Methane Cost Curve Report

download Methane Cost Curve Report

of 115

Transcript of Methane Cost Curve Report

  • 8/12/2019 Methane Cost Curve Report

    1/115

    EconomicAnalysisof

    MethaneEmission

    ReductionOpportunities

    inthe

    U.S.

    Onshore

    Oil

    andNaturalGas

    Industries

    March2014

    Preparedfor

    EnvironmentalDefenseFund

    257ParkAvenueSouth

    NewYork,NY10010Preparedby

    ICFInternational

    9300LeeHighway

    Fairfax,VA22031

  • 8/12/2019 Methane Cost Curve Report

    2/115

    blankpage

  • 8/12/2019 Methane Cost Curve Report

    3/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ICFInternational iii March2014

    Contents

    1. ExecutiveSummary....................................................................................................................11

    2.

    Introduction...............................................................................................................................

    21

    2.1. GoalsandApproachoftheStudy.............................................................................................. 21

    2.2. OverviewofGasSectorMethaneEmissions............................................................................. 22

    2.3. ClimateChangeForcingEffectsofMethane............................................................................. 25

    2.4. CostEffectivenessofEmissionReductions............................................................................... 26

    3. ApproachandMethodology.......................................................................................................31

    3.1. OverviewofMethodology......................................................................................................... 31

    3.2. Developmentofthe2011EmissionsBaseline........................................................................... 32

    3.3. Projectionto2018..................................................................................................................... 34

    3.4. IdentificationofTargetedEmissionSources............................................................................. 36

    3.5. SelectedMitigationTechnologies............................................................................................. 39

    3.6.

    SourceCategories

    Not

    Addressed

    ...........................................................................................

    323

    4. AnalyticalResults.......................................................................................................................41

    4.1. DevelopmentofEmissionControlCostCurves......................................................................... 41

    4.2. EmissionReductionCostCurves................................................................................................ 42

    4.3. CoBenefits.............................................................................................................................. 411

    5. CaseStudies...............................................................................................................................51

    5.1. WetSealCompressorDegassingforCentrifugalCompressors................................................. 51

    5.2. DrySealReplacement/Retrofit.................................................................................................. 52

    5.3. WetSealDegassingCaptureSystems........................................................................................ 52

    5.3.1. EconomicAnalysisofInstallingWetSealDegassingCaptureSystems........................ 53

    5.4.

    Liquids

    Unloading

    ......................................................................................................................

    5

    6

    5.4.1. Background................................................................................................................... 56

    5.4.2. PlungerLifts.................................................................................................................. 57

    5.4.3. AdditionalOptionsforRemovingorRemediatingLiquidsProblems........................... 59

    5.4.4. LiquidsIssuesinHorizontalWells............................................................................... 512

    6. Conclusions................................................................................................................................61

    AppendixA.AdditionalSensitivities..................................................................................................A1

    AppendixB.Developmentofthe2011EmissionsBaseline................................................................B1

    AppendixC.EmissionProjectionto2018..........................................................................................C1

    AppendixD.MethaneMitigationTechnologies.................................................................................D1

    Figures

    Figure11 MarginalAbatementCostCurveforMethaneReductionsbySource................................... 12

    Figure21 NaturalGasIndustryProcessesandExampleMethaneEmissionSources............................ 23

    Figure31EmissionProjectionto2018(IncludingOffshore).............................................................. 35

    Figure32 DistributionofEmissionsin2018........................................................................................... 35

  • 8/12/2019 Methane Cost Curve Report

    4/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ICFInternational iv March2014

    Figure33 EIAOilandGasRegions.......................................................................................................... 36

    Figure34 2018ProjectedOnshoreEmissions........................................................................................ 38

    Figure35 ReciprocatingCompressorRodPacking............................................................................... 313

    Figure36 WetSealCompressorSchematic.......................................................................................... 315

    Figure37

    PlungerLift

    Schematic

    ..........................................................................................................

    317

    Figure41 ExampleMACCurve............................................................................................................... 42

    Figure42NationalAggregateMACCurveforBaselineTechnologyAssumptions................................ 43

    Figure43 DistributionofEmissionReductionPotential......................................................................... 45

    Figure44 EmissionReductionbyIndustrySegment.............................................................................. 46

    Figure45EmissionReductionsfortheGasProductionSegment......................................................... 47

    Figure46 EmissionReductionsfortheOilProductionSegment............................................................ 48

    Figure47 EmissionReductionsfortheGatheringandBoostingSegment............................................. 49

    Figure48 EmissionsReductionsfortheGasTransmissionSegment..................................................... 49

    Figure49 NationalAggregateMACCurvewithBaselineTechnologyAssumptionand

    EconomyWideValueRecognition......................................................................................... 410

    Figure410 NationalAggregateMACCurvebyRegion......................................................................... 411

    Figure411CoBenefitReductionsofVOCsandHAPs......................................................................... 412

    Figure412 VOCReductionCoBenefits................................................................................................ 412

    Figure413 HazardousAirPollutantCoBenefits.................................................................................. 413

    Figure51 DrySealsonaCentrifugalCompressor.................................................................................. 52

    Figure52Wetsealdegassingrecoverysystemforcentrifugalcompressors(SourceU.S.

    EPA).......................................................................................................................................... 53

    Figure53 PlungerLiftSchematic............................................................................................................ 57

    Figure54 InstallationofVelocityTubingServingtoReductiontheCrossSectionAreaof

    theProductionTubing............................................................................................................ 511

    Figure55 DifferentTypesofHorizontalWells...................................................................................... 513

    Tables

    Table31 Summaryof2011MethaneEmissionsBaseline...................................................................... 33

    Table32 HighestEmittingOnshoreMethaneSourceCategoriesin2018............................................. 37

    Table33 LDARHourlyCostCalculation................................................................................................ 310

    Table34CostCalculationQuarterlyLDAR........................................................................................ 312

    Table35 AssumptionsforRodPackingReplacement.......................................................................... 314

    Table36 SummaryofMitigationMeasuresApplied............................................................................ 321

    Table37 SummaryofMitigationMeasureCharacteristics.................................................................. 322

    Table41AnnualizedCostandReductionandInitialCapitalCost......................................................... 44

    Table42 InitialCapitalCostbyIndustrySegment.................................................................................. 47

    Table51 DegassingRecoverySystemEstimatedInstallationandEquipmentCosts............................. 54

    Table52 WetSealDegassingRecoverySystemCostsandSavingsforOneCompressor...................... 56

    Table53 WetSealDegassingRecoverySystemCostsandSavingsforFourCompressors

    ataStation............................................................................................................................... 56

    Table54 ReportedCapitalandOperatingCostRangesforInstallingPlungerLift

    Systems.................................................................................................................................... 59

  • 8/12/2019 Methane Cost Curve Report

    5/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ICFInternational v March2014

    Acknowledgement

    ICFreceivedandconsidereddataandcommentaryfromnumerousstakeholderorganizations,

    includingoilandgasproducers,pipelines,equipmentvendors,serviceproviders,andatrade

    organization. Noinformationinthisreportshouldbeattributedtoanysingleorganization,asall

    dataisaggregatedfrommultiplesourcesandoftenusesaveragevalues. Furthermore,

    acknowledgementofindustryparticipationdoesnotimplytheiragreementwiththestudy

    conclusions,whichreflecttheprofessionaljudgmentofICF.

    We

    thank

    all

    of

    the

    stakeholder

    organizations

    for

    providing

    input

    to

    this

    study,

    and

    specifically

    acknowledgethefollowingentities:AnadarkoPetroleum,BGGroup,PioneerNaturalResources,

    SouthwesternEnergy,andtheAmericanGasAssociation.

  • 8/12/2019 Methane Cost Curve Report

    6/115

  • 8/12/2019 Methane Cost Curve Report

    7/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ICFInternational vii March2014

    Acronym/Abbreviation StandsFor

    MMTCO2e MillionMetricTonnesCO2equivalent

    NESHAP NationalEmissionStandardsforHazardousAirPollutants

    NPV

    NetPresent Value

    NSPS NewSourcePerformanceStandards promulgatedundertheFederalCleanAirAct

    OpEx OperatingExpenditures

    PRO PartnerReportedOpportunity

    psig PoundsperSquareInch Gauge

    RECs ReducedEmissionCompletions

    scf StandardCubicFeet

    scfd StandardCubicFeetperDay

    scfh

    StandardCubic

    Feet

    per

    Hour

    scfm StandardCubicFeetperMinute

    TEG TriethyleneGlycol

    TSD TechnicalSupportDocument

    USD U.S.Dollars

    VOC VolatileOrganicCompound

    VRU VaporRecoveryUnit

  • 8/12/2019 Methane Cost Curve Report

    8/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ExecutiveSummary

    ICFInternational 11 March2014

    1.ExecutiveSummaryMethaneisanimportantclimatechangeforcinggreenhousegas(GHG)withashorttermimpactmany

    timesgreater

    than

    carbon

    dioxide.

    Methane

    comprised

    9%

    of

    U.S.

    greenhouse

    gas

    (GHG)

    emissions

    in

    2011accordingtotheU.S.EPAInventoryofUSGreenhouseGasEmissionandSinks:199020111,and

    wouldcompriseasubstantiallyhigherportionbasedonashortertimescalemeasurement.Recent

    researchalsosuggeststhatmitigationofshorttermclimateforcerssuchasmethaneisacritical

    componentofacomprehensiveresponsetoclimatechange2.Emissionsfromtheoilandgasindustryare

    amongthelargestanthropogenicsourcesofU.S.methaneemissions.Atthesametime,therearemany

    waystoreduceemissionsoffugitiveandventedmethanefromtheoilandgasindustryand,becauseof

    thevalueofthegasthatisconserved,someofthesemeasuresactuallysavemoneyorhavelimitednet

    cost.

    EnvironmentalDefense

    Fund

    (EDF)

    commissioned

    this

    economic

    analysis

    of

    methane

    emission

    reduction

    opportunitiesfromtheoilandnaturalgasindustriestoidentifythemostcosteffectiveapproachesto

    reducethesemethaneemissions.Thestudyprojectstheestimatedgrowthofmethaneemissionsfrom

    theseindustriesthrough2018asafuturedateatwhichnewemissionreductiontechnologiescouldbe

    installed.Itthenidentifiesthelargestemittingsegmentsandestimatesthemagnitudeandcostof

    potentialreductionsachievablethroughcurrentlyavailabletechnologies.Thekeyconclusionsofthe

    studyinclude:

    EmissionGrowth Methaneemissionsfromoilandgasactivitiesareprojectedtogrow4.5%from2011to2018includingreductionsfromEPAregulationsadoptedin2012(knownasNewSource

    PerformanceStandards

    (NSPS)

    Subpart

    OOOO).

    All

    of

    the

    projected

    net

    growth

    is

    from

    the

    oil

    sector,largelyfromflaringandventingofassociatedgas.Growthfromnewnaturalgassourcesis

    offsetbytheNSPSandothercontinuingemissionreductionactivities.Nearly90%oftheemissions

    in2018comefromexistingsources(sourcesinexistencein2011).

