Metal-Catalyzed Reactions in Water (Dixneuf/Metal-Catalyzed Reactions in Water) || Front Matter

16
Edited by Pierre H. Dixneuf and Victorio Cadierno Metal-Catalyzed Reactions in Water

Transcript of Metal-Catalyzed Reactions in Water (Dixneuf/Metal-Catalyzed Reactions in Water) || Front Matter

Edited by

Pierre H. Dixneuf and Victorio Cadierno

Metal-Catalyzed Reactions in Water

Related Titles

Li, C.-J., Perosa, A., Selva, M., Boethling,R., Voutchkova, A. (eds.)

Handbook of Green Chemistry -Green Processes

Series: Handbook of Green Chemistry (Set III)

Series edited by Anastas, P.T.

2012

ISBN: 978-3-527-31576-5

Leitner, W., Jessop, P.G., Li, C.-J.,Wasserscheid, P., Stark, A. (eds.)

Handbook of Green Chemistry -Green Solvents

Series: Handbook of Green Chemistry (Set II)

Series edited by Anastas, P.T.

2010

ISBN: 978-3-527-31574-1

Cornils, B., Herrmann, W. A., Wong, C.-H.,Zanthoff, H.-W. (eds.)

Catalysis from A to ZA Concise Encyclopedia

Fourth, Completely Revised and Enlarged

Edition

2012

ISBN: 978-3-527-33307-3

Steinborn, D.

Fundamentals ofOrganometallic Catalysis

2012

ISBN: 978-3-527-32717-1

Ertl, G., Knozinger, H., Schuth, F.,Weitkamp, J. (eds.)

Handbook of HeterogeneousCatalysis8 Volume Set

Second, Completely Revised and Enlarged

Edition

2008

ISBN: 978-3-527-31241-2

Edited by Pierre H. Dixneuf and Victorio Cadierno

Metal-Catalyzed Reactions in Water

The Editors

Prof. Dr. Pierre H. DixneufCNRS-Universite de Rennes 1Catalyse et OrganometalliquesCampus de Beaulieu, Bat10c35042 Rennes CedexFrance

Dr. Victorio CadiernoUniversidad de OviedoDepartamento de QuımicaOrganica e InorganicaInstituto Universitario deQuımica Organometalica‘‘Enrique Moles’’(Unidad Asociada al CSIC)Facultad de QuımicaJulıan Claverıa 833006 OviedoSpain

All books published by Wiley-VCH arecarefully produced. Nevertheless, authors,editors, and publisher do not warrant theinformation contained in these books,including this book, to be free of errors.Readers are advised to keep in mind thatstatements, data, illustrations, proceduraldetails or other items may inadvertently beinaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-PublicationDataA catalogue record for this book is availablefrom the British Library.

Bibliographic information published by theDeutsche NationalbibliothekThe Deutsche Nationalbibliotheklists this publication in the DeutscheNationalbibliografie; detailed bibliographicdata are available on the Internet at<http://dnb.d-nb.de>.

2013 Wiley-VCH Verlag & Co. KGaA,Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those oftranslation into other languages). No partof this book may be reproduced in anyform – by photoprinting, microfilm, or anyother means – nor transmitted or translatedinto a machine language without writtenpermission from the publishers. Registerednames, trademarks, etc. used in this book,even when not specifically marked as such,are not to be considered unprotected by law.

Print ISBN: 978-3-527-33188-8ePDF ISBN: 978-3-527-65682-0ePub ISBN: 978-3-527-65681-3mobi ISBN: 978-3-527-65680-6oBook ISBN: 978-3-527-65679-0

Cover Design Grafik-Design Schulz,FußgonheimTypesetting Laserwords Private Limited,Chennai, IndiaPrinting and Binding Markono Print MediaPte Ltd, Singapore

V

Contents

Preface XIIIList of Contributors XV

1 Metal-Catalyzed Cross-Couplings of Aryl Halides to Form C–C Bonds inAqueous Media 1Kevin H. Shaughnessy

1.1 Introduction 11.2 Aqueous-Phase Cross-Coupling Using Hydrophilic Catalysts 31.2.1 Hydrophilic Triarylphosphines and Diarylalkylphospines 31.2.2 Sterically Demanding, Hydrophilic Trialkyl and

