhasbetterphase stabilityat lower temperatures.However, careneeds tobe

  • MSc.Thesis20102011

    39 OptimizationoflowvolumeRenewableMethanolblending

    taken toensurenowateradditionto theRM3blendduring the logistics tohelp improvethephasestability.

  • MSc.Thesis20102011

    4 DEVELOPMENTOFTHEBLENDTESTFACILITYATCRI

    CRI decided to develop a blend testing laboratory to perform tests on the RM3 blendpropertiesmentionedinsection3.Fordevelopmentoftheblendtestfacility,standardizedtest methods and equipment were identified. CRI also decided to use an externallaboratory,Fjolver,forsomeofthetestsasnecessary.Thetable6showstherequiredteststandardsfortheRM3blendpropertiesmeasurementandtheconcernedtestfacilitiesfortheexperimentstobeconductedwithinthescopeofthecurrentresearch.

    Table5Requirementandtestmethodsforunleadedpetrol

    Volatility MeasurementStandards Testfacility

    OctaneNumber TestnotrequiredVolatility

    ReidVapourPressure EN130161:2007 CRIDistillationcharacteristics ENISO3405:2000 CRI

    StabilityandOthers Oxidationstability ENISO7536:1996 Residue ENISO3405:2000 CRIExistentgumcontent ENISO6246:1998 FjolverCopperstripcorrosion ENISO2160:1998 Fjolver

    FinalBoilingPoint ENISO3405:2000 CRIPhasestability

    Watercontent KarlFischertitration CRIPhasestabilityatroomtemperature

    ReferenceofShanxiProvince

    CRI

    Phasestabilityat30C ReferenceofShanxiProvince

    CRI

    Thedataintable5formeasurementstandardsaretaken(Anon.,(2008))[14]and(Anon.,(2008))[16].

    40 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    41 OptimizationoflowvolumeRenewableMethanolblending

    Table6TeststandardsforRM3blendpropertiesmeasurement

    Standardno. TitleEN130161 Determinationofairsaturatedvapourpressure(ASVP)and

    calculateddryvapourpressureequivalent(DVPE)ENISO3405 Petroleumproducts Determinationofdistillationcharacteristicsat

    atmosphericpressureENISO7536 Methodsoftestforpetroleumanditsproducts.Petroleum

    products.Determinationofoxidationstabilityofgasoline.Inductionperiodmethod

    ENISO6246 Petroleumproducts GumcontentoflightandmiddledistillatefuelsJetevaporationmethod

    ENISO2160 Petroleumproducts CorrosivenesstocopperCopperstriptest

    Thedataintable6istakenfromprintdocumentAutomotivefuelsUnleadedpetrolRequirementandtestmethods(Anon.,(2008))[14].

    4.1 ESTABLISHMENTOFBLENDTESTFACILITY

    Requiredequipment,whichcomplieswith theEuropean standardizedmethodof testing,waspurchasedbyCRIfortheblendtestingfacility.Setupandinstallationoftheequipmentwasdoneaccordingtothemanufacturersmanual.Initialexperimentswereconducted,forqualitypurposes,todeterminetherepeatabilityandprecisionoftheequipment.

    4.1.1 RVPtestfacility

    TheVapourPressureTesterisabenchtopautomaticinstrumentformeasuringthevapourpressureofgasoline,solvents,lightcrudeoilandsimilarproducts.Atwolinedigitaldisplayinstructs theoperator through the test sequence anddisplays the test result and statusinformation. The end point of the test is determined automatically according to theprescribed TestMethod. All valve operations are automated and use solventresistantKalrezseals.

  • MSc.Thesis20102011

    Figure9RVPtestfacility

    4.1.2 Distillationcharacteristicstestfacility

    Distillationunitconsistsofaheatingcoiloverwhichthedistillationflaskisplaced.Theneckof the distillation flask is connected to a tube which passes through a cooling bath(temperature01oC).Thedistillationflaskisfilledwiththefuelandheated.Theevaporatedvapourpassesthroughthecoolingbathanddistillateiscollectedinagraduatedcylinder.