    80/20RuleforSources 22oftheover100emissionsourcecategoriesaccountforover80%ofthe2018emissions,primarilyatexistingfacilities.

    AbatementMagnitudeandEconomics A40%percentreductioninonshoremethaneemissionsisprojectedtobeachievablewithexistingtechnologiesandtechniquesatanettotalcostof

    $0.66/Mcfofmethanereduced,orlessthan$0.01/Mcfofgasproduced,takingintoaccountsavings

    that

    accrue

    directly

    to

    companies

    implementing

    methane

    reduction

    measures

    (Figure

    1

    1).

    If

    the

    full

    economicvalueofrecoverednaturalgasistakenintoaccount,includingsavingsthatdonotdirectly

    accruetocompaniesimplementingmethanereductionmeasures,the40%reductionisachievable

    1Calculatedata100yearGWPof21seeSection2.3.

    2Shoemaker,J.et.al.,WhatRoleforShortLivedClimatePollutantsinMitigationPolicy?.ScienceVol34213December2013

  • 8/12/2019 Methane Cost Curve Report

    9/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGasIndustries

    ExecutiveSummary

    ICFInternational 12 March2014

    whilesavingtheU.S.economyandconsumersover$100millionperyear. Thecostforsome

    measuresandsegmentsoftheindustryismoreorlessthanthenettotal.Theinitialcapitalcostof

    themeasuresisestimatedtobeapproximately$2.2billionwiththemajorityofthecostsintheoil

    andgasproductionsegments.

    Figure11MarginalAbatementCostCurveforMethaneReductionsbySource

    AbatementOpportunitiesByvolume,thelargestopportunitiestargetleakdetectionandrepairoffugitiveemissions(leaks)atfacilitiesandgascompressors,reducedventingofassociatedgas,and

    replacementofhighemittingpneumaticdevices.

    CoBenefitsReducingmethaneemissionswillalsoreduce atnoextracost conventionalpollutantsthatcanharmpublichealthandtheenvironment.Themethanereductionsprojected

    herewouldalsoresultina44%reductioninvolatileorganiccompounds(VOCs)andhazardousair

    pollutants(HAPs)associatedwithmethaneemissionsfromtheoilandgasindustry.

    Thereareseveralcaveatstotheresults:

    The2011EPAinventoryisthebeststartingpointforanalysis,butitisbasedonmanyassumptionsandsomeolderdatasources.Althoughtheinventoryisimprovingwithnewdata,itisdesignedto

    beaplanningandreportingdocumentandisimperfect,especiallyatthedetailedlevel,fora

    granularanalysisofthistype.

    Emissionmitigationcostandperformancearehighlysitespecificandvariable.Thevaluesusedhereareestimatedaveragevalues.

  • 8/12/2019 Methane Cost Curve Report

    10/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ExecutiveSummary

    ICFInternational 13 March2014

    Theanalysispresentsareasonableestimateofpotentialcostandmagnitudeofreductionswithinarangeofuncertainty.

  • 8/12/2019 Methane Cost Curve Report

    11/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 21 March2014

    2.IntroductionMethaneemissionshaveanenhancedeffectonclimatechangebecausemethanehasaclimateforcing

    effect25

    times

    greater

    on

    a100

    year

    basis

    than

    that

    of

    carbon

    dioxide,

    the

    primary

    greenhouse

    gas

    (GHG).Methanesimpactisalmostthreetimesgreaterona20yearbasisandthereisresearchthatmay

    causebothfactorstobeincreased.(SeeSection2.3) Recentresearchalsosuggeststhatmitigationof

    shorttermclimateforcerssuchasmethaneisacriticalcomponentofacomprehensiveresponseto

    climatechange.

    EmissionsfromtheoilandgasindustriesareamongthelargestanthropogenicsourcesofU.S.methane

    emissionsaccordingtotheU.S.EPAInventoryofU.S.GreenhouseGasEmissions3,andrecentanalyses

    indicatethattheEPAinventoryestimatesmayunderstatetotalmethaneemissionsfromthissource

    category4.Atthesametime,therearemanywaystoreduceemissionsoffugitiveandventedmethane

    fromthe

    oil

    and

    gas

    industries

    and,

    because

    of

    the

    value

    of

    the

    gas

    that

    is

    conserved,

    some

    of

    these

    measuresactuallysavemoneyorhavelimitednetcost.

    Companiesintheoilandgasindustrieshavemadesignificantvoluntaryreductionsinmethane

    emissions.However,voluntaryadoptionofcontroltechniquesisuneven. TheU.S.hasestablished

    emissionregulationsforconventionalpollutants(NSPSSubpartOOOOandoilandgasNESHAPS)that

    willhavetheeffectofsignificantlyreducingmethaneemissionsfromcertainnewsourcesinsome

    segmentsofthegasindustry.Somestatesalsohaveproposedorestablishedregulationsthatlimit

    methaneemissionsfromtheoilandgasindustry.However,theseregulationsgenerallydonotapplyto

    emissionsfromtheexistinginfrastructure,sothereisalargepopulationofuncontrolledsources.

    Overall,methane

    emissions

    are

    significant

    and

    there

    is

    asizeable

    potential

    for

    additional

    cost

    effective

    reductionopportunities.

    2.1. GoalsandApproachoftheStudyEnvironmentalDefenseFund(EDF)commissionedthiseconomicanalysisofmethaneemissionreduction

    opportunitiesfromtheoilandnaturalgasindustry.ThisICFanalysisissolutionsorientedand

    complementsEDFsongoingworkonmethaneemissionsintheoilandnaturalgassectors.The

    approachtothestudywasto:

    Defineabaselineofmethaneemissionsfromtheoilandgassectors.Thebaselinewasestablishedfor2018asaconservativeestimateofapointwhennewmitigationtechnologiescouldhavebeen

    installed.

    3U.S.EPA,InventoryofU.S.GreenhouseGasEmissionsAndSinks:19902011.April2013.

    http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.htmlBasedona100yearGWPof21seeSection2.34Brandt,A.et.al.,MethaneLeaksfromNorthAmericanNaturalGasSystems.ScienceVOL34314February2014

  • 8/12/2019 Methane Cost Curve Report

    12/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 22 March2014

    Reviewexistingliteratureandconductfurtheranalysistoidentifythelargestreductionopportunitiesandvalidateandrefinecostbenefitestimatesofmitigationtechnologies.

    Conductinterviewswithindustry,technologyinnovators,andequipmentvendorswithaspecificfocustoidentifyadditionalmitigationoptions.

    Usethisinformationtodevelopmarginalabatementcost(MAC)curvesformethanereductionsintheseindustries.

    Documentandpresenttheresults.Thefinaloutputsofthestudyinclude:

    Theprojected2018emissionsbaseline.(Chapter3andAppendixC) Inventoryofmethanemitigationtechnologies.(Chapters3and6andAppendixD) Emissionsabatementcostcurvesacrossarangeofscenarios(Chapter4andAppendixA) Indepthcasestudiesoftwospecificmethanemitigationoptions.(Chapter5) Conclusions(Chapter6)

    2.2. OverviewofGasSectorMethaneEmissionsTherearemanysourcesofmethaneemissionsacrosstheentireoilandgassupplychain.These

    emissionsarecharacterizedaseither:

    Fugitiveemissions

    methane

    that

    leaks

    unintentionally

    from

    equipment

    such

    as

    from

    flanges,

    valves,orotherequipment.

    Ventedemissionsmethanethatisreleasedduetoequipmentdesignoroperationalprocedures,suchasfrompneumaticdevicebleeds,blowdowns,incompletecombustion,orequipmentventing.

    Althoughleaksissometimesusedtorefertoallmethaneemissionsfromtheoilandgasindustry,we

    usethemorenarrowtechnicaldefinitionsinthisreport.

    Figure21illustratesthemajorsegmentsofthenaturalgasindustryandexamplesoftheprimary

    sourcesofmethaneemissionsasgasisproduced,processed,anddeliveredtoconsumers.Naturalgasis

    producedalongwithoilinmostoilwells(asassociatedgas)andalsoingaswellsthatdonotproduce

    oil(asnonassociatedgas).Upuntilthepastfewyears,mostoftheU.S.naturalgassupplycamefrom

    theGulfofMexicoandfromwesternandsouthwesternstates.Morerecently,midcontinentaland

    northeasternshaleplayshavebeenagrowingsourceofoilandgassupply.

  • 8/12/2019 Methane Cost Curve Report

    13/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGasIndustries

    Introduction

    ICFInternational 23 March2014

    Figure21 NaturalGasIndustryProcessesandExampleMethaneEmissionSources

    Sources:AmericanGasAssociation;EPANaturalGasSTARProgram

    Rawgas(includingmethane)isventedatvariouspointsduringtheproductionprocess.Gascanbe

    ventedwhenthewelliscompletedattheinitialphaseofproduction.Further,becausegaswellsare

    ofteninremotelocationswithoutelectricity,thegaspressureisusedtocontrolandpoweravarietyof

    controldevicesandonsiteequipment,suchaspumps.Thesepneumaticdevicestypicallyreleaseor

    bleedsmallamountsofgasduringtheiroperation.Inbothoilandgasproduction,waterand

    hydrocarbonliquidsareseparatedfromtheproductstreamatthewellhead. Theliquidsreleasegas,

    whichmaybeventedfromtanksunlessitiscaptured.Waterisremovedfromgasstreambyglycol

    dehydrators,whichventtheremovedmoistureandsomegastotheatmosphere.Insomecases,thegas

    releasedbytheseprocessesandequipmentmaybeflaredratherthanvented,tomaintainsafetyandto

    relieveoverpressuringwithindifferentpartsofthegasextractionanddeliverysystem.Flaringproduces

    CO2,asignificantbutlesspotentGHGthanmethane,butnoflareis100%efficient,andsomemethaneis

    emittedduringflaring.Inadditiontothevarioussourcesofventedemissions,themanycomponents

    andcomplexnetworkofsmallgatheringlineshavethepotentialforfugitiveemissions.

    Althoughsomegasispureenoughtobeusedasis,mostgasisfirsttransportedbypipelinefromthe

    wellheadtoagasprocessingplant.Thegatheringsystemhaspneumaticdevicesandcompressorsthat

    ventgasaswellaspotentialfugitiveemissions.Gasprocessingplantsremoveadditionalhydrocarbon

    liquidssuchasethaneandbutaneaswellasgaseousimpuritiesfromtherawgas,includingCO2,inorder

    forthegastobepipelinequalityandreadytobecompressedandtransported.Suchplantsareanother

    sourceoffugitiveandventedemissions.

  • 8/12/2019 Methane Cost Curve Report

    14/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 24 March2014

    Fromthegasprocessingplant,naturalgasistransported,generallyoverlongdistancesbyinterstate

    pipelinetothecitygatehubandthentoconsumers.Thevastmajorityofthecompressorsthat

    pressurizethepipelinetomovethegasarefueledbynaturalgas,althoughasmallshareispoweredby

    electricity.Compressors

    emit

    CO2

    and

    methane

    emissions

    during

    fuel

    combustion

    and

    are

    also

    asource

    offugitiveandventedmethaneemissionsthroughleaksincompressorseals,valves,andconnections

    andthroughventingthatoccursduringoperationsandmaintenance. Compressorstationsconstitute

    theprimarysourceofventedmethaneemissionsinnaturalgastransmission.