Dialkylbiarylphosphines 71.2.3 NHC Ligands 101.2.4 Nitrogen Ligands 131.2.5 Palladacyclic Complexes 151.3 Cross-Coupling in Aqueous Media Using Hydrophobic Ligands 171.3.1 Surfactant-Free Reactions 171.3.2 Surfactant-Promoted Reactions 201.3.2.1 Cationic Surfactants 211.3.2.2 Anionic Surfactants 221.3.2.3 Nonionic Surfactants 221.4 Heterogeneous Catalysts in Aqueous Media 251.4.1 Supported Palladium–Ligand Complexes 251.4.1.1 Polymer-Supported Palladium Complexes 251.4.1.2 Palladium Complexes Supported on Inorganic Materials 271.4.2 Nanoparticle-Catalyzed Coupling 291.4.2.1 Unsupported Palladium Nanoparticle Catalysts 291.4.2.2 Polymer-Supported Nanoparticles 301.4.2.3 Inorganic-Supported Nanoparticle Catalysts 331.5 Special Reaction Conditions 351.5.1 Microwave Heating 351.5.2 Ultrasound 361.5.3 Thermomorphic Reaction Control 36

VI Contents

1.6 Homogeneous Aqueous-Phase Modification of Biomolecules 371.6.1 Amino Acids and Proteins 371.6.2 Nucleosides and Nucleotides 381.7 Conclusion 39

References 39

2 Metal-Catalyzed C–H Bond Activation and C–C Bond Formation inWater 47Bin Li and Pierre H. Dixneuf

2.1 Introduction 472.2 Catalytic Formation of C–C Bonds from spC–H Bonds in

Water 482.2.1 Catalytic Nucleophilic Additions of Alkynes in Water 482.2.2 Addition of Terminal Alkynes to C≡C Bonds in Water 492.2.3 The Sonogashira-Type Reactions in Water 492.3 Activation of sp2C–H Bonds for Catalytic C–C Bond Formation in

Water 532.3.1 Homocoupling of sp2C–H Bonds 532.3.2 Direct C–H Bond Arylation of Alkenes and Aryl Boronic Acid

Derivatives 552.3.3 Cross-Coupling Reactions of sp2C–H Bonds with sp2C-X Bonds in

Water 562.3.3.1 Direct C–H Bond Arylations with Aryl Halides and Palladium

Catalysts 562.3.3.2 Direct C–H Bond Arylations with Aryl Halides and Ruthenium

Catalysts 622.3.4 Cross-Coupling Reactions of sp2C–H Bonds with Carbon

Nucleophiles in Water 642.3.5 Oxidative Cross-Coupling of sp2C–H Bond Reactions in Water 652.3.5.1 Alkenylations of Arenes and Heteroarenes with Palladium

Catalysts 652.3.5.2 Alkenylation of Heterocycles Using In(OTf)3 Catalyst 682.3.5.3 Alkenylation of Arenes and Heteroarenes with Ruthenium(II)

Catalysts 692.4 Activation of sp3C–H Bonds for Catalytic C–C Bond Formation in

Water 732.4.1 Selective sp3C–H Activation of Ketones 732.4.2 Catalytic Enantioselective Alkynylation of sp3C–H Bonds 742.4.3 Cross-Dehydrogenative Coupling between sp3C–H Bonds Adjacent to

a Heteroatom 752.4.4 Catalytic Enolate Carbon Coupling with (Arene) C–X Carbon 772.4.5 Arylation of sp3C–H Bonds with Aryl Halides or sp2C–H Bond 792.5 Conclusion 80

Acknowledgments 81References 81

Contents VII

3 Catalytic Nucleophilic Additions of Alkynes in Water 87Xiaoquan Yao and Chao-Jun Li

3.1 Introduction 873.2 Catalytic Nucleophilic Additions of Terminal Alkynes with Carbonyl

Derivatives 883.2.1 Reaction with Acid Chlorides 893.2.2 Reaction with Aldehydes 893.2.3 Reaction with Ketones 953.3 Addition of Terminal Alkyne to Imine, Tosylimine, Iminium Ion, and

