Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more...

52
Metal-Semiconductor Interfaces Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET UMass Lowell 10.523 - Sanjeev Manohar

Transcript of Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more...

Page 1: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Metal-Semiconductor Interfaces

• Metal-Semiconductor contact

• Schottky Barrier/Diode

• Ohmic Contacts

• MESFET

UMass Lowell 10.523 - Sanjeev Manohar

Page 2: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Device Building Blocks

UMass Lowell 10.523 - Sanjeev Manohar

Page 3: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

UMass Lowell 10.523 - Sanjeev Manohar

Page 4: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Energy band diagram of an isolated metal adjacent to an isolated n-type semiconductorsemiconductor

UMass Lowell 10.523 - Sanjeev Manohar

Page 5: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Energy band diagram of a metal-semiconductor contact in thermal equilibriumequilibrium.

UMass Lowell 10.523 - Sanjeev Manohar

Page 6: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Measured barrier height for metal-silicon and metal-gallium arsenide contacts

UMass Lowell 10.523 - Sanjeev Manohar

Page 7: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Energy band diagrams of metal n-type and p-type semiconductors under thermal equilibrium

UMass Lowell 10.523 - Sanjeev Manohar

Page 8: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Energy band diagrams of metal n-type and p-type semiconductors under forward bias

UMass Lowell 10.523 - Sanjeev Manohar

Page 9: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Energy band diagrams of metal n-type and p-type semiconductors under reverse bias.

UMass Lowell 10.523 - Sanjeev Manohar

Page 10: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Charge distribution

electric-field distribution

UMass Lowell 10.523 - Sanjeev Manohar

Page 11: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Depletion Layer

DqN−=ρ Wx <<0

qNs

D

s

qNVε

−=ερ

=∇2

qNdEs

DqNdxdEE

ε−==∇

)()( xWqNxEs

D −ε

=

UMass Lowell 10.523 - Sanjeev Manohar

Page 12: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

W W

s

Dbi dxxWqNdxxEVV ∫ ∫ −

ε==− )()(

0 0

s

D

Ws

D WqNxWdxWqNε∫ =−−

ε=

2)()(

20

Dbis qNVVW /)(2 −ε=Depletion width

Dbis q)(

)(2 VVNqWQNQ ε

Charge per unit area

)(2 VVNqWQNQ biDsD −ε==

UMass Lowell 10.523 - Sanjeev Manohar

Page 13: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Capacitance

NqQC sDs εε∂Per unit area:( ) WVVq

VC s

bi

Ds =−

=∂

=2

Per unit area:

( )Ds

bi

NqVV

C ε−

=21

2

Rearranging:

Dsq

Or: ⎤⎡ 12( ) ⎥

⎢⎢

⎡ −ε

=dVCdq

Ns

D /112

2

UMass Lowell 10.523 - Sanjeev Manohar

Page 14: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

1/C2 versus applied voltage for W-Si and W-GaAs diodes

UMass Lowell 10.523 - Sanjeev Manohar

Page 15: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

1/C2 vs V

•If straight line – constant doping profile –

slope = doping concentrationslope doping concentration

•If not straight line, can be used to find profile

Intercept V can be used to find φ•Intercept = Vbi can be used to find φBn

+=φ VV

⎟⎞

⎜⎛

+=φ binBn

NkT

VV

⎟⎠

⎞⎜⎝

⎛=

i

Dn n

Nq

kTV ln

UMass Lowell 10.523 - Sanjeev Manohar

Page 16: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Current transport by the thermionic emission process

Thermal equilibrium forward biasreverse bias

UMass Lowell 10.523 - Sanjeev Manohar

Page 17: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Thermionic emission

Number of electrons with enough thermal energy to overcome barrier:

⎟⎠⎞

⎜⎝⎛ φ−

= kTq

Cth

Bn

eNn

At thermal equilibrium, current going both ways is the same:

⎟⎠⎞

⎜⎝⎛ φ−

kTq Bn

eNCjj ⎠⎝→→ == kT

Cmssm eNCjj 1

UMass Lowell 10.523 - Sanjeev Manohar

Page 18: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Forward Bias

Barrier for electrons in semiconductor is reduced by VF

⎟⎠⎞

⎜⎝⎛ −φ−

= kTVq

Cth

FBn

eNn)(

Barrier for electrons from metal to semiconductor is the same

Net current:

1

)(

1 eNCeNCjjj kTq

CkT

Vq

Csmms

BnFBn

−=−=⎟⎠⎞

⎜⎝⎛ φ−

⎟⎠⎞

⎜⎝⎛ −φ−

→→

1

11

1eeNCj kTqV

kTq

C

CCsmms

FBn

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

⎟⎠⎞

⎜⎝⎛ φ−

→→

UMass Lowell 10.523 - Sanjeev Manohar

21 *TANC C =

⎠⎝

Page 19: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Forward Bias

kTqV

s ejj ⎟⎟⎠

⎞⎜⎜⎝

⎛−= 1

kTq Bn

TAjφ−

⎠⎝

2* kTs eTAj = 2*

2*4 kqmπ3

4*h

kqmA eπ=Effective Richardson Constant

Derive by determining current with integral of velocity and density of states

∫ ∫== dEEfEgEvEdNEvj )()()()()(

UMass Lowell 10.523 - Sanjeev Manohar

∫ ∫== dEEfEgEvEdNEvj )()()()()(

Page 20: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Forward current density vs applied voltage of W-Si and W-GaAs diodes

UMass Lowell 10.523 - Sanjeev Manohar

Page 21: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Thermionic Emission over the barrier – low doping

UMass Lowell 10.523 - Sanjeev Manohar

Page 22: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Tunneling through the barrier – high doping

UMass Lowell 10.523 - Sanjeev Manohar

Page 23: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Tunneling through the barrier

Narrow depletion width for high doping – tunneling

F QM 101From QM 101:Wavefunction is exponential depending on barrier width and heightprobability of making it to the other side ~ ψ2

xti eetx α−ω−=Ψ ),( ( )2

2h

EUm −=α

[ ]2/)(22exp~ hqVqmWI Bn −φ−

Dbis qNVVW /)(2 −ε=

( )⎤⎡ −φ− B VCI 2 h/4 mCUMass Lowell 10.523 - Sanjeev

Manohar

( )⎥⎦

⎤⎢⎣

⎡ φ

D

Bn

NVCI 2exp~ h/42 smC ε=

Page 24: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Contact resistance

Specific Contact Resistance(based on current density)

1−⎞⎛ ∂J

0=⎟⎠⎞

⎜⎝⎛∂∂≡

VC V

JR

( )⎥⎤

⎢⎡ −φ− Bn VCI 2exp~

For tunneling current through barrier (high doping):

⎥⎦

⎢⎣ DN

I exp

⎞⎛ φC⎟⎟⎠

⎞⎜⎜⎝

⎛ φhD

BnC N

CR 2exp~Ohmic Contact:

UMass Lowell 10.523 - Sanjeev Manohar

Page 25: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Calculated and measured values of specific contact resistance

UMass Lowell 10.523 - Sanjeev Manohar

Page 26: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

MESFET

UMass Lowell 10.523 - Sanjeev Manohar

Page 27: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

MESFET – Qualitative Operation

•No gate voltage – depletion from built-in voltage•Positive drain voltage causes reverse bias •Increased depletion width with increased V

)( WaZNqL

ALR

Dn −μ=ρ=

UMass Lowell 10.523 - Sanjeev Manohar

Page 28: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

MESFET – Qualitative Operation

At higher drain voltages, W=a – pinch off at VDsat

s

Dbi

WqNVVε

=−2

2

bis

DDsat VaqNV −

ε=

2

2

UMass Lowell 10.523 - Sanjeev Manohar

s

Page 29: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

MESFET – Qualitative Operation

Above pinchoff voltage, drain current does not increaseVoltage at pinch-off point is still Vdsat

UMass Lowell 10.523 - Sanjeev Manohar

Page 30: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

MESFET – Qualitative Operation

Addition of gate voltage (negative) increases baseline depletion widthPinch-off occurs soonerSaturation voltage and current are reduced (narrower channel)