    42 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    43 OptimizationoflowvolumeRenewableMethanolblending

    Figure10Distillationcharacteristicstestfacility

    4.1.3 Watercontenttestfacility

    titratorandofAquamaxKFmodel.Itiseasytouse,and

    arl Fischer titration is simply ameans tomeasurewater content of samples.Modern

    Thewatercontenttestfacilityisasupplied complete with a specifically designed low drift cell which is also suitable foroutdoor use. CouLo Formula reagents have been specially formulated for use withAquamaxKF titrators. FormulaAanode reagent is suitable formost routineapplicationsand isespeciallyuseful forwater contentdeterminationofoil samples,e.g. transformeroils,crudeoils,etc.Kinstruments, such as the Aquamax, use the coulometric principle, whereby the waterpresentinthesampleiscoulometricallytitratedtoapredefinedendpointatwhichthereisaminuteexcessoffreeiodinepresent.Stoichiometrically,1moleofwaterwillreactwith1moleof iodine,sothat1milligramofwater isequivalentto1071coulombsofelectricity.Combining the coulometric technique with Karl Fischer titration, Aquamax titratorsdetermine the water content of the sample by measuring the amount of electrolysiscurrentnecessarytoproducetherequirediodine.Thisisanabsolutetechniquewhichdoesnotrequirecalibrationofthereagents.

  • MSc.Thesis20102011

    Figure11Watercontenttestfacility

    4.1.4 Coolingfacility

    ThiscoolingfacilityisusedtotestthephasestabilityoftheRMblendsatlowtemperatures.Inthecoolingfacility,requiredtemperaturecanbeattainedbyvaryingmixtureofacetoneanddry ice.Samplesare taken in the test tubes,attachedwitha thermometer,andarepartiallyimmersedintotheacetoneanddryicemixtureandallowedtocool.Phasestabilityismeasuredbyvisualinspectionofthesampleoncetherequiredtemperatureisattained.

    Figure12Coolingfacility

    44 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    4.2 QUALITYASSURANCEREPEATABILITY

    4.2.1 RepeatabilitytestforReidVapourPressureequipment

    Under the category of volatility repeatability testswere conducted on vapour pressureequipment to determine repeatability of results as per the standards for Reid VapourPressuremeasurements. Twenty testswere conductedwith pentane. The results are asfollowsintable7:

    Table7Repeatabilitytestresultsofvapourpressureequipment

    45 OptimizationoflowvolumeRenewableMethanolblending

    Samplenumber(container)

    DryVapourPressure

    Equivalent(kPa)1(1) 104.82(1) 104.33(1) 105.84(1) 105.95(1) 1066(1) 106.27(2) 1068(2) 106.29(2) 105.710(2) 105.411(2) 105.312(2) 105.413(2) 105.714(2) 104.815(2) 106.216(3) 105.417(3) 103.918(3) 104.719(3) 105.420(3) 106

    PrecisionacceptabilityrangeaccordingtotheEuropeanstandards is103.9106.3kPaforpentane.Obtained test results as above range from 103.9 106.2 kPa. Thus, it can be

  • MSc.Thesis20102011

    46 OptimizationoflowvolumeRenewableMethanolblending

    concluded that the equipment fulfils the repeatability criteria according to Europeanstandards.

    4.2.2 Repeatabilitytestresultsfordistillationcharacteristicsequipment

    Repeatability tests were conducted on summer gasoline for determination of therepeatabilityofthedistillationcharacteristicsequipment.Theoperatingproceduresoftheequipmentrequiretheoperatortomanuallycontroltheheatinputtothedistillationflasktoensureacertainquantityofdistillateisformedatagivenrate(say1mlinapproximately1minute).This inducesan inherentrepeatabilityerrorofperformingtheexperimentasarateofheatinputprovidedfordifferentsampleswouldnotbeexactlythesame.Repeatabilityresultsareshown intable8. Itcanbeobservedthattherepeatabilityrangefromthetestsdidnotmatchthecriteriafortherepeatabilitygiveninthestandards.Thisismainlyduetothemanualoperationofequipmentasmentionedabove.Therepeatabilityrangemeasuredshallbeusedasabenchmarkforallthecalculations inthisstudyagainsttherequiredspecifications.

