Membranes & Membane Proteins

download Membranes & Membane Proteins

of 47

Transcript of Membranes & Membane Proteins

  • 8/13/2019 Membranes & Membane Proteins

    1/47

    Membranes/membrane proteins

    Importance of membranes and membraneproteins

    General requirements for proteins to residein biological membranes

    Different types of membrane proteins

    -helical proteins Trans-membrane helix interactions

  • 8/13/2019 Membranes & Membane Proteins

    2/47

    Biological Membranes

    Highly selective permeability barriers Amphiphilic organization: Hydrophobic in,

    hydrophilic out Fluid mosaic model: liquid and asymmetric

  • 8/13/2019 Membranes & Membane Proteins

    3/47

    Importance of membranes

    Compartimentalization: specific chemical environmentpH, redox potential,enzymatic composition, ioncomposition etc.

  • 8/13/2019 Membranes & Membane Proteins

    4/47

    Higher organization

    Compartimentalization: specific chemical environmentpH, redox potential,enzymatic composition, ion composition etc.

    Lyzosomes contains enzymes fordegradation of macromoleculesat low pH

    Organization into organelles

    Mitochondrion

  • 8/13/2019 Membranes & Membane Proteins

    5/47

    Membrane structures inorganelles

    Inside mitochondria and chloroplasts further compartimentalization

  • 8/13/2019 Membranes & Membane Proteins

    6/47

    Importance of membranes

    Chemical insulators: Charge gradient, energy generationProton gradient, energy generationIon gradients, signaling

    Peter Mitchell's, Chemiosmotic Theory, Nobel prize 1978

  • 8/13/2019 Membranes & Membane Proteins

    7/47

    Chemiosmotic Theory

  • 8/13/2019 Membranes & Membane Proteins

    8/47

  • 8/13/2019 Membranes & Membane Proteins

    9/47

    Fundamental importance

  • 8/13/2019 Membranes & Membane Proteins

    10/47

    Fundamental importance

  • 8/13/2019 Membranes & Membane Proteins

    11/47

    Fundamental importance

    genomic composition: 20-30% of thegenes code for membrane proteins

    pdb statistics, 25.000 structures250 membrane proteins

  • 8/13/2019 Membranes & Membane Proteins

    12/47

    Medical importance

    Cytic fybrosis, chloride transporter Virus entry and maturation, receptors

    Resistance against cytostatica, multi drugresistance proteins Bacterial infection, adhesins, transporters Certain cancer types Immune system Regulated cell death/apoptosis

  • 8/13/2019 Membranes & Membane Proteins

    13/47

    Economical importance

    marketed small molecule drug targets grouped by class

  • 8/13/2019 Membranes & Membane Proteins

    14/47

    Fluid mosaic modelSinger and Nicholson, 1972

  • 8/13/2019 Membranes & Membane Proteins

    15/47

    Integral and PeripheralMembrane Proteins

    Integral (yellow): bound by Hydrophobic interactions, can only beremoved by disruption of membranes, examples are cytochromeoxidase, GPCRs, channels.

    Peripheral (blue): Bound by electrostatic and H-bond interactions,i.e. mitochondrial cytochrome c .

  • 8/13/2019 Membranes & Membane Proteins

    16/47

    Types of Membrane Proteins

  • 8/13/2019 Membranes & Membane Proteins

    17/47

    -helical and -barrelmembrane proteins

    Photosystem I OmpF

  • 8/13/2019 Membranes & Membane Proteins

    18/47

    It costs energy to break hydrogenbonds in hydrophobic environments

    It costs ~ 2 kcal/mol to bring one hydrogenbond from water into alkane. (C=O.H-N).

    It costs ~6 kcal/mol to bring one hydrated pairof hydrogen bond donor/acceptor into alkane.(C=OH 2O; N-HH 2O).

    It thus costs about 4 kcal/mol/peptide bond tomaintain unfolded/unsatisfied hydrogen

    bonds in a membrane: It is impossible for anunfolded protein to reside in a membrane.

  • 8/13/2019 Membranes & Membane Proteins

    19/47

    Main-chain hydrogen bonds

    membranehydrophobiccore

    -helical proteins vs. - barrel proteins

    The hydrogen-bonding patterns imply that -barrel proteins have to befolded prior to insertion into the membrane, whereas presence of2ndary structure is sufficient for helical proteins.