    Somepowerplantsandlargeindustrialfacilitiesreceivegasdirectlyfromtransmissionpipelines,while

    othersaswellasresidentialandcommercialconsumershavegasdeliveredthroughsmallerdistribution

    pipelinesoperatedbylocalgasdistributioncompanies(LDCs).Distributionlinesdonottypicallyrequire

    gascompression;however,somemethaneemissionsdooccurduetoleakagefromolderdistribution

    linesandvalves,connections,andmeteringequipment.Thisisespeciallytrueforoldersystemsthat

    havecast

    iron

    distribution

    mains.

    Manyoftheemissionsourcesfromdomesticoilproductionaresimilartothoseingasproduction

    completionemissions,pneumaticdevices,processingequipmentandengine/compressors.Crudeoil

    containsnaturalgasandthegasisseparatedfromtheoilstreamatthewellheadandcanbecaptured

    forsale,vented,orflared.Ventingorflaringismostcommoninregionsthatdonothavegasgathering

    infrastructure.ThisisthecasecurrentlyinNorthDakota,whererapidgrowthinoilproductionhastaken

    placeinaregionwithlittlegasgatheringinfrastructure.Whilenewgatheringlinesarebeingbuilt,

    productionisstillaheadofthegatheringcapacity,resultingincontinuedflaring.

    Oil

    is

    taken

    from

    the

    wellhead

    in

    electric

    powered

    pipelines

    and

    more

    recently

    by

    rail,

    to

    refineries

    for

    processing.Petroleumproductsarethentakentoconsumersbypipeline,truck,rail,orbarge.The

    downstreammethaneemissionsinthepetroleumsectoraremuchsmallerthaninthegassectoras

    mostofthemethanehasbeenremovedfromtheoilbythispoint.

    Forthelast100years,domesticoilproductionhasbeenprimarilyintheSouthwest(Texas,Arkansas,

    Oklahoma),theGulfofMexico,California,andAlaska. Domesticgasproductionhasbeenmostlyinthe

    Southwest,GulfofMexico,andtheRockies. Morerecently,thefocusofnewnaturalgasandoil

    developmenthasbeenintheextractionofgasfromshaleformations. Shaleisasedimentaryrock

    composedofcompactedmud,clayandorganicmatter. Overtime,theorganicmaterialcanproduce

    naturalgasand/orpetroleum,whichcanslowlymigrateintoformationswhereitcanberecoveredfrom

    conventionaloilandgaswells.Theshalerockitselfisnotsufficientlypermeabletoallowthegastobe

    economicallyrecoveredthroughconventionalwells;thatis,gaswillnotflowsufficientlyfreelythrough

    theshaletoawellforproduction.

    Gasandoilfromshaleformationsisrecoveredbyhydraulicallyfracturingtheshalerocktoreleasethe

    hydrocarbons. Thisinvolvespumpingwaterandadditivesathighpressureintothewelltofracture

    theshale,creatingsmallcracksthatallowthegasand/oroiltoflowout. Whenthewaterflowsback

  • 8/12/2019 Methane Cost Curve Report

    15/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 25 March2014

    outofthewell,methaneisentrainedandmaybevented. Duetothehighglobalwarmingpotentialof

    methane,thiscanbealargesourceofGHGs. Forthesereasons,theincreasedproductionofshalegasis

    apotentialsourceofincreasedGHGemissions.

    Federalregulationspromulgatedin2012requirethemajorityofnewhydraulicallyfracturedgaswellsto

    captureorflaretheflowbackgas.Theseregulationsandotherfederalandstateregulationsalsorequire

    controlofothermethaneemittingprocesses,thoughmanyapplyonlytonewsourcesandtothose

    wellsthatprimarilyproducenaturalgasratherthanwellsthatprimarilyproduceoil,sothereremainsa

    largepopulationofexistinguncontrolledsources.

    Significantamountsofbothoilandgasareproducedfromoffshorefacilities.Whilethesefacilities

    reportsignificantmethaneemissions,thereportsdonothavethedetailandspecificityoftherestofthe

    methaneinventoryandthereforecannotbeincludedinthesamemethodologyappliedtotherestof

    theinventory

    for

    this

    analysis.

    Therefore,

    this

    study

    focuses

    only

    on

    onshore

    oil

    and

    gas

    industry

    operations.Additionalstudyofoffshoreemissionsandreductionopportunitieswouldbeauseful

    followuptothisanalysis.

    2.3. ClimateChangeForcingEffectsofMethaneDifferentgreenhousegasespersistintheatmospherefordifferentlengthsoftimeandhavedifferent

    warmingeffects,andthushavedifferenteffectsonclimatechange. Inordertocomparethem,the

    scientificcommunityusesafactorcalledtheglobalwarmingpotential(GWP),whichrelateseachGHGs

    effecttothatofCO2,whichisassignedaGWPof1.Thescienceandpolicycommunitieshavehistorically

    lookedto

    the

    Intergovernmental

    Panel

    on

    Climate

    Change

    (IPCC)

    assessment

    reports

    as

    the

    authoritativebasisforGWPvalues.ThecurrentlyacceptedvaluesarefromtheIPCCFourthAssessment

    report5(AR4).

    CO2emissionsdeterminetheamountofclimatechangeoverthelongterm,duetotheirlonglifetimein

    theatmosphere. BecausestabilizingclimatewillrequiredeepcutsinCO2emissions,GWPvaluesare

    mostcommonlyexpressedona100yeartimehorizon.Ona100yearbasis,methaneisassignedaGWP

    of25bytheAR4.Thismeansthatonetonofmethanehasthesameeffectas25tonsofCO2over100

    years.The100yearGWPisthestandardvalueusedbytheEPAandotherfederal,state,and

    internationalagenciestomeasureGHGemissions.(OneexceptionistheEPAGHGinventory,whichuses

    a

    100

    GWP

    of

    21,

    as

    specified

    by

    the

    United

    Nations

    Framework

    Convention

    on

    Climate

    Change

    (UNFCC)

    inventoryprotocol.)

    5IPCC.ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportof

    theIntergovernmentalPanelonClimateChange.(CambridgeUniversityPressandNewYork,NY,Cambridge,UnitedKingdom,

    2007).

  • 8/12/2019 Methane Cost Curve Report

    16/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 26 March2014

    SomeGHGs,includingmethane,haveastrongerclimateforcingeffectthanCO2butashorterlifetimein

    theatmosphere(12yearsformethane).Inordertoevaluatetheshorttermeffects,theGWPisalso

    calculatedona20yearbasis.Ona20yearbasis,theAR4assignsmethaneaGWPof72.TheIPCCis

    currentlypreparing

    aFifth

    Assessment

    Report

    (AR

    5)6.

    The

    first

    phase

    of

    that

    work

    has

    adopted

    higher

    GWPvaluesduetoupdateddataonmethanesroleintheatmosphere.TheAR5valuesarea100year

    GWPof28anda20yearGWPof84formethane.Insummary:

    TheEPAGHGinventoryusesa100yearGWPof21. Mostotherregulationsandinventories(includingtheEPAGreenhouseGasReportingruleasof

    2013)usetheAR4100yearGWPof25.TheAR420yearGWPis72.

    TheGWPsbeingputforthintheAR5are28for100yearsand84for20years. ThisreportusestheAR4100yearGWPof25exceptwhereotherwisenoted.

    2.4. CostEffectivenessofEmissionReductionsItiscommonindiscussingemissionreductionstodescribecosteffectiveemissionreductions.

    However,therearethreedifferentconceptsofcosteffectivenessthatmustbeunderstoodand

    differentiated.

    Thefirstconceptiscosteffectivenessforthecompanyimplementingthemeasure.Inthiscase,cost

    effectivemeansthatthevalueofgasthatisrecoveredthroughamethanereductionmeasureexceeds

    theincrementalcapitalandoperatingcostofthemeasuresufficientlytocreateapaybackorrateof

    returnthat

    meets

    the

    companys

    investment

    criteria.

    Measures

    that

    meet

    these

    criteria

    might

    be

    describedashavingapositivenetpresentvalue(NPV),ashortpaybackperiod,oraninternalrateof

    returnthatmeetsacertainthreshold.

    Inorderforameasuretomeetthiscosteffectivenesscriterion,themeasuremustrecoverthemethane

    emissionsandbeabletorecovertheirmonetaryvalue.Flaringofmethaneemissionsdoesnotmeetthis

    criterion,forexample.Inaddition,thecompanymustbeabletomonetizethevalueoftherecovered

    methane.Forexample,ifaproducerreducesmethanelosses,itwillhavemoregastosellandwill

    receiveaneconomicbenefit.

    Thesecondconceptiscosteffectivenessattheeconomywidescale.Insegmentsinwhichthecompany

    ownsthegas,suchasoilandgasproduction,thecompanycanclearlymonetizethevalueofreduced

    gaslosses.Thisisalsotrueinsomeothersectors.Mostmidstreamcompanies(gathering,processing,

    6IPCC.ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFifthAssessmentReportof

    theIntergovernmentalPanelonClimateChange.(CambridgeUniversityPressandNewYork,NY,Cambridge,UnitedKingdom,

    2013).

  • 8/12/2019 Methane Cost Curve Report

    17/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 27 March2014

    storage)arepaidafixedfeeforgaslostandconsumedduringtheiroperations.Iftheycanreducetheir

    lossesthentheywillbenefitdirectlyfromthereducedlosses.

    Althoughtransmission

    and

    local

    distribution

    companies

    typically

    have

    asimilar

    cost

    structure,

    they

    are

    usuallyrequiredbyregulatorstoreturnthevalueofreducedlossestotheircustomers,sotheycannot

    recoverthebenefitofreducedmethanelosses.Methanereductionsinthesesegmentsoftheindustry

    willnothaveapositivereturntothecompanyorbecosteffectiveinthissense.Thatsaid,thevalueof

    reducedlosseswillaccruetootherpartsoftheeconomy.IfapipelineorLDCreducesitslosses,the

    benefitwilleventuallyflowthroughtothecustomersandtotheeconomyoverall.Reducedlosseswill

    eventuallyflowthroughaslowerpricesforgasdeliveryanddeliveredcostofgastoconsumers.Thus,

    evenwhentheentityimplementingareductioncannotdirectlybenefitfromreducedlosses,thereisa

    broaderbenefitandthatfulleconomicbenefitcanbecalculatedandallocatedagainstthecostofthe

    methanereduction,thesecondkindofcosteffectiveness.