    Table8Repeatabilityresultsfordistillationcharacteristics

    Percentagerecovered%vol

    Requiredrangeforrepeatability,oC

    Rangefromtherepeatabilitytests,

    oCIBP 3.30 6.005 2.74 11.6510 2.08 11.6420 2.08 10.1530 1.90 9.1540 1.90 6.3650 1.90 6.2860 1.90 8.1170 1.90 5.4280 1.50 9.0390 2.94 8.7095 1.50 12.87FBP 3.90 10.00

  • MSc.Thesis20102011

    47 OptimizationoflowvolumeRenewableMethanolblending

    4.3 SUMMARY

    ThelabfacilityforRM3blendtestingwasdevelopedatCRIforvolatilityandphasestabilitytests. External lab facility of Fjolver shall be used for testing of RM3 fuel stability andothers.Theequipmentwaspurchasedand setupaccording to instructionmanuals fromthe manufacturer. Experimental procedures were developed based on the Europeanstandards. Quality assurance testswere performed for vapour pressure and distillationcharacteristics test facilities. The vapour pressure equipmentmetwith the repeatabilitycriteria.Thedistillationcharacteristicsequipmentcouldnotmeettherepeatabilitycriteriadue to the nonrepeatability of themanual control of heating. However, the range ofrepeatabilitydataobtainedisusedasabenchmarkfortherepeatabilityresultsinfuture.

  • MSc.Thesis20102011

    5 RM3BLENDTESTINGEXPERIMENTSANDRESULTS

    Toperform theRMblend testing,Olis1suppliedCRIwithsummerandwintergasoline insealedcontainers.SamplesofRM3weremadeusingthisbasegasolineandRMproducedfromCRIspilotscaleRMproductionfacility.

    5.1 RESULTSFORREIDVAPOURPRESSURE(RVP)

    5.1.1 SummerbasegasolineandsummerRM3

    Blendingof3%RM in summerbasegasoline increasedReidVapourPressure from67.13kPato80.93kPa.TheresultsforsummerbasegasolineandsummerRM3forRVPareshownintable9and10.

    Table9RVPresultsforsummerbasegasoline

    S.No Sample RVP inkPa1 Basegasoline 67.002 Basegasoline 67.103 Basegasoline 67.30

    Average 67.13StandardDeviation 0.15

    Table10RVPresultsforsummerRM3

    S.No Sample RVPinkPa

    1 RM3 80.702 RM3 81.403 RM3 80.70

    Average 80.93StandardDeviation 0.40

    1OlisisoneofthelargestimportersofgasolineinIceland.www.olis.is

    48 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Figure13RVPofbasegasoline&RM3(summer)

    5.1.2 WinterbasegasolineandwinterRM3

    Blendingof3%RMinwinterbasegasolineincreasedReidVapourPressurefrom86.57kPato102.10kPa.The results forwinterbasegasolineandwinterRM3 forRVPareshown intable11and12.

    Table11RVPresultsforwinterbasegasoline

    S.No Sample RVPinkPa

    1 Basegasoline 86.602 Basegasoline 86.603 Basegasoline 86.50

    Average 86.57StandardDeviation 0.06

    Table12RVPresultsforwinterRM3

    S.No Sample RVPinkPa

    1 RM3 101.802 RM3 102.103 RM3 102.40

    Average 102.10StandardDeviation 0.30

    49 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Figure14RVPofbasegasoline&RM3(winter)

    5.1.3 DiscussionforVapourPressure

    Vapourpressureof the summerRM3blendwas20%higher than thebase gasoline andexceededthelegalrequirementsof70kPaby10kPa.AsimilarriseinthevapourpressureisobservedinthewinterRM3blendbuttherearenolegalrequirementspresent.Thus,theRM3blend is acceptableduring theperiodsofwinter (9months a yearother than July,AugustandSeptember).

    5.2 RESULTSFORDISTILLATIONCHARACTERISTICSAsdiscussedinprevioussectionsE100andE150ofgasolinefuelareregulatedbyIcelandiclegislation,whileCRIisinterestedintheFinalBoilingPoint.Furtheroveralldistillationcurveof a fuel explains the effect of volatility on the vehicle driveability. Thus, the completedistillationcurvesweredrawnforbothgasolineandtheRM3blendforacomparison.

    5.2.1 Resultsfordistillationcharacteristicsofbasegasoline(summer)

    Themaindistillationcharacteristicsforsummergasolinewerecalculatedandcrosscheckedwiththereferencespecificationsasshownintable13.

    50 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    51 OptimizationoflowvolumeRenewableMethanolblending

    Table13Resultsfordistillationcharacteristicsofgasoline(summer)

    Description E100(in%) E150(in%) FBP(in0C)Sampleno.1 51 87 185Sampleno.2 51 88 184

    Averageof1and2 51 87.50 184.50Referencespecification 46(min.) 75(min.) 210(max.)

    5.2.2 ResultsfordistillationcharacteristicsofRM3(summer)

    Themaindistillation characteristics for summerRM3were calculatedand cross checkedwiththereferencespecificationsasshownintable14.