Acyl Iminium Ion 963.3.1 Reaction with Imines 973.3.2 Reaction with Iminium Ions 993.3.3 Reaction with Acylimine and Acyliminium Ions 1023.4 Direct Conjugate Addition of Terminal Alkynes 1033.5 Conclusions 105

Acknowledgments 105References 106

4 Water-Soluble Hydroformylation Catalysis 109Duc Hanh Nguyen, Martine Urrutigoıty, and Philippe Kalck

4.1 Introduction 1094.2 Hydroformylation of Light C2 –C5 Alkenes in the RCH/RP

Process 1104.3 Hydroformylation of Alkenes Heavier than C5 1154.3.1 Water-Soluble and Amphiphilic Ligands 1164.3.2 Phase-Transfer Agents: Cyclodextrins and Calixarenes 1204.3.3 Supported Aqueous-Phase Catalysis 1254.4 Innovative Expansions 1284.4.1 Thermoregulated Catalytic Systems 1284.4.2 Ionic Liquids and Carbon Dioxide Induced Phase Switching 1294.4.3 Cascade Reactions 1304.5 Conclusion 132

References 133

5 Green Catalytic Oxidations in Water 139Roger A. Sheldon

5.1 Introduction 1395.2 Examples of Water-Soluble Ligands 1405.3 Enzymatic Oxidations 1405.4 Biomimetic Oxidations 1425.5 Epoxidation, Dihydroxylation, and Oxidative Cleavage of Olefins 1435.5.1 Tungsten-Based Systems 1445.5.2 Manganese- and Iron-Based Systems 1455.5.3 Ruthenium and Platinum Catalysts 1485.5.4 Other Systems 149

VIII Contents

5.6 Alcohol Oxidations 1515.6.1 Tungsten (VI) Catalysts 1515.6.2 Palladium Diamine Complexes as Catalysts 1535.6.3 Noble Metal Nanoparticles as Quasi-Homogeneous Catalysts 1565.6.4 Ruthenium and Manganese Catalysts 1585.6.5 Organocatalysts: Stable N-Oxy Radicals and Hypervalent Iodine

Compounds 1585.6.6 Enzymatic Oxidation of Alcohols 1615.7 Sulfoxidations in Water 1615.7.1 Tungsten- and Vanadium-Catalyzed Oxidations 1625.7.2 Enantioselective Sulfoxidation with Enzymes 1635.7.3 Flavins as Organocatalysts for Sulfoxidation 1655.8 Conclusions and Future Outlook 166

References 166

6 Hydrogenation and Transfer Hydrogenation in Water 173Xiaofeng Wu and Jianliang Xiao

6.1 Introduction 1736.2 Water-Soluble Ligands 1746.2.1 Water-Soluble Achiral Ligands 1756.2.2 Water-Soluble Chiral Ligands 1756.3 Hydrogenation in Water 1766.3.1 Achiral Hydrogenation 1766.3.1.1 Hydrogenation of Olefins 1766.3.1.2 Hydrogenation of Carbonyl Compounds 1836.3.1.3 Hydrogenation of Aromatic Rings 1856.3.1.4 Hydrogenation of Other Organic Groups 1876.3.1.5 Hydrogenation of CO2 1886.3.2 Asymmetric Hydrogenation 1916.3.2.1 Asymmetric Hydrogenation of Olefins 1916.3.2.2 Asymmetric Hydrogenation of Carbonyl and Related

Compounds 1946.3.2.3 Asymmetric Hydrogenation of Imines 1966.4 Transfer Hydrogenation in Water 1976.4.1 Achiral Transfer Hydrogenation 1986.4.1.1 Achiral Transfer Hydrogenation of Carbonyl Compounds 1986.4.1.2 Achiral Transfer Hydrogenation of Imino Compounds 2036.4.2 Asymmetric Transfer Hydrogenation 2046.4.2.1 Asymmetric Transfer Hydrogenation of C=C Double Bonds 2046.4.2.2 Asymmetric Transfer Hydrogenation of Simple Ketones 2046.4.2.3 Asymmetric Transfer Hydrogenation of Functionalized Ketones 2096.4.2.4 Asymmetric Transfer Hydrogenation of Imines 2136.4.3 Asymmetric Transfer Hydrogenation with Biomimetic Catalysts 2196.4.4 Asymmetric Transfer Hydrogenation with Immobilized