    Thelastconceptofcosteffectivenessisinthecontextofpollutioncontrolprograms.Inconventional

    pollutioncontrolprogramsthecontroltechnologyrarelyresultsinacostreductiontothecompanythat

    isrequiredtoimplementit.Thatis,thecostofcontrolisalmostalwayspositiveandthenetpresent

    valueisnegativeandthereisnopaybackfortheinvestment.Nevertheless,theseprogramsincorporate

    theconceptofcosteffectiveness,meaningthatthecostisacceptabletosocietyasameansofmeeting

    publichealthandenvironmentalgoals.Thecosteffectivenessvariesfordifferentpollutantsand

    differentregulatoryprograms.Forexample,$10,000/tonofVOCreducedmaybeconsideredcost

    effectiveinsomeozonenonattainmentareaswhile$100/tonofSO2maybeconsideredcosteffective

    foranacidrainreductionprogram.Inthiscontext,methanereductionscanbeconsideredcosteffective

    evenifthey

    have

    anet

    cost

    to

    the

    company

    or

    society

    overall.

    Where

    methane

    reductions

    do

    create

    a

    netvaluetotheimplementingcompany,thecostofcontrolwillbenegative,i.e.,thecompanyis

    reducingemissionsandsavingmoneyratherthanspendingmoney.

    Inthisstudy,thevalueofrecoveredgasisincludedincalculatingthecosteffectivenessofmitigation

    measureswherethegascanberecoveredandwhereitcanbemonetizedbythecompany.Therefore,

    thesamemeasuremayhavedifferentcostsfordifferentsegments,e.g.,reducingcompressoremissions

    willhavealowernetcostintheproductionsegmentthaninthetransmissionsegment.Thisreflectsthe

    netcosttothecompanytoimplementthemeasure.However,wheregascanberecoveredthrougha

    mitigationmeasure,itwillhavevaluetothebroadereconomy,evenifitisnotrecognizedbythe

    companythat

    must

    make

    the

    investment.

    Therefore

    we

    also

    show,

    in

    certain

    cases,

    an

    economy

    wide

    costeffectivenessmeasure,whichrecognizesthevalueofallrecoveredgas,evenifitcannotbe

    recognizeddirectlybytheaffectedcompany.Thesecasesareclearlylabeledassuch.Thecostof

    control,whetherpositiveornegative,canbealsoevaluatedintheregulatorysenseandcomparedto

    otheravailableemissionreductionoptions.Finally,thereareadditionalsocialandenvironmental

    benefitsofmethanereductionsthatarenotcapturedinthesecalculations,includingthebroader

  • 8/12/2019 Methane Cost Curve Report

    18/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    Introduction

    ICFInternational 28 March2014

    economicvalueofreducedclimateriskandcobenefitreductionsofconventionalpollutantssuchas

    groundlevelozoneandhazardousairpollutants.

  • 8/12/2019 Methane Cost Curve Report

    19/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 31 March2014

    3.ApproachandMethodology3.1.

    Overview

    of

    Methodology

    Thissectionprovidesanoverviewofthemethodologyappliedforthisstudy.Themajorstepswere:

    Establishthe2011BaselineforanalysistheanalysisstartedwiththemostrecentU.S.EPAinventoryofmethaneemissionsintheEPAInventoryofU.S.GHGEmissionspublishedin2013with

    datafor20117.Thisinventorywasreviewedandrevisedtoaccountforadditional,morerecent

    informationsuchasinformationfromtheEPAGHGReportingProgram8andtheUniversityof

    Texas/EDFgasproductionmeasurementstudy9.ThesechangeswereappliedtodevelopanICF2011

    Baseline,whichwasusedasthebasisforprojectingonshoremethaneemissionsto2018.

    Project

    emissions

    to

    2018

    the

    analysis

    of

    potential

    reductions

    was

    based

    on

    the

    projected

    2018

    emissionlevel.Theyear2018waschosenasaconservativedatebywhichnewcontroltechnologies

    couldhavebeeninstalled.TheinventorywasalsodisaggregatedfromthenationallevelintheEPA

    inventorytothesevenregionsusedintheU.S.EIAsoilandgasdatatoprovideregionalreporting.

    Identificationofmajorsourcesandkeymitigationoptionsthenextstepwastoidentifythelargestemittingsourcesintheprojected2018inventoryandthemitigationoptionsthatwouldbe

    mosteffectiveandcosteffectiveforthesesources.

    Characterizationofemissionreductiontechnologiesakeypartofthestudywastoreviewandupdateinformationonthecostandperformanceoftheselectedmitigationtechnologies.

    Informationwasgatheredfromequipmentmanufacturers,oilandgascompanies,andother

    knowledgeableparties.

    Developmentofthemarginalabatementcostcurvesthetechnologyinformationwasappliedtotheemissionsinventorytocalculatethepotentialemissionreductionandcost.Theresultswere

    displayedinaseriesofmarginalabatementcostcurves.

    Thekeystepsarediscussedfurtherinthefollowingsections.

    7U.S.EPA,InventoryofU.S.GreenhouseGasEmissionsAndSinks:19902011,

    http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html8http://www.epa.gov/ghgreporting/

    9Allen,David,et.al.,MeasurementsofMethaneEmissionsatNaturalGasProductionSitesintheUnitedStates.

    10.1073/pnas.1304880110

  • 8/12/2019 Methane Cost Curve Report

    20/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 32 March2014

    3.2. Developmentofthe2011EmissionsBaselineThedevelopmentofthe2011BaselinetakesasitsstartingpointtheU.S.EPAsInventoryofU.S.

    GreenhouseGas

    Emissions

    and

    Sinks:

    1990

    2011

    published

    in

    2013

    with

    data

    for

    201110,

    specifically

    theportiononmethanefromNaturalGasandPetroleumSystems.WhiletheEPAInventoryisthemost

    comprehensivesourceforthistypeofinformation,itisdesignedtobeaplanningandreportingtool

    ratherthanthebasisforthistypeofgranularanalysis.ThereforeICFdevelopedanew2011Baseline,

    adaptingtheEPAstructuretotheneedsoftheanalysisandincorporatingmorerecentinformation.This

    wasnotacompleteupdateoftheinventory,whichwasbeyondthescopeofthisproject,butanupdate

    ofanysectionsforwhichneworbetterdatacouldbereadilyidentified.TheEPAInventory11estimates

    436billioncubicfeet(Bcf)or8.4millionmetrictonnesofmethaneemissionsforthepetroleumand

    naturalgassectorsincludingoffshoreproductionin2011.Thepetroleumandnaturalgassectorsare

    thenfurtherdividedintothevarioussegmentsforthenaturalgassector(GasProduction,Gatheringand

    Boosting,Gas

    Processing,

    Gas

    Transmission,

    Gas

    Storage,

    LNG

    Import/Export,

    and

    Distribution)

    and

    the

    petroleumsector(OilProduction,Transportation,andRefining).

    TheEPAInventorybreaksoutmethaneemissionsforapproximately200sources,andcalculates

    uncontrolledemissionsusingactivityfactors(e.g.,equipmentcounts)multipliedbyemissionfactors

    (averageemissionsfromeachsource)toestimatethetotalemissions.Thetotaluncontrolledemissions

    arereducedbyemissionreductionsreportedprimarilyfromtheEPAsvoluntaryNaturalGasSTAR

    Program,plusadditionalreductionsfromothersources,suchasstateregulations.

    Thedevelopmentofthe2011Baselinereliedonthe2011EPAInventoryanddatafromseveralpublically

    availablereferences.

    The

    most

    common

    source

    of

    updated

    information

    was

    the

    U.S.

    EPAs

    mandatory

    GreenhouseGasReportingRule(GHGRP)subpartsC(combustionfromstationarysources)andW

    (methaneemissionsfrompetroleumandnaturalgassystems).ICFalsousedinformationanddatafrom

    theU.S.EnergyInformationAdministration(EIA),EPAs1996GRIstudyofmethaneemissions12,theEPA

    ManualofEmissionFactorsAP4213,variousstateenergyandenvironmentaldepartments,andthe

    EDF/UniversityofTexasmethanemeasurementstudy.Muchofthisinformationwasnotavailableatthe

    timethatthe2011EPAinventorywasoriginallydeveloped.

    Whilesomesourcecategoriesincreasedandsomedecreasedduetotheseadjustments,theoverall

    effectwasanincreaseof2.4%inthenetestimatedmethaneemissionsfromtheoilandgassectorsto

    10U.S.EPA,InventoryofU.S.GreenhouseGasEmissionsAndSinks:19902011,

    http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html11

    Whilethe2013editionoftheInventorywasthecurrentversionatthetimethestudywasinitiated,EPAhassincereleased

    thedraftofthe2014edition.HoweverthisstudydoesnotaddressthatnewerversionoftheInventory.12

    http://epa.gov/gasstar/tools/related.htmlunderMethaneEmissionsfromtheNaturalGasIndustry13

    http://www.epa.gov/ttn/chief/ap42/index.html

  • 8/12/2019 Methane Cost Curve Report

    21/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 33 March2014

    446Bcf(8.6millionmetrictonnes)ofmethane.Theestimatedemissionsfromthenaturalgassector

    were2%(10Bcf)lowerwhiletheemissionsfromtheoilsectorincreasedby26%(20Bcf)comparedto

    theEPAinventory.Table31summarizestheemissionsinthe2011Baselinecomparedtothe2011EPA

    Inventory.

    ThechangesbyindustrysegmentareshowninTable31.

    Table31 Summaryof2011MethaneEmissionsBaseline

    Segment

    2011EPAInventory ICF2011Baseline

    Change(%)(Million

    tonnesCH4)(BcfCH4)

    (Million

    tonnesCH4)(BcfCH4)

    NaturalGas

    GasProduction

    2.2

    113

    2.0

    103

    9%

    GatheringandBoosting 0.5 24 0.8 43 80%

    GasProcessing 0.9 48 0.8 44 9%

    GasTransmission 1.7 87 1.4 75 14%

    GasStorage 0.3 17 0.3 15 11%

    LNG 0.1 5 0.1 6 22%

    GasDistribution 1.3 69 1.3 69 0%

    Petroleum

    OilProduction 1.4 72 1.8 92 27%

    OilTransportation < 0.1 < 1 < 0.1

  • 8/12/2019 Methane Cost Curve Report

    22/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 34 March2014

    Inventorybasedonthe1996GRImeasurementstudyratherthanbeingfullybrokenoutasaseparate

    segment.Inthisstudy,somesourcesweremovedfromProductiontotheGatheringandBoosting

    segmentinordertoallowthemtobeanalyzedseparatelyforthissegment,andnewemissions

    estimates,for

    some

    sources

    underrepresented

    in

    the

    2011

    EPA

    inventory,

    were

    added.

    The

    major

    sourceadditionswerenewestimatesofcompressorandpneumaticdeviceemissions.Inaddition,

    emissionsfromcondensatetanksweremovedfromtheProductionsegmenttotheGatheringand

    Boostingsegment.

    TheoverallnetchangetotheNaturalGassegmentoftheU.S.Inventoryisadecreaseof2%compared

    totheEPAInventoryvalue.Thisistheneteffectofincreasedestimatesforwellheadfugitivesand

    GatheringandBoosting(forcompressorsandpneumaticdevices)anddecreasesintheestimatesfor

    wellcompletionandworkoveremissions(basedondataandfactorsfromSubpartW)andcompressor

    exhaustemissions.ThesechangesarediscussedinAppendixB.