    Table14ResultsfordistillationcharacteristicsofRM3(summer)

    Description E100(in%) E150(in%) FBP(in0C)Sampleno.1 56.95 89.55 186Sampleno.2 55.95 89.95 183

    Averageof1and2 56.45 89.75 184.50Referencespecification 46(min.) 75(min.) 210(max.)

    5.2.3 DistillationcurveofbasegasolineVsRM3

    TheoveralldistillationcurveofbasegasolineiscomparedwiththatofRM3scurveinfigure15.

  • MSc.Thesis20102011

    Tempe

    rature(C

    )

    Distillate(in%)

    Basegasoline

    RM3

    Figure15DistillationcurveofbasegasolineVsRM3(summer)

    5.2.4 Resultsfordistillationcharacteristicsofbasegasoline(winter)

    Themaindistillationcharacteristicsforwintergasolinewerecalculatedandcrosscheckedwiththereferencespecificationsasshownintable16.

    Table15Resultsfordistillationcharacteristicsofbasegasoline(winter)

    Description E100(in%) E150(in%) FBP(in0C)Sampleno.1 51.88 84.88 186Sampleno.2 51.90 83.90 195

    Averageof1and2 51.89 84.39 190.50Referencespecification 46(min.) 75(min.) 210(max.)

    5.2.5 ResultsfordistillationcharacteristicsofRM3(winter)

    ThemaindistillationcharacteristicsforwinterRM3werecalculatedandcrosscheckedwiththereferencespecificationsasshownintable16:

    52 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Table16ResultsforthedistillationcharacteristicsofRM3(winter)

    Description E100(in%) E150(in%) FBP(in0C)Sampleno.1 53.03 85.03 192.5Sampleno.2 53.06 85.06 193

    Averageof1and2 53.05 85.05 192.75Referencespecification 46(min.) 75(min.) 210(max.)

    5.2.6 DistillationcurveofbasegasolineVsRM3(winter)

    Theoveralldistillationcurveofbasegasoline iscomparedwiththatofRM3scurvebelowinfigure16:

    Tempe

    rature(C

    )

    Distillate(in%)

    BasegasolineRM3

    Figure16DistillationcurveofbasegasolineandRM3(winter)

    5.2.7 Discussionfordistillationcharacteristics

    TheE100andE150valuesofbothsummerandwinterRM3blends increasedfromthatofcorresponding base gasoline. The legislation specifies aminimum requirement on bothE100 and E150. Thus, there shall be no problem in the acceptability of RM3 blends fordistillationcharacteristics.

    5.3 RESULTSFORSTABILITYANDOTHERS

    Theobtainedresultforcopperstripcorrosiontestfollows:

    53 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    54 OptimizationoflowvolumeRenewableMethanolblending

    Table17ResultforcopperstripcorrosionforsummerandwinterSample Result EN228standardsRM3 Class1A Class1(required)

    5.3.1 Resultforexistentgumcontent

    Theobtainedresultforexistentgumcontenttestfollows:

    Table18Resultforexistentgumcontentforsummerandwinter

    Sample Result,mg/100ml EN228standards,mg/100mlRM3

  • MSc.Thesis20102011

    55 OptimizationoflowvolumeRenewableMethanolblending

    5.4 RESULTSFORPHASESTABILITY

    TestswereconductedforsummerandwinterRM3todeterminethephasestabilityoftheblends.Inthistest,samplesofsummerandwinterRM3werepreparedfromtheobtainedgasoline.Testsareconductedintwosteps.

    1. TestforphaseseparationatroomtemperaturewithvaryingwatercontentSamplesweretestedforphasestabilityatroomtemperaturewithincreaseinwatercontentintheblends.ThephaseseparationtestforroomtemperatureistocheckiftheRM3blendphase separateswithadditionof0.2%w/wwater. In thecurrenttestwater isadded insmallquantitiesandthewatercontentoftheRM3blend ismeasuredandcheckforphaseseparationinstagesduetothedifficultyofadditionofwatermanually, it is difficult to control the actual steps of quantity ofwateraddedtotheRM3blend.

    2. Testforphasestabilityat300CSampleswereplacedincoolingfacilitytoreducethetemperatureto300Ctocheckforphaseseparationoftheblends.