GbiD

Dsat VVaqNV −−ε

=2

2

UMass Lowell 10.523 - Sanjeev Manohar

sε2

Page 31: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

I-V Characteristics – Linear Region

[ ])(yWaZNqdyIdRIdV D

D μ== [ ])(yWaZNq Dn −μ

( )biGs VVyVW ++ε )(2)( ( )D

biGs

qNyyW =

)()(

qND

UMass Lowell 10.523 - Sanjeev Manohar

WdWqNdVs

D

ε=

Page 32: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

I-V Characteristics – Linear Region

[ ]

[ ] WdWqNWaZNq

dVyWaZNqdyI

DDn

DnD

−μ=

−μ= )(

[ ]qs

Dn εμ

∫ −μ

=22

)(2

WdWWaNqIW

Dn ∫ε= )(

1

WdWWaL

IWs

D

( ) ( )⎥⎦⎤

⎢⎣⎡ −−−

εμ

= 31

32

21

22

22

32

2WWWWa

LNqIs

DnD

UMass Lowell 10.523 - Sanjeev Manohar

Page 33: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

I-V Characteristics – Linear Region

D

biGs

qNVVW )(2

1+ε

=

D

biGDs

qNVVVW )(2

2++ε

=

biGbiGDDPD V

VVV

VVVVVII

⎥⎥⎤

⎢⎢⎡

⎟⎠

⎞⎜⎝

⎛ ++⎟

⎞⎜⎝

⎛ ++−=

32

32 2

32

3

DnP

PPP

aNqZI

VVV

μ≡

⎥⎦⎢⎣ ⎠⎝⎠⎝ 33322

DP

sP

aqNV

L

ε

2

22

UMass Lowell 10.523 - Sanjeev Manohar

sP ε2

Page 34: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Normalized ideal current-voltage characteristics of a MESFET

UMass Lowell 10.523 - Sanjeev Manohar

with VP = 3.2 V.

Page 35: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

UMass Lowell 10.523 - Sanjeev Manohar

Page 36: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Transconductance

⎤⎡ 33

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++⎟

⎞⎜⎝

⎛ ++−=

23

23

32

32

P

biG

P

biGD

P

DPD V

VVV

VVVVVII

⎦⎣

In Saturation:biGDP VVVV ++= biGPDsat VVVV −−=⇒

⎤⎡

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++⎟

⎞⎜⎝

⎛ ++−−−

−−=

23

23

32

32

P

biG

P

biGbiGP

P

biGPPDsat V

VVV

VVVVVV

VVVII

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++−

+−=

23

32

321

P

biG

P

biGPDsat V

VVV

VVII

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++

+−=

⎥⎦⎢⎣ ⎠⎝

23

32

31 biGbiG

PDsat VVV

VVVII

UMass Lowell 10.523 - Sanjeev Manohar

⎥⎦⎢⎣ ⎠⎝33 PP VV

Page 37: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Transconductance

( ) ⎤⎡ ⎞⎛ 23

21 VVVV( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++

+−=

2

32

31

P

biG

P

biGPDsat V

VVV

VVII

∂∂

=VG

Dm V

IgD

( ) ( ) ⎥⎦

⎤⎢⎣

⎡++−= −

biGPP

Pm VVVV

Ig

D

23*

3210 2

12

3

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−=

P

biG

P

Pm V

VVVIg 1

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−

μ=

P

biGDnm V

VVL

aqNZg 12

UMass Lowell 10.523 - Sanjeev Manohar

Page 38: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Equivalent Circuit - High Frequency AC

• Input stage looks like capacitances gate-to-channelO t t it i d d i t it• Output capacitances ignored -drain-to-source capacitance small

UMass Lowell 10.523 - Sanjeev Manohar

Page 39: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Maximum Frequency (not in saturation)

• Ci is capacitance per unit area and Cgate is total capacitance of the gate

ZLCC =

• F=fmax when gain=1 (iout/iin=1)

ZLCC igate =

max g ( out in )

gate

m

Cgfπ

=max 2

Sgate

g

WZLC ⎟

⎠⎞

⎜⎝⎛ ε=

Dn

Dn

LaqNL

aqNZ

fεπ

μ=

⎞⎛ ε

μ

≈ 2

2

max 2

2

UMass Lowell 10.523 - Sanjeev Manohar

sS LW

ZL επ⎟⎠⎞

⎜⎝⎛ επ 22

Page 40: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Velocity Saturation

sDsD qNWaZqnAI υ−=υ= )(*

Drain current:

Transconductance

WZ

VW

WI

VIg ss

G

D

G

Dm

ευ=

∂∂

∂∂

=∂∂

=GG

Cutoff Frequency:

Cgf m=

2max

WZ

Cgateπ

/

2max

UMass Lowell 10.523 - Sanjeev Manohar

( ) LWZLWZf S

s

ss

πε

=επευ

=2/2

/max

Page 41: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Figure 7.15. The drift velocity versus the electric field for electrons in various semiconductor materials.