    ThenetchangetothePetroleumsegmentofthe2011Baselineis26%higherthantheEPAInventory

    value.Thebiggestcategoriescontributingtothisincreaseweretheinclusionofstrandedgasventing

    fromoilwellsandupdatedestimatesofassociatedgasflaringestimates.Allofthesechangesare

    discussedinmoredetailinAppendixB.

    3.3. Projectionto2018The2018forecastofnaturalgasandpetroleumsystemsmethaneemissionsstartswiththe2011

    BaselinedescribedinSection3.2. Oneprimarydriverfortheprojectingthe2011emissionsto2018was

    theU.S.

    EIAs

    Annual

    Energy

    Outlook

    2013

    and

    2014

    Early

    Release.

    ICF

    also

    relied

    upon

    a2011

    study

    for

    theINGAAFoundation14thatforecastrequirementsforselectedinfrastructureandequipmentforthe

    naturalgasandpetroleumindustry. Inaddition,expectedemissionreductionsasaresultofNSPS

    SubpartOOOOwereincorporatedintotheforecast.WithouttheNSPS,emissionsgrowfrom446Bcfin

    2011to491Bcfin2018.WiththeNSPSadjustments,totalemissionsareprojectedtogrowby4.5%to

    466Bcfthrough2018.Almostallofthisgrowthisfromtheoilsectorwhereasthenetemissionsforthe

    gassectorarealmostunchanged(Figure31).Growthfromnewsourcesinthegassectorisoffsetby

    NSPSreductions,andreductionsfromexistingsourcessuchascontinuingreplacementofcastiron

    mainsandturnoverofhighemittingpneumaticdevices.Despitetheoverallgrowth,nearly90%ofthe

    emissionsin2018comefromexistingsources(sourcesinplaceasof2011)asshowninFigure32.

    14NorthAmericanMidstreamInfrastructureThrough2035ASecureEnergyFuture,PreparedfortheINGAAFoundation,ICF

    International,2011.

  • 8/12/2019 Methane Cost Curve Report

    23/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 35 March2014

    Figure31EmissionProjectionto2018(IncludingOffshore)

    Figure

    3

    2

    Distribution

    of

    Emissions

    in

    2018

  • 8/12/2019 Methane Cost Curve Report

    24/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 36 March2014

    Theprojectionalsodisaggregatedthenationallevelemissionsestimateofthe2011inventorytoregions

    usedbytheEIAtoreportoilandgasdata(Figure33).Thedetailsoftheanalysisarediscussedin

    AppendixC.

    Figure33 EIAOilandGasRegions

    3.4. IdentificationofTargetedEmissionSourcesTable32summarizesthelargestemittingsourcecategoriesintheprojected2018emissionsfortheoil

    andgassectorsbymajorsourcecategory.Duetothelackofspecificdataontheemissionsourcesfor

    offshoreoilandgasproduction,thestudyfocusedononshoreproductionandoffshoreemissionsare

    excludedfromthislist.Thetop22sourcecategoriesaccountfor80%ofthetotal2018onshoremethane

    emissionsof404Bcfandtheremaining100+categoriesaccountfor1%orlessofthetotalemissions

    each.Althoughthesesourcecategorieswerenotincludedinthisanalysisduetotheirsmallsize,there

    aredemonstratedmethanereductiontechnologiesthatcanprovidecosteffectivereductionsformany

    ofthem.

    Figure34showsthedistributionofsourcesgraphically.Fugitiveemissionsarethelargestemission

    sourcecategoryoverall.Ventedemissionsfrompneumaticcontrollersandpumpsarealsosignificantas

    isventedassociatedgasfromoilwellcompletionsandproduction.Ventingfromwetsealcentrifugal

    compressorsisalsoalargesource.

  • 8/12/2019 Methane Cost Curve Report

    25/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 37 March2014

    Table32 HighestEmittingOnshoreMethaneSourceCategoriesin2018

    Source

    2018

    Emissions

    (Bcf)

    Percentof

    Total

    Cumulative

    Bcf

    Cumulative

    %

    ReciprocatingCompressorFugitives 53.8 13% 53.8 13%

    HighBleedPneumaticDevices 28.7 7% 82.5 20%

    LDCMetersandRegulators 28.7 7% 111.2 28%

    CentrifugalCompressors(wetseals) 24.0 6% 135.3 33%

    GasEngineExhaust 22.2 5% 157.5 39%

    WellFugitives 20.8 5% 178.3 44%

    ReciprocatingCompressor

    Rod

    Packing

    17.6 4% 195.9

    48%

    LiquidsUnloading Wellsw/PlungerLifts 13.2 3% 209.1 52%

    IntermittentBleedPneumaticDevices 13.0 3% 222.1 55%

    KimrayPumps 11.5 3% 233.6 58%

    OilTanks 11.5 3% 245.1 61%

    Flares 9.0 2% 254.1 63%

    StrandedGasVentingfromOilWells 8.4 2% 262.5 65%

    IntermittentBleedPneumaticDevices DumpValves 7.7 2% 270.2 67%

    OilWellCompletions withFracturing 6.9 2% 277.1 69%

    PipelineLeaks(All) 6.7 2% 283.8 70%

    PipelineVenting(Transmission) 6.6 2% 290.4 72%

    CentrifugalCompressors(dryseals) 6.4 2% 296.8 73%

    MainsPlastic 6.3 2% 303.2 75%

    Mains CastIron 6.3 2% 309.4 77%

    TransmissionStationVenting 6.2 2% 315.7 78%

    ChemicalInjection

    Pumps

    5.9 1% 321.6

    80%

    Residential 5.6 1% 327.2 81%

    GatheringandBoostingStations 5.6 1% 332.8 82%

  • 8/12/2019 Methane Cost Curve Report

    26/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalApproachandMethodology

    ICFInternational 38 March2014

    Figure34 2018ProjectedOnshoreEmissions

  • 8/12/2019 Methane Cost Curve Report

    27/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 39 March2014

    3.5. SelectedMitigationTechnologiesThefollowingsectionsdescribethemitigationmeasuresincludedinthisanalysistoaddressthehigh

    emittingsource

    categories.

    Some

    of

    the

    most

    significant

    measures

    are

    discussed

    in

    greater

    detail

    in

    AppendixD.Muchofthecostandperformancedataforthetechnologiesisbasedoninformationfrom

    theEPANaturalGasSTARprogram15buthasbeenupdatedandaugmentedwithinformationprovided

    byindustryandequipmentvendorsourcesconsultedduringthisstudy.Thediscussionisorganized

    accordingtotheemissionsourceandmitigationoption.

    Thisanalysisattemptstodefinereasonableestimatesofaveragecostandperformancebasedonthe

    availabledata.Thecostsandperformanceofanactualindividualprojectmaynotbedirectly

    comparabletotheaveragesemployedinthisanalysisbecauseimplementationcostsandtechnology

    effectivenessarehighlysitespecific.Costsforspecificactualfacilitiescouldbehigherorlowerthanthe

    averagesused

    in

    this

    analysis.

    FugitiveEmissionsFugitiveemissionsaretheunplannedlossofmethanefrompipes,valves,flanges,

    andothertypesofequipment.Fugitiveemissionsfromreciprocatingcompressors,compressorstations

    (transmission,storage,andgathering),wells,andLDCmeteringandregulatorequipmentarethelargest

    combinedemissioncategory,accountingforover120Bcf,or30%ofthehighlightedsources.

    LeakDetectionandRepair(LDAR)isthegenerictermfortheprocessoflocatingandrepairingthese

    fugitiveleaks.Thereareavarietyoftechniquesandtypesofequipmentthatcanbeusedtolocateand

    quantifythesefugitiveemissions.ExtensiveworkhasbeendonebyEPAandotherstodocumentand

    describethese

    techniques,

    both

    in

    the

    Gas

    STAR

    reference

    materials

    and

    in

    several

    regulatory

    analyses.

    Thepotentialsizeandnatureofthesefugitiveemissionscanvarywidelybyindustrysegmentandeven

    bysite.LDARprogramshavebeenanalyzedforseveralrecentregulatoryinitiatives,includingforthe

    EPAsNSPSSubpartOOOO16andthecurrentproposedrevisionstotheColoradoAirQualityControl

    CommissionRegulationNumber7(5CCR10019)17.ThisstudyusedboththeColoradoregulatory

    analysisandtheEPATechnicalSupportDocument(TSD)18forNSPSSubpartOOOOasthebasisforcost

    andreductioneffectivenesscalculations.

    15http://www.epa.gov/gasstar/

    16http://www.epa.gov/airquality/oilandgas/

    17http://www.colorado.gov/cs/Satellite/CDPHEAQCC/CBON/1251647985820

    18U.S.EPA,OilandNaturalGasSector:StandardsofPerformanceforCrudeOilandNaturalGasProduction,Transmission,and

    Distribution.BackgroundSupplementalTechnicalSupportDocumentfortheFinalNewSourcePerformanceStandards.

    http://www.epa.gov/airquality/oilandgas/pdfs/20120418tsd.pdf

  • 8/12/2019 Methane Cost Curve Report

    28/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 310 March2014

    Thekeyfactorsintheanalysisarehowmuchtimeittakesaninspectortosurveyeachfacility,howmany

    inspectionsarerequiredeachyear,howmuchreductioncanbeachieved,andhowmuchtimeis

    requiredforrepairs.ResearchcitedbybothColoradoandEPAindicatesthatmorefrequentinspections

    resultin

    greater

    reductions,

    summarized

    as

    approximately:

    Annualinspection=40%reduction Quarterlyinspection=60%reduction Monthlyinspection=80%reductionICFadaptedtheColoradoanalysis,whichcalculatesthecapitalandlaborcosttofieldafulltime

    inspector,includingallowancesfortravelandrecordkeeping(Table33).ICFaddedadditionaltimefor

    training.Thecapitalcostincludesaninfraredcamera(whichisusedtolocatefugitiveemissions)atruck

    andthecostofarecordkeepingsystem. Thecombinedhourlycostwasthebasisforthecost

    estimates.

    Table33 LDARHourlyCostCalculation

    Labor CapitalandInitialCosts

    InspectionStaff $75,000 InfraredCamera $122,200

    Supervision(@20%) $15,000 PhotoIonizationDector $5,000

    Overhead(@10%) $7,500 Truck $22,000

    Travel(@15%) $11,250 Recordkeepingsystem $14,500

    Recordkeeping(@10%) $7,500 Total $163,700

    Reporting(@10%) $7,500

    Fringe(@30%) $22,500 TrainingHours 80

    SubtotalCosts $146,250 TrainingDollars $6,223

    Hours/yr 1880 AmortizedCapital +Training $44,825

    Hourly LaborRate $77.79 AnnualLabor $146,250

    AnnualTotal Cost $191,075

    TotalCostasHourlyRate $101.64

    Manyanalyseshaveusedfacilitycomponentcountsandhistoricaldataonthetimerequiredtoinspect

    eachcomponenttoestimatefacilitysurveytimes.However,theuseoftheinfraredcameratechnology

  • 8/12/2019 Methane Cost Curve Report

    29/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 311 March2014

    allowsmuchshortersurveytimes19andtheEPAandColoradotimeestimateshavebeencriticizedastoo

    long.Theestimatesherearebasedonexperiencewiththeinfraredcameraandareshorterthanthe

    ColoradoandEPAestimatesthatbasedoncomponentcounts.