    Table20PhaseseparationresultsforsummerRM3atroomtemperature

    Sample Watercontent%(w/w)

    Temperature(0C) Result

    RM3 0.0309 roomtemperature Nophaseseparation 0.0310 roomtemperature Nophaseseparation

    RM3 0.0376 roomtemperature Nophaseseparation 0.0379 roomtemperature Nophaseseparation

    RM3 0.0399 roomtemperature Nophaseseparation 0.0384 roomtemperature Nophaseseparation

    RM3 0.0450 roomtemperature Nophaseseparation 0.0436 roomtemperature Nophaseseparation

    RM3 0.0520 roomtemperature Nophaseseparation 0.0532 roomtemperature Nophaseseparation

    RM3 0.1700 roomtemperature Phaseseparation 0.1640 roomtemperature Phaseseparation

  • MSc.Thesis20102011

    Table21PhaseseparationresultsforsummerRM3at300C

    Sample Watercontent%(w/w) Temperature(0C) ResultRM3 0.0207 30 NophaseseparationRM3 0.0267 30 NophaseseparationRM3 0.0267 30 Nophaseseparation

    Table22PhaseseparationresultsforwinterRM3atroomtemperature

    Sample Watercontent%(w/w)

    Temperature(0C) Result

    RM3 0.0378 roomtemperature Nophaseseparation 0.0346 roomtemperature Nophaseseparation

    RM3 0.0519 roomtemperature Nophaseseparation 0.0543 roomtemperature Nophaseseparation

    RM3 0.0779 roomtemperature phaseseparation 0.0723 roomtemperature phaseseparation

    Table23PhaseseparationresultsforwinterRM3at300C

    56 OptimizationoflowvolumeRenewableMethanolblending

    Sample Watercontent%(w/w)

    Temperature(0C) Result

    RM3 0.0251 30 NophaseseparationRM3 0.0253 30 NophaseseparationRM3 0.0253 30 Nophaseseparation

    Water contentof thenormalRM3blendasmeasuredwas less than0.03.From the testresultsforphasestabilityintheabovetable21andtable23itcanbeseenthattherewasnovisiblephaseseparationofsummerandwinterRM3samplesat 300Cwith thiswatercontent.

    ThesummerRM3didnotphaseseparateatwatercontentof0.053%w/wwaterwhich isdoubletheamountofwaterpresentinsummerRM3assuch.ThewinterRM3alsodidnotphase separate atwater content of 0.054%w/wwaterwhich is double the amount ofwaterpresent inwinterRM3as such.Thephase separationof summerRM3andwinter

  • MSc.Thesis20102011

    57 OptimizationoflowvolumeRenewableMethanolblending

    RM3occurredatwatercontentsof0.167and0.072%(w/w)respectively.Phaseseparationat intermediatewater content levels could not be tested due to the difficulty ofwateraddition.ThisshowsthatatroomtemperatureconditionthewatercontentofRM3blendshouldnotincreasemorethan~0.055%w/wtoensurephasestability.

    5.4.1 DiscussionforPhasestability

    AscanbeseenfromtheobtainedtestresultsobtainedforbothsummerandwinterRM3blends for phase stability that the phase separation does not occur at 300C. At roomtemperaturephasestabilityoftheRM3blendsismaintainedaslongasthewatercontentoftheblendsdoesnotexceed~0.055%w/w.

    5.5 SUMMARYOFRESULTS

    All the results of the experiments alongwith some other calculated properties of bothsummerandwinterRM3arepresentedbelow table24and25.ThesepropertiesofRM3can be comparedwith either the legislative requirements (first column in blue) or thereferencespecifications(firstcolumninblack).Theacceptabilityoftheblendforaspecificpropertyisyes(y)iftheRM3propertymeetsthenecessaryspecificationsorno(n)ifitdoesnot.

  • MSc.Thesis20102011

    58 OptimizationoflowvolumeRenewableMethanolblending

    Table24compilationofresultsforsummerRM3

    Property Units Limits SummerBasegasoline

    SummerRM3

    Acceptability

    Min Max ResearchOctaneNumber 95 95.6 95.6+ YMotorOctaneNumber 85 86.6 86.6+ YReidVapourpressure,summerperiod

    kPa 70 67.6 80.93 N

    Distillation: Percentageevaporatedat100oC %V/V 46 54.7 56.45 YPercentageevaporatedat150oC %V/V 75 89.9 89.75 Y

    Hydrocarbonanalysis Olefins %V/V 18 3.4 3.3 YAromatics %V/V 35 31 30 YBenzene %V/V 1 0.44 0.43 Y