  • 8/13/2019 Membranes & Membane Proteins

    20/47

    Localization of and membrane proteins

    -helical proteinsbacterial inner membranescell membranesER, golgi complexorganelle membranesinner and outer membranesof chloroplast andmitochondria

    viruses

    - barrel proteinouter membranes ofGram-negative bacteriaouter membranes ofchloroplasts and mitochondria

  • 8/13/2019 Membranes & Membane Proteins

    21/47

    Polytopic Membrane Proteins:Helical Proteins

    Bacteriorhodopsin converts light into electrochemical energy. First structure of membrane protein, done by electron microscopy. 7 Transmembrane helices, almost perpendicular to membrane. Discussed in detail Bioenergetics

  • 8/13/2019 Membranes & Membane Proteins

    22/47

    Main Chain Hydrogen Bondsin -helices

    Main chain hydrogen-bond donors andacceptors all participatein hydrogen bonds.

    Helical membraneproteins are commonbecause it is easy tosatisfy hydrogen bond

    requirements.

    Side chains

  • 8/13/2019 Membranes & Membane Proteins

    23/47

    All side chains point outwardsinto membrane: They all need tobe hydrophobic.

    helices are readily recognised insequence by stretches ofhydrophobic residues.

    Side chainsin transmembrane -helices

    Hydrophobic residues in yellow

  • 8/13/2019 Membranes & Membane Proteins

    24/47

    TM Amino acid composition

    R K E D Q N H P Y W S T G A M C F L V I0

    2

    4

    6

    8

    10

    12

    14

    16

    TM H. Sapiens (all)

    Amino acid residue

    a v e r a g e o c c u r e n c e

    (adapted from Lui et al. Genome Biol 2002 and with data from Sanger institute)

    Hydrophobic residues are overrepresentedCharged and polar residues are

    under represented

  • 8/13/2019 Membranes & Membane Proteins

    25/47

    helical proteins Identification of helical membrane proteins Hydrophobicity plots

    MALEPETVTVSEVVSPEYLDMRRRFWIALMLTIPVVILEMGGHGLKHFISGNGSSWIQLL

    Kyte and Doolittle hydrophobicity scale-4.5 most polar, 4.5 most hydrophobicAla: 1.800 Arg: -4.500 Asn: -3.500 Asp: -3.500 Cys: 2.500 Gln: -3.500Glu: -3.500 Gly: -0.400 His: -3.200 Ile: 4.500 Leu: 3.800 Lys: -3.900Met: 1.900 Phe: 2.800 Pro: -1.600 Ser: -0.800 Thr: -0.700 Trp: -0.900Tyr: -1.300 Val: 4.200

    - Take average hydrophobicity of 9 residues(a window) assign that to the central residue.- Shift the window by one residue etc.

    Kyte, J. and Doolittle, R. 1982. J . Mol. Biol.

  • 8/13/2019 Membranes & Membane Proteins

    26/47

    Hydropathy plotsMALEPETVTVSEVVSPEYLDMRRRFWIALMLTIPVVILEMGGHGLKHFISGNGSSWIQLL

  • 8/13/2019 Membranes & Membane Proteins

    27/47

    TM regions

    http://www.expasy.org/tools/protscale.html

    7-8 predicted helices

  • 8/13/2019 Membranes & Membane Proteins

    28/47

    Number of TM regions

    TM = Trans Membrane(Adapted from Krogh et al, JMB 2001)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18012

    3456789

    1011121314151617

    Num ber of helices

    O c c u r e n c e

    i n %

    Predicted number of TMhelices in the E. coli genome

  • 8/13/2019 Membranes & Membane Proteins

    29/47

    Number of TM regions

    (Adapted from Krogh et al, JMB 2001)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