    ICFthenadoptedthebaselineemissionvaluesforwells,gatheringandtransmissionstations,and

    processingstationsfromtheEPAanalysis.EPAincludesthreewellpadsizeswithdifferentbaseline

    emissions.TheEPAanalysisdidnotprovideestimatesofthedistributionofthethreesizesforexisting

    facilitiessothemiddleestimatewasusedforthisanalysis.Usingthesmallerandlargerwellpad

    emissionestimateswouldresultinhigherandloweremissionreductioncostsrespectively.

    ForLDCs,theanalysisonlyincludeslargemeterandregulatorfacilities.Smallerfacilitieshadamuch

    highercostduetothesmallbaselineemissions.TheLDCcostingwasdoneusingthesameoperatorand

    capitalcostsasfortheupstreamandmidstreamfacilities.ThebaselineemissionfactorsforLDCswere

    adaptedfrom

    an

    EPA

    Gas

    STAR

    document

    20

    which

    found

    that

    on

    average

    two

    100

    Mcf/year

    leaks

    were

    foundat50%ofthefacilitiesandtheleakswerereducedby50%throughtheprogram.

    Table34summarizestheassumptionsfortheoverallLDARcalculation.Thisanalysisassumesquarterly

    emissionsurveysforallfacilities.Thereductionisassumedtobe60%,whichisconsistentwithdata

    presentedintheNSPSTSDandColoradoanalysis.Inadditiontothesurveys,theestimateincludesone

    initialvisittoeachsitetoinventorytheequipment(equivalenthourstotwoinspectionvisitsforeach

    sitewithcostaveragedoverfiveyears)andadditionalvisitsforrepairs.Gasprocessingplantsare

    alreadysubjecttosomeLDARrequirementsforconventionalpollutants,whichresultincobenefit

    methanereductions.Themiscellaneousfugitiveemissionsforgasprocessingwerebelowthesize

    threshold

    for

    this

    analysis

    but

    the

    costs

    developed

    here

    for

    gas

    processing

    are

    applied

    to

    compressors

    in

    thatsegment.

    Somerepairscanbemadeatthetimeofthesurvey,suchastighteningvalvepackingorflangesbut

    otherswillrequireadditionalrepairtime.Thisanalysisassumesrepairtimeequivalenttothreesurvey

    visitsforeachfacilityforrepairseachyear.Thecapitalcostoflargerrepairsisnotincludedonthe

    assumptionthattheserepairswouldneedtobemadeanywayandtheLDARprogramissimplyalerting

    theoperatortotheneed.ThetimeforrepairsisconsistentwiththelowendoftheColoradoanalysis

    thatwasderivedbasedoncomponentcountsandleakrates.Thislowerrepairestimatetakesinto

    accountthat:

    Theseareaveragevaluesacrossfacilitiesnoteveryfacilitywillrequirerepairs.

    19Robinson,D,et.al.,RefineryEvaluationofOpticalImagingtoLocateFugitiveEmissions.JournaloftheAir&Waste

    ManagementAssociation.Volume57June2007.20

    EPAGasSTARDirectedInspectionandMaintenanceatGateStationsandSurfaceFacilities.

    http://epa.gov/gasstar/documents/ll_dimgatestat.pdf

  • 8/12/2019 Methane Cost Curve Report

    30/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 312 March2014

    Theseareaveragevaluesovertimenoteveryfacilitywillneedrepairseveryyearwhilebeingmonitoredonacontinuingbasis.

    Someorallofcostofmajorrepairsisassumedtobepartofregularfacilitymaintenance.Table34CostCalculationQuarterlyLDAR

    WellPads Gathering Processing Transmission LDC

    MethaneMcf/yr 440 1,676 2,448 4,671 150

    %Reduction 60% 60% 60% 60% 60%

    ReductionMcf 264 1,006 1,469 2,803 90

    HourseachInspection 2.7 8 8 8 2

    Frequency(peryear) 4 4 4 4 4

    Annual InspectionCost $1,084 $3,252 $3,252 $3,252 $813

    InitialSetUp $108 $325 $325 $325 $81

    RepairLaborCost $813 $2,439 $2,439 $2,439 $407

    TotalCost/yr $2,006 $6,017 $6,017 $6,017 $1301

    RecoveredGasValue* $1,340 $5,105 $7,455 $12,416 $399

    NetCost $666 $912 $1,438 $6,399 $902

    CostofReduction($/Mcfmethanereduced)

    WithoutGasCredit $7.60 $5.98 $4.10 $2.15 $14.45

    WithGasCredit $2.52 $0.91 $0.98 $2.28 $10.03

    *Gasat$4/Mcf

    Thevalueofreducedgaslossesiscreditedtotheprogramfortheupstreamsegments. Thesefinal

    reductioncostvalueswereusedfortheanalysis.

    ReciprocatingCompressor

    Rod

    Packing

    Reciprocating

    compressors

    are

    used

    in

    most

    segments

    of

    the

    naturalgasandoilindustry,thoughmuchlesscommonlyinlocalgasdistributionthaninother

    segments.Rodpackingsystemsareusedtomaintainasealaroundthepistonrod,minimizingthe

    leakageofhighpressuregasfromthecompressorcylinder,whilestillallowingtherodtomovefreely

    (Figure35).However,somegasstillescapesthroughtherodpacking,andthisvolumeincreasesasthe

    packingwearsoutovertime,potentiallytomanytimestheinitialleakrate.Thereisnostandard

    optimumintervaltoreplacetherodpacking,buttheNSPSSubpartOOOOrequiresrodpackinginnew

  • 8/12/2019 Methane Cost Curve Report

    31/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 313 March2014

    reciprocatingcompressorsintheproductionandprocessingsectorstobereplacedevery26,000hours

    ofoperation(approximatelyeverythreeyears).

    Figure35

    ReciprocatingCompressor

    Rod

    Packing

    Industryreportsthattherodpackingforcompressorsatgasprocessingplantsandsometransmission

    stationsisroutinelyreplacedatleastthatfrequentlyaspartofroutinemaintenance.However,itis

    believedthatrodpackingintheproductionandgatheringandboostingsectorsisreplacedless

    frequently.Thisisdue,inpart,toseveralfactors,includingtheremotelocationofthesecompressors,

    thelackofabackupcompressorforuseduringcompressordowntime,andbecausemanyofthe

    compressorsinthesesectorsareleasedratherthanowned.Thisanalysisassumesarequirementto

    replacerodpackingforallreciprocatingcompressorsevery26,000hoursofoperation.

    GasSTARdata21indicatethatrings(thecompressorpacking)costbetween$300and$600percylinder

    and$1,000to$2,500percompressortoinstall.Industrysourcesforthisstudyputthecostat$5,000per

    cylinder,whichwasadoptedforthisanalysis.TheTechnicalSupportDocument(TSD)forNSPSSubpart

    OOOOprovidesadetailedanalysisofrodpackingreplacement.Theemissionsfromnewrodpackingare

    estimatedintheTSDat11.5standardcubicfeetperhour(scfh).Baselineemissionsforrodpackingare

    estimatedatapproximately57scfh,howevertheageofthepackingatthattimeisnotstated.Thereis

    littledata

    on

    the

    emissions

    from

    rod

    packing

    over

    time

    but

    reductions

    for

    this

    mitigation

    option

    come

    fromreplacingtherodpackingatashorterintervalthancurrentlybeingpracticedatgivenfacility.

    21ReducingMethaneEmissionsFromCompressorRodPackingSystems

    http://www.epa.gov/gasstar/documents/ll_rodpack.pdf

  • 8/12/2019 Methane Cost Curve Report

    32/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 314 March2014

    Forthisanalysisitwasassumedthatthefacilitycurrentlyreplacestherodpackingeveryfiveyearsand

    thattheintervalisreducedtothreeyears(26,000hours).Itwasassumedthatthenewrodpacking

    emits11.5scfhandtheemissionsincreaselinearlyto57scfhafterthreeyearsandincreaselinearly

    thereafter.Comparing

    the

    emissions

    under

    this

    scenario

    for

    15

    years,

    the

    three

    year

    replacement

    schedulewouldemit35%lessthanthefiveyearreplacementschedule. Inaddition,thecostofrod

    packingreplacementwouldbe66%greaterforthethreeyearreplacementschedulethanthefiveyear

    schedule.Asnotedabove,itwasassumedthatrodpackingisalreadychangedonthisscheduleinmany

    processingplantsandsometransmissionstations,sotheapplicabilitywasreducedto25%for

    processingand70%fortransmission,storageandLNG.TheassumptionsaresummarizedinTable35.

    Table35 AssumptionsforRodPackingReplacement

    CentrifugalCompressors(wetseals)Thesealsinacentrifugalcompressorperformasimilarfunction

    totherodpackinginareciprocatingcompressorallowingtherotatingshafttomovefreelywithout

    allowingexcessivehighpressuregastoescape(Figure36).Centrifugalcompressorswithwetsealsuse

    circulatingoilasasealagainsttheescapeofhighpressuregas,andtheoilentrainssomeofthegasasit

    circulatesthrough

    the

    compressor

    seal.

    This

    gas

    must

    be

    separated

    from

    the

    oil

    to

    maintain

    proper

    operation(calleddegassingthesealoil),andthegasremovedfromthesealoilistypicallyventedto

    theatmosphere.22Theseemissionscantotal30,000Mcf/yearormore.Whilewetsealscanbereplaced

    bydrysealsthatdonotuseoilanddonotventsignificantamountsofgas,thisisanextremelyexpensive

    process.Alowercostoptionistocaptureandusetheentrainedsealoilgasratherthanventingit.This

    technologycurrentlyexistsatseveralcompressorstationsthathadsuchsystemsinstalledasoriginal

    equipment,butithasnotbeenappliedcommerciallyasaretrofit.However,theequipmentneededfora

    retrofitiscommerciallyavailable.Themeasuremodeledhereistoapplythistechnologyasaretrofit.