    Oxygencontent %m/m 2.7 2.04 3.48 Y2

    Oxygenates Methanol %V/V 3 3 YEthanol %V/V 5 Yisoprpylalcohol %V/V 10 Ytertbutylalcohol %V/V 7 Yisobutylalcohol %V/V 10 Yethers(C5+) %V/V 15 11.31 10.97 Yotheroxygenates %V/V 10 Y

    Sulphurcontent Mg/kg 10 6.6 6.4 YLeadcontent g/l 0.005

  • MSc.Thesis20102011

    59 OptimizationoflowvolumeRenewableMethanolblending

    Table25ResultsforwinterRM3(EN228specifications)

    Property Units Limits WinterBase

    gasoline

    WinterRM3

    Acceptability

    Min Max ResearchOctaneNumber 95 95.1 95.1+ Y

    MotorOctaneNumber 85 85.2 85.2+ Y

    ReidVapourpressure,winterperiod kPa 86.57 102.1 y

    Distillation:

    Percentageevaporatedat100oC %V/V 46 51.89 53.05 y

    Percentageevaporatedat150oC %V/V 75 84.39 85.05 y

    Hydrocarbonanalysis

    Olefins %V/V 18 11.1 10.8 y

    Aromatics %V/V 35 29.8 28.9 y

    Benzene %V/V 1 0.58 0.56 y

    Oxygencontent %m/m 2.7

  • MSc.Thesis20102011

    60 OptimizationoflowvolumeRenewableMethanolblending

    5.5.1 Otherlegalrequirements

    The legislationspecifiesamaximum requirementoneachofaromatics,olefins,benzene,oxygenates, sulphurand lead.As itcanbe seen fromabove tablebyadditionofRM thevaluesof theseproperties in the finalRM3blenddecrease from thebasegasoline, thussupporting the legalrequirements inallcasesassuming that thebasegasolinemeets thespecifications.

    TheoxygencontentrisesintheRM3blendfromthebasegasolineandasseeninthecaseofsummerRM3blend itwentupto3.48%m/mwhilethemaximumrequirement isonly2.7%m/m. However, the new EU directive 2009/28/EC shall be implemented soon inIcelandwhichwouldmandate themaximum requirement of 3.7%m/m on the oxygencontent.Thus,bothsummerandwinterRM3blendsareacceptableforoxygencontent.

    5.6 SUMMARY

    Base gasoline was obtained from Olis and RM3 blend tests were performed for bothsummer and winter RM3 blends. Test results were analyzed and compared for theacceptability of legislation and other reference specifications. The twomain conclusionsfromthetestsare

    1. WinterRM3blendcomplieswithallthelegislationandreferencespecifications.2. Summer RM3 blend complieswith all but one of the specificationsReid Vapour

    Pressure.

  • MSc.Thesis20102011

    61 OptimizationoflowvolumeRenewableMethanolblending

    6 RM3BLENDOPTIMIZATION

    In the previous chapter from the obtained test results it was found that one of thepropertiesforthesummerRM3blend,ReidvapourPressure,didnotmeetthe legislationspecifications.InthischapterweshallbediscussingthepossibletechnicalsolutionsandthetestresultstoreducetheRM3blendRVPtotherequired legislationspecifications.BasedontheliteraturestudiesthefollowingmethodsarepossibletoobtainanRM3blendwithacontrolledRVP:

    1. Additionofcosolvents2. LowvapourPressurebasegasoline

    6.1 ADDITIONOFCOSOLVENTSFORRVPREDUCTIONSECONDARYRESEARCH

    ThepresenceofmethanolhasadramaticeffectontheRVPofthegasolinetowhich it isadded. However, with addition of higher alcohols the effect of methanol on RVP isdecreasedtoanextentasmethanolwillbeabletobondwiththehigheralcoholsandthusreducingthevapourpressure.Ethanol,propanolsandbutanolsarehigheralcoholsthatcanbeblendedintogasolineaccordingtothecurrentlegislationandthuscanbeutilizedascosolvents.(Bechtold,R.L.,Goodman,M.B.,&Timbario,T.A.(2007))[12]

    Due to the difference in availability of cosolvents in terms of quantity and cost andpossibledifferencesintheeffectsofRVPonRM3blend,itisdecidedtoobtaincosolventsandtesttheRM3blendswithRVP.Thecosolventsselectedforperformingthetestsare:

    1. Ethanol2. 1Propanol3. 2Propanol4. 1Butanol5. Tertiarybutylalcohol

    6.2 RVPTESTSWITHCOSOLVENTSFORSUMMERRM3BLENDRESULTS

    Cosolvents selectedwereobtained in containerandRM3blend sampleswerepreparedwithadditionofthesecosolventswithvaryingvolumes(15%) instepsof1%.Threetestswereperformedforeachofthesampleandtheresultswereaveraged.TheresultsfortheRVPofsummerRM3blendwiththesevariouscosolventswithvaryingvolumesareshowninfigure17,18,19,20,21.