    2.55

    7.5

    1012.5

    1517.5

    2022.5

    2527.5

    30

    32.535

    37.5

    num ber of TM helices

    o c c u r e n c e

    i n %

    Predicted number of TM helicesin the E. coli , C. elegans genome

  • 8/13/2019 Membranes & Membane Proteins

    30/47

    Interface residues

    Aromatic residues (Trp, Tyr

    and Phe) are abundant at thepolar/apolar border

    Tyrosine hydroxyl pointoutward

  • 8/13/2019 Membranes & Membane Proteins

    31/47

    Helix angles

    bacteriorhodopsin

  • 8/13/2019 Membranes & Membane Proteins

    32/47

    Helix angles

    Van den Burg et al. Nature 2004

    SecYEG complex

    ~0-35 o tilt

    avarage~ 21 o

  • 8/13/2019 Membranes & Membane Proteins

    33/47

    The hydrophobic effect

    The hydrophobic effect gives soluble proteins their compactness.

    aqueous

    solvent

    hydrophobic

    polar

    ordered solvent

    b h l

  • 8/13/2019 Membranes & Membane Proteins

    34/47

    Interaction between helices

    What then gives TM proteins their compactness and stability?

    aqueous

    solvent

    hydrophobic

    polar

    Interaction between helices

  • 8/13/2019 Membranes & Membane Proteins

    35/47

    Polar interactionsFew polar residues in TM regions

    Those that are often involved in inter-TM hydrogen bonds

    Rhodopsin

    Ubarretxena-Belandia and Engelman, Curr. Op. Struc. Biol. 2001

    Interaction between helices

  • 8/13/2019 Membranes & Membane Proteins

    36/47

    Glycophorin ATM most often form coiled-coils (left-handed, right-handed)

    Knob into holes packingby hydrophobic residues

    Close VdW interaction packing

    Protein-protein packing moreefficient that lipid protein packing

    LIxxGVxxGVxxT

    MacKenzie et al. (1997) Science 276 , 131-133.

    Helical wheel

  • 8/13/2019 Membranes & Membane Proteins

    37/47

    motifHelix 3.6 residue per turn

    Residue n and n+4 point inabout same direction

    Heptad repeat, 7 residues

    Interaction between helices

  • 8/13/2019 Membranes & Membane Proteins

    38/47

    GXXXG motif

    LIxxGxxxG VxxT in glycophorin A

    GXXXG (or GG4) very close packing

    Formation of C -H --- O hydrogen bonds

    In hydrophobic environment C -H --- Oabout half strength of ordinary NH --- O

    MacKenzie et al. (1997) Science 276 , 131-133.

  • 8/13/2019 Membranes & Membane Proteins

    39/47

    Identif ing interactions: TOXCAT

  • 8/13/2019 Membranes & Membane Proteins

    40/47

    Identifying interactions: TOXCAT

    TOXCAT system: MBP domain-membrane helix-ToxR domain

    Oligomerization activates ToxR

    Oligomeric ToxR controls expressionof chloramphenicol-acetyl transferase(CAT)

    CAT gives resistance againstchloramphenicol Giving resistanceagainst

    Russ and Engelman PNAS 1999

  • 8/13/2019 Membranes & Membane Proteins

    41/47

    Other Motifs

  • 8/13/2019 Membranes & Membane Proteins

    42/47

    Other Motifs

    SxxSSxxT

    SxxxSSxxT

    GxxxxxxG

    AxxxA

    Monotopic membrane proteins

  • 8/13/2019 Membranes & Membane Proteins

    43/47

    Monotopic membrane proteins

    Are embedded in but do not traverse themembrane completely

    Example: Prostaglandin N-synthase

  • 8/13/2019 Membranes & Membane Proteins

    44/47

    F i P l di S h

  • 8/13/2019 Membranes & Membane Proteins

    45/47

    Function Prostaglandin Synthase

    Catalyses synthesis ofProstaglandin H 2 fromarachidonic acid.

    The fatty acid is ahydrophobic degradationproduct of lipids.

    Prostaglandins are signal

    molecules

  • 8/13/2019 Membranes & Membane Proteins

    46/47

    Summarized

  • 8/13/2019 Membranes & Membane Proteins

    47/47

    SummarizedImportance of membrane proteins

    Hydrogen bonds satisfied within hydrophobic part of membranes

    Side-chains of TM a-helix hydrophobic

    Interactions between TM-helices- Polar interaction side chains

    - VdW interactions due to close packing

    - C-H...O hydrogen bond

    Monotopic membrane protein architecture