    Thisisdescribedasoneofthecasestudiesinsection5.1wherethecapitalcostisestimatedat$33,700

    fora99%reduction.Becausethistechnologyhasnotbeencommerciallydemonstratedasaretrofit,the

    analysisassumedaconservativecostof$50,000and95%reduction,yieldingacosteffectivenessof

    $4.87/Mcfwithcreditforrecoveredgasor$0.21/Mcfwithoutrecovery.Althoughthegascanbere

    captured,itmaybedifficulttouseitproductively,asthisdependsonboththepressureofthecaptured

    22ReplacingWetSealswithDrySealsinCentrifugalCompressors http://www.epa.gov/gasstar/documents/ll_wetseals.pdf

    CapitalCost

    per

    Compressor

    Percent

    Reduction

    Mcf

    Reduced/year

    Lifetime

    (years)

    Costw/oGas

    Credit

    $6,000 35% 350 3 $6.89/Mcf

  • 8/12/2019 Methane Cost Curve Report

    33/115

  • 8/12/2019 Methane Cost Curve Report

    34/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 316 March2014

    Replacehighemittingintermittentcontrollers(notdumpvalves)withlowbleedcontrollers.Somecomponentsrequirehighbleedcontrollersforoperationalreasons,primarilyforfastactingvalves

    associatedwithcompressors,sothemeasurewasappliedtoonly60%oftheinventoryofhighbleed

    controllersintransmission,storage,andLNG,80%inprocessingand90%ofthehighbleedcontrollersin

    othersegments.AlthoughtherearelowercostestimatesfromGasSTARandvendors,thismeasure

    assumedacostof$3,000perreplacementbasedonindustrycomments.Bothoptionsyieldagreater

    than90%reduction.Thisyieldsareductioncostof$3.08/Mcfofmethaneforreplacementofhighbleed

    pneumaticsand$0.58/Mcfofmethaneforreplacementofintermittentbleedpneumatics,includinga

    creditforrecoveredgas,whereapplicable.

    ChemicalInjectionPumpsThesearesmallpumpsusedtoinjectvariouschemicals,mostcommonly

    methanol,intogaswellstopreventwellfreezeupduringcoldweather.Theyaretypicallydrivenbygas

    pressureandventgaswhentheyoperate.Thesuggestedmitigationmeasureistoreplacethegasdriven

    pumpswithelectricpumpsdrivenbysolarenergy.(Wellpadsandmanygathering/boostingstations

    typicallydonothaveelectricity.)ThistechnologyhasbeendemonstratedbyGasSTARPartnersand

    industryrespondentsindicatedthatitisgainingbroaderacceptance.Replacementresultsinelimination

    ofthemethaneemissions,andthegasdrivenpumpcouldbeleftinplaceasabackup.Thecostofthe

    measurewasestimatedat$5,000perpump,yieldinganannualreductionof180Mcf/yearandacost

    effectivenessof$0.22/Mcfofmethanereducedwiththerecoveredgascredit.Localconditionsor

    operationalconsiderationsmaylimittheapplicabilitysothemeasureisappliedto80%oftheinventory.

    OilandCondensateTankswithoutControlDevicesCrudeoilandliquidcondensateproductionat

    wellsandgatheringfacilitiesisstoredinfixedrooffieldtanksanddissolvedgasintheliquidsisreleased

    andcollects

    in

    the

    tank

    space

    above

    the

    liquid.

    Ultimately,

    this

    gas

    is

    often

    vented

    to

    the

    atmosphere.

    Vaporrecoveryunits(VRUs)collectandcompressthisgas,whichcanthenberedirectedtoasalesline,

    usedonsiteforfuel,orflared.BasedonGasSTARandindustrydata,thecapitalcostofthismeasureis

    assumedtobe$100,000withanoperatingcost(electricity)of$7,500peryearandareductionof13,410

    Mcfperyear.Thisyieldsareductioncostof$0.51/Mcfifthegasisrecoveredforsaleor$4.57/Mcfifit

    isflared.SomefacilitiesalreadyhaveVRUsandtheymaynotbeeffectivewheretheliquidvolumeis

    smallorthemethanecontentislow.AlsoVRUsrequireelectricity,whichisnotavailableatallsites.For

    thesereasons,themeasureisappliedto50%oftheremainingoiland25%oftheremainingcondensate

    tankemissioninventory.

    KimrayPumps

    Kimray

    pumps

    are

    gas

    powered

    pumps

    used

    to

    circulate

    glycol

    in

    gas

    dehydrators.

    They

    arelargerthanthechemicalinjectionpumpsandventlargeramountsofgas.Inthefacilitiesthathave

    electricity,thesecouldbereplacedbyelectricmotordrivenpumps.Thereplacementcostisestimated

    at$10,000perpumpbasedonvendorandGasSTARdata.Unlikethesolarpumps,thesepumpswill

    requiregridelectricity,estimatedtocost$2,000peryear.Basedona5,000Mcfemissionreduction,the

    costeffectivenessis$4.17/Mcfofmethanewithcreditforgasrecoveredanditisappliedto50%ofthe

    inventory.

  • 8/12/2019 Methane Cost Curve Report

    35/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 317 March2014

    LiquidsUnloadingLiquidsunloadingistheprocessofremovingliquidsfromthebottomofgaswells

    whentheaccumulationisimpedingthegasproduction.Theliquidsmustberemovedinordertoallow

    effectiveproductionfromthewell.Historicallythishasbeenpracticedonolder,verticalwellswhose

    pressurehasdeclined.

    Whilethereareavarietyofmethodsofremovingthisliquid,onemethodisbyventingorblowingthe

    welltotheatmosphere,usingthepressurizedgasinthereservoirtoliftandblowtheliquidsoutofthe

    well.Thefrequencyanddurationofliquidsunloadingdependsonthewellandreservoirconditions,

    however,ventingisnotaveryeffectivemethodofremovingtheliquids.Further,sincethewellisvented

    totheatmosphere,itresultsinlargemethaneemissionsandlossesofgas.Therearemultiplemethods

    ofremovingliquidswithoutventing,butinstandardpractice,theprimarygoalofliquidsunloadingisto

    improvewellperformance,notreduceemissions.Thechoiceofmethodisnormallyafunctionofthe

    costversusthevalueofimprovedwellperformance.Thistopicisfurtherdiscussedinsection5.4.

    Figure37 PlungerLiftSchematic

    Plungerliftsaredevicesthatfitintothewellboreandusethe

    gaspressuretobringliquidstothesurfacemoreefficiently

    whilecontrollingandlimitingtheamountofventing(Figure

    37).Ifthereissufficientreservoirpressure,thegascanbe

    directedtothesaleslinewithnoventing.Ifthereisinsufficient

    pressuretodirectthegastothesaleslineandthegasmustbe

    vented,theemissionscanstillbereducedby90%comparedto

    uncontrolledventing.Plungerliftsarearelativelylowcost

    optionandcanbeimplementedinarelativelysimplemanual

    controlmethodormorecomplexautomatedinstallations.That

    said,thetechnologydoeshavelimitations.Thewellmusthave

    sufficientpressuretooperatetheplungerandolderwellsmay

    requirecleanoutsorworkoverstoallowtheplungerto

    operate.Further,notallwelltypescanuseaplungerliftfor

    liquidsremoval.

    GasSTARestimatesforplungerliftinstallationrangefrom$2,500to$10,00023butindustrycommenters

    onthisstudycitedcostsintherangeof$15,000andpointedoutthatwelltreatmentsandcleanouts

    mayberequiredbeforeplungerliftscanbeinstalled.Thisanalysisassumesacostof$20,000,including

    theallowancethatsomewellsmayneedcleanoutsorotherwork. GasSTARPartnersreportreductions

    ofventingemissionsof90%forplungerliftsthatdonotgotothesalesline.Inaddition,theyreportthat

    liquidsunloadingcanincreaseproductionbyanywherefrom3to300thousandcubicfeetperday

    23InstallingPlungerLiftSystemsInGasWellshttp://epa.gov/gasstar/documents/ll_plungerlift.pdf

  • 8/12/2019 Methane Cost Curve Report

    36/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 318 March2014

    (Mcf/day).Theincreasedproductivityofthewellistheprimarygoalofliquidsunloadingandthehigher

    gasproductioncanpayforthecostofplungerliftsmanytimesover.However,thesubsequentincrease

    inwellproductivityisdifficulttopredictandisnotincludedinthisanalysis.Withoutcreditforthe

    productivityincrease,

    the

    cost

    effectiveness

    breakeven

    point

    is

    at

    about

    1,200

    Mcf/year

    of

    venting,

    estimatedhereasareductioncostof$0.05/Mcfreduced.

    Ifthewelldoesnothavesufficientpressureorcannotsupportaplungerlift,thereareavarietyof

    mechanicalpumpingtechnologiesthatcanbeemployedtoremoveliquids.However,thesearemuch

    moreexpensiveandwhiletheymayhaveapositivepaybackforincreasingwellproduction,theymost

    oftendonotpurelyforthemethaneemissionreduction.Moreover,themethanereductionvalueonly

    appliesifthewellwouldotherwisebevented.Asthewellpressuredeclines,ventingbecomesa

    diminishinglyeffectiveoption.Inaddition,itisnotclearhoweffectiveventingwillbeatremovingliquids

    fromlonghorizontalwellsthatarenowbeingdrilled.Itmaybethatventingforliquidsremovalwill

    continueto

    be

    primarily

    focused

    on

    older,

    vertical

    wells.

    TheGHGReportingProgramSubpartWprovidesdataonwellsthatareventingforliquidsunloading

    withandwithoutplungerlifts.Thedatafor2012showover53,000wellsventinganaverageof167Mcf

    peryearwithoutplungerliftsandover74,000wellswithplungerliftsventinganaverageof277Mcfper

    year.Wellsthatuseplungerliftsandsendthegastothesaleslinedonothaveanyventingemissions

    anddonotreporttothispartofSubpartW.Whileitseemscounterintuitivethatwellswithplungerlifts

    thatventwouldbeemittingmorethanthosewithoutplungerlifts,ICFinterpretsthisinformationto

    indicatethatmostofthewellswiththelargestventingemissionshavealreadyinstalledplungerlifts

    whilemostoftheremainingwellsareventinginfrequentlyorventingsmallvolumesthatdonotjustify

    thecost

    of

    installing

    plunger

    lifts.

    That

    said,

    there

    are

    asmall

    number

    of

    wells

    without

    plunger

    lifts

    that

    reportlargerventingemissionsandaccountforadisproportionatefractionoftheventingemissionsfor

    wellswithoutplungerlifts,approximately36%oftotalventingemissions.Installingplungerliftsonthese

    wellscouldbecosteffectiveandcreatesignificantemissionreductions. Becauseplungerliftsarenot

    applicabletoallwells,themeasurewasappliedto30%ofthisemissionsegmentfortheanalysis.

    Asnotedabove,wellswithplungerliftsalsoreportsignificantemissionsfromventing.Operationofa

    plungerliftiscomplexanditseffectivenessasanemissionreductiontechniquedependsonmany

    factorstooperatetheplungerattheoptimumtimetomaximizeproductionandminimizeemissions.

    Approachestoplungerliftoperationrangefromadhocmanualoperation,tofixedmechanicaltimers,to

    programmablefuzzy

    logic

    automated

    controllers.

    Specific

    data

    on

    the

    potential

    reductions

    from

    optimizedplungerliftoperationisnotavailablebutitisclearfromindustryexperiencethatan

    integratedprogramoftraining,technology,andautomationcanimprovetheperformanceofplunger

    liftsforbothproductivityandemissionreductions.Consequently,theremaybeanopportunityfor

    significantemissionreductionthroughoptimizationofplungerlifts,whichisnotincludedhereand

    wouldbeadditionaltothereductionestimatesthisanalysisprovidesforinstallationofnewplungerlifts.