  • MSc.Thesis20102011

    6.2.1 RM3blendwithEthanolascosolvent

    Byadding3%ofRMinbasegasolinetheRVPoftheRM3blendrosefrom67kPato81kPa,while the legislative requirement is70kPa.WhenethanolwasusedasacosolventwithRM3blend, it isobservedthat initially(1%ethanol)therewasminor increase intheRVP,butwithfurtherincreaseinvolumeofethanolinRM3blend,theRVPreduced.

    TheinitialincreasecouldbeattributedtothefactthatethanolitselfingeneralcontributestoRVPingasolineandasethanolconcentrationincreasesthecosolventeffectcanbeseenmoreclearly.ThereductioninRVPfromRM3toRM3+5%ethanolblendisonly3kPa.TheRM3blendwithethanolupto5%ethanolwouldnotbeabletomeetthetargetRVPof70kPa.

    Figure17RVPresultsforRM3blend+(15%)ofethanol

    6.2.2 RM3blendwith1Propanolascosolvent

    When1Propanolwas added to theRMblend initially (1%) itdidnot contribute for thereductionofRVP in theRM3blendbutwith further increase in the concentrationof 1Propanoltherewasavisibledecrease inRVP.3%ofthiscosolventonlycontributedtoadecreaseof4kPa inRVPbringing theRM3blendsRVP from81kPato77kPa.TheRM3blendwith1PropanolattheabovementionedvolumelevelscouldnotreducetheRVPtothetargetRVPof70kPa.

    62 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Figure18RVPresultsforRM3blend+(13%)of1Propanol

    6.2.3 RM3blendwith2Propanolascosolvent

    Adding2PropanoltotheRM3blendshowedthesimilartrendsofdecrease inRVP like1Propanol.3%ofthiscosolventonlycontributedtoadecreaseof3.3kPa inRVPbringingtheRM3blendsRVPfrom81kPato77.7kPa.TheRM3blendwith2PropanolattheabovementionedvolumelevelscouldnotreducetheRVPtothetargetRVPof70kPa.

    Figure19RVPresultsforRM3blend+(13%)of2Propanol

    63 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    6.2.4 RM3blendwith1Butanolascosolvent

    Varying volumes (15%) of 1 butanolwas used as a cosolventwith RM3 blend. Itwasobservedthat initiallyby(1%)ofcosolventreducedtheRVPoftheRMblendbutat(2%)theRVPof theblend increased tosimilarwithRVPofRM3.However,with the increasedconcentration from (35%) therewas a reduction in the RVP to 76 kPa at 5% blending,whichisonly5kPa.1ButanolasacosolventcouldnotreducetotheRVPoftheblendtothetarget70kPa.

    Figure20RVPresultsforRM3blend+(15%)of1Butanol

    6.2.5 RM3blendwithTBAascosolvent

    Finally,TBAwasusedasacosolventwithRM3blend.Itwasobservedinitiallythat(1%)ofcosolvent increased theRVPof theRMblend,butat (23%)concentrationofTBA therewasareductioninRVPoftheblend.However,TBAasacosolventreducedtheRVPoftheRMblendbyonly4 kPa at3%blending. TBA couldnot reduceRVPof theblend to thetarget70kPa.

    64 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    Figure21RVPresultsforRM3blend+(13%)ofTBA

    6.2.6 Discussionandconclusion

    AsseenfromthetestresultsaboveallthefivecosolventstestedwithRM3blendcouldnothelptobringbacktheRVPoftheblendtotarget70kPa.At3%blendingofthecosolventsthereducedRVP levelsareshownbelow.1PropanolandTBAare identifiedtobethecosolventswithbestRVPreductionontheRM3blendwhenblendedat3%.

    Table26ResultsforsummerRM3withcosolvents

    Fuelblend RVPSummerbasegasoline 67.13SummerRM3 80.93SummerRM3+3%Ethanol 79.56SummerRM3+3%1Propanol 76.93SummerRM3+3%2Propanol 77.70SummerRM3+3%1Butanol 79.10SummerRM3+3%TBA 77.00

    Fromtheobtainedtestresultsasshownintable26thatbyaddingcosolventstosummerRM3,ItcouldbeseenthatRVPcouldbereducedbyaddingcosolventsbuttheRVPoftheblendsdidnotreachthespecifiedlegislationrequirements.

