Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

22
Technische Universität München From cut twig to satellite understanding the full response of phenology to climate change Annette Menzel Ecoclimatology TUM School of Life Sciences Weihenstephan Technische Universität München [email protected] Our Common Future, 08.07.2015, Paris

Transcript of Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Page 1: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

From cut twig to satellite – understanding the

full response of phenology to climate change

Annette Menzel

Ecoclimatology

TUM School of Life Sciences Weihenstephan

Technische Universität München

[email protected]

Our Common Future, 08.07.2015, Paris

Page 2: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Phenology – an old research field

www.abc.net.au

Page 3: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

New importance as footprint of climate change

www.usanpn.org

Walther et al. Nature 2002

Ellwood et al. PLoS ONE 2013

Page 4: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

• Earlier spring events, longer growing season

• Range (distribution) shifts

• Abundance changes, climate linked invasions

• Changes in community composition, productivity

IPCC 2007, WGII, Ch01

Observed impacts on …. terrestrial biological systems

… on agriculture and forestry

• Advance in phenology

• Limited responses in crop management

• Increase / decrease in (forest) productivity

• Vulnerability to heat waves, droughts and floods

… on human health

• Earlier onset and increases in the seasonal production

of allergenic pollen in mid and high latitudes in the

Northern Hemisphere

• Excess mortality due to heat waves

• Changes in the distribution of some human and animal

disease vectors in parts of Europe / Africa

Page 5: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Significant changes in observations of natural systems

IPCC 2007, WGII, SPM

Page 6: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Climatological feedbacks & ecological interactions

Morisette et al. 2009

Page 7: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Observational methods / data sources

Remote sensing AVHRR

Met service observer networks

MODIS, Rapid Eye, AMSR-E

Digital (research) cameras

Web cameras

Volunteer networks

Citizen science projects

Amateur observers Historical (museum, herbar, pictures) S

cale

/ s

pa

tial covera

ge

Experiments /

Gradients *

Octocopter, Drones

* provenance trials, common garden, field, glasshouse, growth cambers

Page 8: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

First global evidence of observed changes in the 1990s

Menzel & Fabian Nature 1999

Myneni et al. Nature 1997

CO2

Keeling et al. Nature 1996

Page 9: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Linking phenology across scales and methods

Validation challenging due to mismatches in scales, lack of data, subpixel mixing

Jeong et al. 2011

Correspondence of

repeated digital camera

measures with ground

observations

Systematic model bias for

Fluxnet sites, interannual

variability in phenology

mostly not captured (Richardson et al. 2012)

Page 10: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Role of chilling and photoperiod

Photoperiod climax pioneer

native invasive / ornamental

oceanic continental

Chilling native invasive / ornamental

forcing

forcing

?

daylength chilling

Page 11: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Twig / cutting experiments

Page 12: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

• Photoperiodic effects for 5 late successional native / 14 species (Basler & Körner 2012)

• 1/17 photosensitive, chilling requirements in 50 species vary with functional

groups invasive shrubs < native shrubs < native trees (Polgar et al. 2013)

• Full factorial photoperiodic / chilling experiment revealed (Laube et al. 2014)

Results across sets of species and continents

o 34 / 36 chilling

sensitive, pioneer /

invasive < climax

o 12 / 36 photosensitive,

minor effect size, not

restricted to oceanic /

climax species

o No sign. photo-effect

when chilling completed

Page 13: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Menzel et al. GCB 2006

2.3 – 5.1 days / decade

Spatio-temporal differences in temperature responses

• Early flowering / leafing species with higher sensitivity

• Warmer sites with smaller sensitivity / less responding

• Less variation with longitude

Cook et al. Ecosystems 2012 Chen et al. PLoS ONE 2014

Page 14: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Vitasse & Basler Eur J Forest Res 2013

2.3 – 5.1 days / decade

Altitudinal differences in temperature responses

• Divergent variation of

responses with altitude

Ziello et al. Clim Res 2009

Leaf unfolding European Beech

Page 15: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Within species variation

bud set of provenances on 01.11.2010

E

S1 E

S2

F3

F1

2

C

H5 I4

D7 D6

D8 PL

9

HU1

4

BG1

0

Capdeville et al. 2015

Taeger et al. 2013

Page 16: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Other drivers in manipulative experiments

• Winter drought delayed flowering by 2 to 4 weeks

• Nitrogen / CO2 delayed flowering in grasses

• Earlier snowmelt advances alpine

grassland phenology

• Potassium, boron, zinc, calcium

associated with earlier flushing

• Air humidity accelerated leaf unfolding

• CO2 lengthens growing season of

grasses in a water limited area

Melgar et al.

HortScience

2010

Cleland et al. PNAS 2006

Laube et al. New Phytologist 2014 Steltzer et al.

Nature 2014

Cornelius et al. JExpBot

Page 17: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Variation in sensitivity with traits

• Annuals > / < perennials (Wolkovich 2012 / Estrella et al. 2007)

• Insect > / < wind pollinated (Fitter & Fitter 2002, Dai et al. 2013 / Ziello et al. 2013)

• Herbaceous perennials > woody or annual species (Bock et al. 2014)

• Divergent responses to spring and winter warming drive flowering trends

Rollison & Kaye

GCB 2012

Cook et al.

PNAS 2012

Page 18: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Flowering phenology Plant - population / community - species range / pollen

• 85% of 232 species

shorten flower duration

at Guernsey (1985-2011)

• First, peak, last flowering rarely shifted

uniformously across 60 species in Montana

(17%), 56% showed stronger first flowering

changes

• First flowering advances more than

full flowering

• Evidence for prolongation of pollen

season

CaraDonna

et al.

PNAS

2014

Bock et al.

GCB 2014

Ziello et al. Ecography 2013

Page 19: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Mismatch / Asynchrony

Examples include

• trophic interaction,

such as herbivorous

insects and hosts,

bird migration and

food resources

• Bird migration and

breeding

Limited evidence for

• marine trophic

levels

• pollination systems

Ovaskainen et al. PNAS 2013

Page 20: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Yield and growth impacts - Less food, better wine ?

• Shortening of phenological phases (sowing to yellow ripeness) in agriculture /

viticulture (e.g. Siebert & Ewert 2012, Bock et al. 2011)

• Forest productivity (e.g. Richardson et al. 2010)

↑↑ GEP, ↑ Respiration, → ↑ NEP, esp. deciduous

• Cambium phenology, xylem / wood formation (e.g. Rossi et al. 2013)

• Conifers synchronise max. growth rate of tree-ring with day length (Rossi et al. 2006)

Page 21: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Adaptation through phenological plasticity

• Perennial species / weaker

responders failed in maintaining

climatic niche, showed greater

northward range shifts (UK)

• Temperature sensitive species

in experiments increased

performance (meta-analysis)

• Biotic triggers in areas with long

growing seasons (Pau et al. 2011)

• Success of invasive species (Wolkovich et al. 2013)

Amano et al.

Proc. R. Soc. B

2014

Cleland et al. Ecology 2012

Page 22: Menzel a 20150708_1500_upmc_jussieu_-_amphi_24

Technische Universität München

Phenology as footprint of climate change requires

• a full understanding of drivers

• a comprehensive explanation of variability in trends and

reponses

• more and novel experimental approaches

for a complete understanding of ecological, cultural and

socioeconomic consequences of phenological changes