Catalysts 222

Contents IX

6.5 Role of Water 2286.5.1 Coordination to Metals 2286.5.2 Acid–Base Equilibrium 2296.5.3 H–D Exchange 2306.5.4 Participation in Transition States 2316.6 Concluding Remarks 232

References 233

7 Catalytic Rearrangements and Allylation Reactions in Water 243Victorio Cadierno, Joaquın Garcıa-Alvarez, and Sergio E. Garcıa-Garrido

7.1 Introduction 2437.2 Rearrangements 2447.2.1 Isomerization of Olefinic Substrates 2447.2.1.1 Isomerization of Allylic Alcohols, Ethers, and Amines 2447.2.1.2 Isomerization of Other Olefins 2527.2.2 Cycloisomerizations and Related Cyclization Processes 2567.2.3 Other Rearrangements 2617.3 Allylation Reactions 2647.3.1 Allylic Substitution Reactions 2657.3.1.1 Palladium-Catalyzed Allylic Substitution Reactions (Tsuji–Trost

Allylations) 2657.3.1.2 Other Metal-Catalyzed Allylic Substitution Reactions 2727.3.2 Allylation Reactions of C=O and C=N Bonds 2737.3.3 Other Allylation Reactions in Aqueous Media 2787.4 Conclusion 279

Acknowledgments 279References 280

8 Alkene Metathesis in Water 291Karol Grela, Łukasz Gułajski, and Krzysztof Skowerski

8.1 Introduction 2918.1.1 General Introduction to Olefin Metathesis 2918.1.2 Metathesis of Water-Soluble Substrates 2938.1.3 Metathesis of Water-Insoluble Substrates 3008.1.3.1 ‘‘Enabling Techniques’’ for Olefin Metathesis in Aqueous Media 3008.1.3.2 Other Additives and Techniques 3058.2 Examples of Applications of Olefin Metathesis in Aqueous

Media 3088.2.1 Polymerizations 3088.2.2 Metathesis of Water-Soluble Substrates 3128.2.2.1 Ring-Closing Metathesis and Enyne Cycloisomerization of

Water-Soluble Substrates 3128.2.2.2 Cross Metathesis of Water-Soluble Substrates 3158.2.3 Cross Metathesis with Substrate Having an Allylic Heteroatom 3168.2.4 Metathesis of Water-Insoluble Substrates 318

X Contents

8.2.4.1 Ring-Closing Metathesis of Water-Insoluble Substrates 3188.2.4.2 Enyne Cycloisomerization 3288.2.4.3 Cross Metathesis of Water-Insoluble Substrates 3288.3 Conclusions and Outlook 332

Acknowledgments 333References 333

9 Nanocatalysis in Water 337R. B. Nasir Baig and Rajender S. Varma

9.1 Introduction 3379.2 Nanocatalysis 3389.3 Effects of Size of Nanocatalysts 3399.4 Transition-Metal Nanoparticles 3409.4.1 Synthesis of Transition-Metal Nanoparticles 3419.4.2 Greener Synthesis of Nanomaterials 3419.4.3 Immobilization of M-NPs on a Solid Support 3439.5 Catalytic Applications of Transition-Metal-Based Nanomaterials 3439.6 Pd Nanoparticles in Organic Synthesis 3449.6.1 Pd Nanoparticles in Suzuki Reactions 3449.6.2 Pd Nanoparticles in the Heck Reactions 3509.6.3 Pd Nanoparticles in the Sonogashira Reactions 3549.6.4 Pd Nanoparticles in the Stille Coupling Reactions 3599.6.5 Pd Nanoparticles in the Hiyama Couplings 3609.6.6 Pd Nanoparticles in the Tsuji–Trost Reaction 3619.7 Nanogold Catalysis 3629.7.1 Coupling Reactions 3629.7.1.1 The Suzuki–Miyaura Cross-Coupling Reaction 3629.7.1.2 Homocoupling of Arylboronic Acid 3659.7.2 Reduction Reactions 3669.7.2.1 Hydrogenation of Benzene 3669.7.2.2 Nitro group reduction 3679.7.3 Oxidation Reactions 3689.7.3.1 Benzylic and Allylic C–H Bonds Oxidation 3689.7.3.2 Epoxidation of Propylene 3699.7.3.3 Oxidation of Alcohols 3709.7.4 Hydration of Alkynes 3719.8 Copper Nanoparticles 3729.8.1 Phenylselenylation of Aryl Iodides and Vinyl Bromides 3729.8.2 Cul-Nanoparticle-Catalyzed Selective Synthesis of Phenols, Anilines,