    6.3 RVPTESTSWITHCOSOLVENTSFORWINTERRM3BLENDRESULTS

    RVP testswere conducted onwinter RM3 blendswith cosolvents similarly to the testsconductedintheprevioussectionforthesummergasolineasshownintable27.RVPofthe

    65 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    66 OptimizationoflowvolumeRenewableMethanolblending

    obtainedwinterbasegasolineis86.57kPaandbyadding3%ofRM,RVPoftheRM3blendreached to102.1kPa.Even though there isno legislation specification forRVPofwinterRM3blend, the testswere conducted for referencepurposes. TheobtainedRVP resultsusing thecosolvents followedasimilarpattern to thatofsummerRM3blend results.1Propanolwas found to bemuchmore effective than the other cosolvents at 3% blendlevels.

    Table27ResultsfortheRM3blendswithcosolventsforwintergasoline

    Cosolvent Ethanol 1Propanol 2Propanol 1Butanol TBA1% 103.73 103.55 103.27 101.80 103.932% 101.83 101.57 102.50 99.73 102.573% 100.00 97.03 101.37 98.07 101.00

    6.4 LOWVAPOURPRESSUREBASEGASOLINESECONDARYRESEARCH

    TheRVPofthegasolinewhichwassuppliedandtestedatCRI is67kPaandthusthefinalRM3blendsRVPwastestedtobe81kPa.IncasewherethebasegasolinehasmuchlowervapourpressuretheRM3blendcouldpossiblybemeetingtheRVPrequirementof70kPa.

    INTROMETprogramdevelopedvariousmethanolandmethanolethanolblendstomeetthesummervapourpressurerequirements. It isobserved from INTROMETsdatathatabasegasolineofRVP59kPawouldensurethatthesummerRM3blendsRVPislessthan70kPa.Similar data was observed for a 3% methanol 3% ethanol blend. (Boding, Henrik.(2010))[17].

  • MSc.Thesis20102011

    Table28INTROMETsdataonRVP(inkPa)ofbasegasolineandfinalblends

    Thetable28istakenfromtheobtainedtestresultsfromINTROMETprogram(Boding,Henrik.(2010))[17].

    AccordingtotheEuropeanUnionstandards,inthetropicalclimatepartofEuropeanUnionthemember states should sell the gasolinewith amaximum RVP of 60 kPa in summerperiod.ThisgasolinewhenblendedwithRMat3% couldmeet theRVP requirements inIceland. Since this gasoline iswidely available in themarket. This low vapour pressuregasoline iscurrentlynotavailabletoperformtheRVPtests.However, it isrecommendedthatCRIshouldperformtheseteststoconfirmthesecondaryresearchdata.

    CRIcould look intotheoptionofobtainingthis lowervapourpressuregasolineas itsbasegasolineduringsummerperiodsandsolvingtheproblemofsummerRM3blendsRVP.

    6.5 SUMMARY

    TwooptionswereidentifiedtopossiblyreducetheRVPoftheRM3blendtothetargetlevelof 70 kPa. First, RM3 blendwas testedwith five cosolvents (higher alcohols) for RVPreduction.At3%blendinglevelofcosolvents1PropanolandTBAwerefoundtobehavingthebest reductioneffecton theRM3blend.However, this reduction isnot sufficient toreach the targetRVP. Second, low vapourpressurebase gasoline couldbeobtained forRM3blendtoreachtheRVPtargetandthisunderstanding isconfirmedbythesecondaryresearchdataobtainedfromtheINTROMETprogram.

    67 OptimizationoflowvolumeRenewableMethanolblending

  • MSc.Thesis20102011

    68 OptimizationoflowvolumeRenewableMethanolblending

    7 RM3 BLEND EFFECTS ON ENGINE PERFORMANCE ANDEMISSIONS

    The blend testing results for RM3 concluded that winter RM3 meets the legislationspecificationsforgasolinefuelwhilesummergasolinecouldbeoptimizedfortherequiredspecification.FurtheritisimportanttoalsostudytheeffectsofRM3onvehiclestoensurethecompletenessofRM3acceptability.

    Historicallymethanolhasbeenused as a transportation fuel for various advantages likeincre