  • 8/12/2019 Methane Cost Curve Report

    37/115

  • 8/12/2019 Methane Cost Curve Report

    38/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 320 March2014

    respondentssuggestedacostof$30,000forafullstationredesign.Thecostadoptedfortheanalysis

    was$15,000assumingachangeinprocedurebutnostationredesign,yieldingacosteffectivenessof

    $0.98/Mcfwithnogasrecoverycredit.

    Summary

    Table36summarizesthemitigationmeasuresappliedintheanalysisforeachmajoremissionsource.

    Table37summarizesthecharacteristicsofthemeasuresmodeled.Thecosteffectiveness($/Mcfof

    methaneremoved)wascalculatedwithandwithoutcreditforanyrecoveredgas.Theannualcostwas

    calculatedastheannualamortizedcapitalcostovertheequipmentlifeplusannualoperatingcosts.This

    wasdividedbyannualmethanereductionstocalculatethecosteffectivenesswithoutcreditfor

    recoveredgas.Wheregascanberecoveredandmonetizedbytheoperatingcompany,thevalueofthat

    gaswassubtractedfromtheannualcosttocalculatethecosteffectivenesswithcreditforrecovered

    gas.The

    costs

    shown

    here

    are

    the

    baseline

    costs,

    which

    are

    adjusted

    for

    regional

    cost

    variation

    in

    the

    analysis.Asnotedearlier,theseareaveragecoststhatmaynotreflectsitespecificconditionsat

    individualfacilities.

  • 8/12/2019 Methane Cost Curve Report

    39/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 321 March2014

    Table36 SummaryofMitigationMeasuresApplied

    Source MitigationMeasureOil/Condensate Tanks

    w/o

    Control

    Devices VaporRecoveryUnits

    LiquidsUnloading Wellsw/oPlungerLifts PlungerliftsHighBleedPneumaticDevices ReplacewithlowbleeddevicesIntermittentBleedPneumaticDevices ReplacewithlowbleeddevicesChemicalInjectionPumps SolarelectricpumpsKimrayPumps ElectricpumpsPipelineVenting(RoutineMaintenance/Upsets) PipelinepumpdownCentrifugalCompressors(wetseals) WetsealgascaptureTransmissionStationVenting GascaptureOilWellCompletions withFracturing FlaringStrandedGasVentingfromOilWells FlaringReciprocatingCompressorRodPacking RodpackingreplacementReciprocatingCompressorFugitives Leakdetectionandrepair (LDAR)CompressorStationFugitives Leakdetectionandrepair (LDAR)WellFugitives Leakdetectionandrepair (LDAR)GatheringStationFugitives Leakdetectionandrepair (LDAR)LargeLDCFacilityFugitives Leakdetectionandrepair(LDAR)

  • 8/12/2019 Methane Cost Curve Report

    40/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNatural

    ICFInternational 322 March2014

    Table37 SummaryofMitigationMeasureCharacteristics

    Name CapitalCostOperating

    Cost

    Percen

    Reductio

    Earlyreplacementofhighbleeddeviceswithlowbleeddevices $3,000 $0 9

    Earlyreplacementofintermittentbleeddeviceswithlowbleeddevices $3,000 $0 9

    ReplacementofReciprocatingCompressorRodPackingSystems $6,000 $0 3

    InstallFlaresCompletion $50,000 $6,000 9

    InstallFlaresVenting $50,000 $6,000 9

    LiquidUnloading InstallPlungerLiftSystemsinGasWells $20,000 $2,400 9

    InstallVaporRecoveryUnitsonTanks $100,000 $7,500 9

    TransmissionStationVentingRedesignBlowdownSystems/ESDPractices $15,000 $0 9

    ReplacePneumaticChemicalInjectionPumpswithSolarElectricPumps $5,000 $75 10

    ReplaceKimrayPumpswithElectricPumps $10,000 $2,000 10

    PipelineVenting PumpDownBeforeMaintenance $0 $12,000 8

    WetSealDegassingRecoverySystemforCentrifugalCompressors $50,000 $0 9

    LDARWells $169,923 $146,250 6

    LDARGathering $169,923 $146,250 6

    LDARLargeLDCFacilities $169,923 $146,250 6

    LDARProcessing

    $169,923

    $146,250 6

    LDARTransmission $169,923 $146,250 6

  • 8/12/2019 Methane Cost Curve Report

    41/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ApproachandMethodology

    ICFInternational 323 March2014

    3.6. SourceCategoriesNotAddressedSeveralsourcecategorieswithrelativelylargeemissionswerenotaddressedintheanalysis.Thesources

    andthe

    reasons

    for

    their

    treatment

    are

    summarized

    below.

    OffshoreoilandgasproductionAsnotedearlier,theEPAinventoryprovidesverylimiteddataonoffshoreemissions,whichwerenotadequatetoapplythemethodologyusedforothersources.This

    isanareainwhichfurtheranalysiswouldprobablyyieldadditionalopportunitiesforreduction.

    CastirongasmainsCastironmainshavebeenidentifiedisasignificantemissionsource,howevertheyareprimarilylocatedincongestedurbanareaswherereplacementorrepair isveryexpensive,

    reportedas$1millionto$3millionpermile.Thismakesforaveryexpensivecontroloptionbased

    purelyonemissionreduction.Moreover,theseexpendituresmustbeapprovedbystateutility

    commissions,whosepurviewtypicallydoesnotextendtoenvironmentalremediationofthistype.

    Thatsaid,approximately3%ofcastironmainsarebeingreplacedeachyearforsafetyreasons,so

    theemissionsaregraduallydeclining.Newtechnologiescouldreducethecostofreductioninthe

    future.

    EngineexhaustTheexhaustfromgasburningenginesandturbinescontainsasmallamountofunburnedmethanefromincompletecombustionofthefuel.Whileitisasmallpercentage,itis

    significantinaggregate.Oxidationcatalystdevicesareusedtoreduceunburnedemissionsofother

    hydrocarbonsintheexhaustbuttheyarenoteffectiveatreducingemissionsofmethaneduetoits

    lowerreactivity.However,newcatalystsarebeingdeveloped,inpartfornaturalgasvehicles,which

    maybeapplicabletothesesources.Thisisatopicforfurtherresearchandtechnologydeployment.

    OthersourcesThereareadditionalcosteffectivemeasuresformethanereductionthathavebeenidentifiedbytheEPAGasSTARprogramandothers.Theyarenotincludedherebecausethisreport

    focusesonlyonthelargestemittingsources.However,theiromissionshouldnotbetakento

    indicatethatthemeasureslistedherearetheonlycosteffectivemethanereductionmeasures.

  • 8/12/2019 Methane Cost Curve Report

    42/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    ICFInternational 41 March2014

    4.AnalyticalResults4.1. DevelopmentofEmissionControlCostCurvesWiththe2018ProjectedBaselineestablishedandmitigationtechnologiesidentifiedandcharacterized

    forthemajoremittingsectors,emissioncostreductioncurveswerecalculatedforavarietyofscenarios.

    Themodeldevelopedforthistaskincludestheindividualsourcecategoriesforeachsegmentoftheoil

    andgasindustrybyregion.Mitigationtechnologiescanbematchedtoeachsourcebyregionand/or

    individualsourceapplied.Themodelcanalsospecifywhatportionofeachsourcepopulationthe

    measureappliestoandwhetheritappliestonew(post2011),existing(asof2011),orallfacilities.The

    modelcalculatesthereductionachievedforeachsourceandcalculatesthecostofcontrolbasedonthe

    capitalandoperatingcosts,theequipmentlife,andwhereappropriate,thevalueofrecoveredgas.Key

    globalinputassumptionsinclude:whetheraparticularsegmentisabletomonetizethevalueof

    recovered

    gas,

    the

    value

    of

    gas,

    and

    the

    discount

    rate/cost

    of

    capital.

    A

    construction

    cost

    index

    is

    used

    toaccountforregionalcostdifferences,whichare13%to24%higherforcontinentalU.S.locations

    otherthanthebaselineGulfCoastcosts.

    TheresultsarepresentedprimarilyasaMarginalAbatementCostCurve(MACcurve),showninFigure

    41. Thisrepresentationshowstheemissionreductionssortedfromlowesttohighestcostofreduction

    andshowstheamountofemissionreductionavailableateachcostlevel.Theverticalaxisshowsthe

    costperunitin$/Mcfofmethanereduced.Anegativecostofreductionindicatesthatthemeasurehas

    apositivefinancialreturn,i.e.savesmoneyfortheoperator. Thehorizontalwidthofthebarsshowsthe

    amountofreduction.Theareawithinthebarsisthetotalcostperyear.Theareabelowthehorizontal

    axis

    represents

    savings

    and

    the

    area

    above

    the

    axis

    represents

    cost.

    The

    net

    sum

    of

    the

    two

    is

    the

    total

    netcostperyear.

  • 8/12/2019 Methane Cost Curve Report

    43/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    AnalyticalResults

    ICFInternational 42 March2014

    Figure41 ExampleMACCurve

    4.2.EmissionReductionCostCurvesThissectionpresentstheresultsofthecostcurveanalysis.Thecurvesrepresentdifferentviewsofa

    potentialemissioncontrolscenarioin2018basedonmeasuresinstalledbetween2011and2018.The

    emission

    reduction

    costs

    are

    the

    annual

    costs

    per

    Mcf

    of

    methane

    reduced.

    This

    should

    not

    be

    confused

    withcostperMcfofnaturalgasproduced,whichisanentirelydifferentmetric.Inthecasesshownhere,

    thetotalannualcostofreductionsdividedbytotalU.S.gasproductionislessthan$0.01/Mcfofgas

    producedinallcases.

    Thereareseveralcaveatstotheresults:

    The2011EPAinventoryisthebeststartingpointforanalysis,butitisbasedonmanyassumptionsandsomeolderdatasources.Althoughtheinventoryisimprovingwithnewdata,itisdesignedto

    beaplanningandreportingdocumentandisimperfect,especiallyatthedetailedlevel,fora

    granularanalysisofthistype.

    Emissionmitigationcostandperformancearehighlysitespecificandvariable.Thevaluesusedhereareestimatedaveragevalues.

    Theanalysispresentsareasonableestimateofpotentialcostandmagnitudeofreductionswithinarangeofuncertainty.

  • 8/12/2019 Methane Cost Curve Report

    44/115

    EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGas

    Industries

    AnalyticalResults

    ICFInternational 43 March2014

    Thebasecaseassumptionfortheresultsinthissectionassumesa$4/Mcfpriceforrecoveredgasanda

    10%discountrate/costofcapitalforcalculatingthecostofcontrol. Additionalsensitivityand

    alternativecasesareshowninAppendixA.

    Figure42showsthenationalaggregateMACcurveforthebaselinetechnologyassumptionsbysource

    category.Itshowsthereductionsachievablefromeachsourcewiththerelevan