and Thiophenols 3739.8.3 Hydrogenation of Azides over Copper Nanoparticles 3739.8.4 Cu-Nanoparticle-Catalyzed Synthesis of Aryl Dithiocarbamate 3749.8.5 Click Chemistry 3759.9 Ruthenium Nanocatalysts 3769.10 Magnetic Iron Oxide Nanoparticle 378

Contents XI

9.10.1 Synthesis of Heterocycles 3789.10.2 Homocoupling of Arylboronic Acid 3819.10.3 Rh Anchored on Fe3O4 Nanoparticles 3829.11 Cobalt Nanoparticles 3849.12 Conclusion 386

References 387

Index 395

XIII

Preface

Metal catalysis represents a frontier field of research. The ability of metal complexesto catalyze organic reactions, and to selectively create new ones, is now the basisof the most powerful strategies leading to new synthetic methods. Homogeneouscatalysis has brought a revolution in fine chemical synthesis, drug and cosmeticdiscovery, in the preparation of molecular materials and polymers, and it is moreactive than ever before.

Catalysis, one of the twelve principles of Green Chemistry, is offers selectiveprocesses with energy and atom economy and is an essential partner for sustainablemanufacturing in the chemical industry. Within this context, the use of a safe,nontoxic, eco-friendly, and cheap solvent is also advised. Water is probably themost appealing candidate as an easily available, noninflammable, nontoxic, andrenewable solvent. Consequently, the use of water as a solvent in synthetic organicchemistry and materials science has spread throughout the chemical communityat a staggering pace during the last two decades.

The combination of metal catalysis and water has led in recent years to thedevelopment of a huge number of new and greener synthetic methodologies.Although the hydrophobic character of most organic compounds has been for longtime considered as a major drawback, it is nowadays well documented that evenwhen the reaction medium is heterogeneous, ‘‘on water’’ conditions, an enhance-ment on the catalyst activity and/or selectivity can be observed by using water assolvent. The low solubility and inherent instability of organometallic compoundsin water is another limitation that has also been largely surpassed in recent years bydesigning new hydrophilic ligands and more robust, air- and water-stable catalysts.Moreover, the use of metal catalysts in water or in a two-phase system offersother advantages versus more classical organic solvents, that is, it simplifies theseparation of the products, and that of catalyst, thus favoring water recycling, a veryimportant aspect for large-scale chemical processes. New discovered techniquesin nanofiltration and in recovery of metal ions from water contribute to this field.All these facts make catalysis in aqueous systems a very active field of researchtoday, both from an academic and an industrial point of view. In fact, metalcatalysis in water is now in the heart of the main fields of contemporary chemicalresearch.

XIV Preface

The content of this volume gathers the main aspects and potentials of metalcatalysis in water, including C-C cross couplings (Chapter 1), C-H bond activations(Chapter 2), nucleophilic additions of alkynes (Chapter 3), hydroformylations(Chapter 4), oxidation processes (Chapter 5), hydrogenations (Chapter 6), rear-rangements and allylations (Chapter 7), olefin metathesis reactions (Chapter 8),and nanocatalysts in water (Chapter 9).

The aim of this book is to introduce the readers to this topic through cutting-edgeresults from the recent literature, and the know-how shared by the chapter authors.This volume should be helpful to academic and industrial researchers involvedin the fields of catalysis, new greener organic synthetic methods, water-solubleligands, and catalysts designing and also to teachers and students interested ininnovative and sustainable chemistry.

We are grateful to the Wiley-VCH team who made this project practical and toall the contributors to this volume for their effort and enthusiasm in sharing theirexpertise to join this aquatic editorial enterprise.