UMass Lowell 10.523 - Sanjeev Manohar

Page 42: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

III-V MESFETs – GaAs and InP

+Semi-insulating material – high speed devices (like built-in SOI)

+High Electron Mobility/Saturation Velocity – high speed

+Direct Bandgap – photonic devices

+Heterostructures bandgap engineering+Heterostructures – bandgap engineering

-No Simple Oxides – MOSFETS not viable – no equivalent to SiO2

UMass Lowell 10.523 - Sanjeev Manohar

Page 43: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

III-V Transistors: GaAs

No simple oxides for GOX – MOSFETS not widely used

MESFET structure more common – mesa structuredepletion mode transistor

Source DrainGate

Semi-insulating Substrate

UMass Lowell 10.523 - Sanjeev Manohar

Page 44: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Depletion Mode GaAs MESFETDepletion Mode GaAs MESFET

•N-type material – high electron mobility

•Mesa etch for isolation on SI substrate

•Ohmic contacts for Source and Drain – alloyed

•Shottky contact for Gate Ti•Shottky contact for Gate – Ti

•Recessed gate – depth determines threshold

UMass Lowell 10.523 - Sanjeev Manohar

Page 45: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

GaAs MESFET Fabrication

Si Implant

Si3N4

Semi-insulating GaAs Substrate

Deposit Si3N4 layer implant Si and anneal for form n-type material

UMass Lowell 10.523 - Sanjeev Manohar

Deposit Si3N4 layer, implant Si and anneal for form n type material Can also grow n-type epi layer by MBE or MOCVD

Page 46: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

N-type GaAs

Semi-insulating GaAs Substrate

Ohmic contact formation for source and drain – NiAuGeOhmic contact formation for source and drain – NiAuGe

evaporate Au(88wt%)Ge(12wt%) then Ni (+Au)l 30 i t 450°C i H /Nanneal 30 min at 450°C in H2/N2

Au reacts with Ga from substrate – Ga vacanciesGe fills Ga vacancies – heavy n-type doping

UMass Lowell 10.523 - Sanjeev Manohar

y y glow contact resistance ohmic Ge doping not uniform – spreading resistance effect

Page 47: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Semi-insulating GaAs Substrate

Gate Recess Etch

Wet etchingWet etchingChannel depth determines pinch-off voltageChannel resistance can be monitored in-situ

UMass Lowell 10.523 - Sanjeev Manohar

Page 48: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Semi-insulating GaAs Substrate

Mesa Recess Etch

Wet etchingWet etchingSemi-insulating substrate for device isolation

UMass Lowell 10.523 - Sanjeev Manohar

Page 49: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

Semi-insulating GaAs SubstrateSemi-insulating GaAs Substrate

Shottky Gate Electrode deposition – Ti/Pt/Au or Ti/Pd/Au

Almost any metal will form barrieryGa diffuses in many metalsTi –contact Pt or Pd barrier layer

UMass Lowell 10.523 - Sanjeev Manohar

Pt or Pd barrier layerAu added for low resistivity

Page 50: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

GaAs Digital Circuits:

Direct Coupled FET Logic (DCFL) – lowest power and highest level of integration

Uses enhancement and depletion mode transistors

Enhancement mode transistors madeusing thinner gate recess ordifferent doping to changedifferent doping to changethreshold

UMass Lowell 10.523 - Sanjeev Manohar

Page 51: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

DCFL Fabrication Sequence

UMass Lowell 10.523 - Sanjeev Manohar

Page 52: Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET · MESFET structure more common – mesa structure depletion mode transistor Source Drain Gate Semi-insulating

DCFL Fabrication Sequence(cont.)

UMass Lowell 10.523 - Sanjeev Manohar