Pierre H. Dixneuf

Victorio Cadierno

XV

List of Contributors

R. B. Nasir BaigU. S. Environmental ProtectionAgencySustainable Technology DivisionNational Risk ManagementResearch Laboratory26 West Martin Luther King DriveCincinnatiOH 45268USA

Victorio CadiernoUniversidad de OviedoDepartamento de QuımicaOrganica e InorganicaInstituto Universitario deQuımica Organometalica‘‘Enrique Moles’’ (UnidadAsociada al CSIC)Facultad de QuımicaJulian Claverıa 833006 OviedoSpain

Pierre H. DixneufUMR 6226: CNRS – Universitede RennesLaboratoire ‘‘Organometalliques,Materiaux, Catalyse’’Institut Sciences Chimiques deRennes35042 RennesFrance

Joaquın Garcıa-AlvarezUniversidad de OviedoDepartamento de QuımicaOrganica e InorganicaInstituto Universitario deQuımica Organometalica‘‘Enrique Moles’’ (UnidadAsociada al CSIC)Facultad de QuımicaJulian Claverıa 833006 OviedoSpain

Sergio E. Garcıa-GarridoUniversidad de OviedoDepartamento de QuımicaOrganica e InorganicaInstituto Universitario deQuımica Organometalica‘‘Enrique Moles’’ (UnidadAsociada al CSIC)Facultad de QuımicaJulian Claverıa 833006 OviedoSpain

XVI List of Contributors

Karol GrelaUniversity of WarsawFaculty of ChemistryOrganometallic SynthesisLaboratory, LBSZwirki i Wigury Street 10102-089 WarsawPoland

Łukasz GułajskiApeiron Synthesis Sp. z o.o.Klecinska 12554-413 WrocławPoland

Philippe KalckCNRSLaboratoire de Chimie deCoordinationComposante ENSIACET InsitutNational Polytechnique deToulouse4 allee Emile Monso31030 Toulouse Cedex 4France

and

Universite de ToulouseUPS-INPT31030 Toulouse Cedex 4France

Bin LiUMR 6226: CNRS –Universite deRennesLaboratoire ‘‘Organometalliques,Materiaux, Catalyse’’Institut Sciences Chimiques deRennes35042 RennesFrance

Chao-Jun LiMcGill UniversityDepartment of ChemistryGreen Chemistry and OrganicSynthesis Laboratory801 Sherbroke Street WestMontrealQuebec H3A 2K6Canada

Duc Hanh NguyenCNRSLaboratoire de Chimie deCoordinationComposante ENSIACET InsitutNational Polytechnique deToulouse4 allee Emile Monso31030 Toulouse Cedex 4France

and

Universite de ToulouseUPS-INPT31030 Toulouse Cedex 4France

Kevin H. ShaughnessyDepartment of ChemistryThe University of Alabama250 Hackberry LaneBox 870336TuscaloosaAL 35487-0336USA

Roger A. SheldonDelft University of TechnologyDepartment of BiotechnologyJulianalaan 136262 8BL DelftThe Netherlands

List of Contributors XVII

Krzysztof SkowerskiApeiron Synthesis Sp. z o.o.Klecinska 12554-413 WrocławPoland

Martine UrrutigoıtyCNRSLaboratoire de Chimie deCoordinationComposante ENSIACET InsitutNational Polytechnique deToulouse4 allee Emile Monso31030 Toulouse Cedex 4France

and

Universite de ToulouseUPS-INPT31030 Toulouse Cedex 4France

Rajender S. VarmaU. S. Environmental ProtectionAgencySustainable Technology DivisionNational Risk ManagementResearch Laboratory26 West Martin Luther King DriveCincinnatiOH 45268USA

Xiaofeng WuUniversity of LiverpoolDepartment of ChemistryLiverpool Centre for Materialsand CatalysisCrown StreetLiverpool, L69 7ZDUK

Jianliang XiaoUniversity of LiverpoolDepartment of ChemistryLiverpool Centre for Materialsand CatalysisCrown StreetLiverpool, L69 7ZDUK

Xiaoquan YaoMcGill UniversityDepartment of ChemistryGreen Chemistry and OrganicSynthesis Laboratory801 Sherbroke Street WestMontrealQuebec H3A 2K6Canada