Membrane Position of Cytochrome P450 2C9 Implications for...

30
Membrane Position of Cytochrome P450 2C9 Implications for Drug Metabolism Karel Berka Research Centre of Advanced Technologies and Materials, Department of Carbon Nanostructures, Biomolecules and Hybrid Materials and Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic Limoges 2014 Palacký University Olomouc 1573 RESEARCH CENTRE OF ADVANCED TECHNOLOGIES AND MATERIALS www.rcptm.com

Transcript of Membrane Position of Cytochrome P450 2C9 Implications for...

  • Membrane Position of Cytochrome P450 2C9

    Implications for Drug Metabolism

    Karel Berka

    Research Centre of Advanced Technologies and Materials, Department of

    Carbon Nanostructures, Biomolecules and Hybrid Materials

    and

    Department of Physical Chemistry, Faculty of Science, Palacký University,

    Olomouc, Czech Republic

    Limoges 2014

    Palacký University Olomouc

    1573

    RESEARCH CENTRE

    OF ADVANCED TECHNOLOGIES

    AND MATERIALS

    www.rcptm.com

  • 2

    Metabolism of Xenobiotics

    Toxin Uptake

    Toxin

    Phase I

    enzyme Toxin-OH

    Liver hepatocyte

    Phase II

    enzyme Toxin-

    conjugate

    Phase III

    enzyme Excretion

    [O]

    Detoxification and elimination of xenobiotics is mainly done in liver

    Phase I (mainly monooxygenases) convert hydrophobic chemicals into hydrophilic chemicals

    Phase II (UGTs, SULTs, GSTs, NATs) further convert these products into amphiphilic anionic

    conjugates

    Phase III (transporters) export products out of the liver

    A xenobiotic is a chemical compound which is found in an organism but which is not normally produced or expected to be present in it. - natural compounds - pollutants - drugs

    Cytochromes P450

  • 3

    Cytochromes P450 (CYP)

    Drug metabolism

    Broad substrate specificity

    => Drug-drug interactions

    Human genome - 17 CYP families, 57 isoenzymes

    classification: CYP 3 A 4

    family

    >40% sequence

    homology sub-family

    >55% sequence homology

    isoenzyme

    *15 A-B

    allele

    Evans, Relling Science 286, 487,1999

    Omura and Sato JBC, 239:2370,1964

  • 4

    (Anzenbacher, Anzenbacherova CMLS, 58: 737, 2001)

    Acetaminophen,paracetamol

    Dextromethorphan Loratidine Ropivacain Amitriptyline

    Alfentanil Diazepam Losartan Sameterol Antipyrine

    Alpidem Digitoxin Lovastatin Sequenavir Diclofenac

    Alprazolam Diltiazem Meloxicam Sertindole Dronabinol (THC)

    Ambroxol Docetaxel Methadone Simvastatin Carbamazepine

    Amitriptyline 17b-estradiol Mibefradil Sulfamethoxazole Flurbiprofen

    Astemizole Erythromycin Mifepristone Sulfentanil Glimepiride

    Atorvastatin Ethinylestradiol N-hydroxyarginine Tacrolimus Glipizide

    Benzphetamine Ethylmorphine Nevaripine Tamoxifen Glibenclamide

    Bupivacaine Etoposide Nicardipine Teniposide Ibuprofen

    Brotizolam Felodipine Nifedipine Terfenadine Indomethacin

    Budesonide Fentanyl Niludipine Terguride Losartan

    Buprenorphine Finasteride Nimodipine Terbinafine Phenytoin

    Carbamazepine Flutamide Nisoldipine Testosterone Piroxicam

    Citalopram Gallopamil Nitrendipine Tetrahydrocannabinol Tolbutamide

    Cisapride Gestodene Omeprazole Theophylline Torsemide

    Clarithromycin Granisetrone Oxodipine Tolterodine

    Clozapine Haloperidol Paclitaxel (Taxol) Triazolam

    Codeine Hypericum extract Pantoprazole Trimethadone

    Colchicine Ifosphamide Progesterone Troglitazone

    Cortisol Imipramine Propafenone Troleandomycin

    Cyclobenzaprine Indinavir Proquanil Verapamil

    Cyclophosphamide Irinotecan Quinidine Vinblastine

    Cyclosporin A , G Ivermectin Rapamycin Warfarin (R-)

    Dapsone Lansoprazole Retinoic acid (Tretinoin) Zatosetron

    Dehydroepiandrosterone Lidocaine Rifabutin Zonisamide

    Delaviridine Lisuride Ritonavir Zopiclone

    Drugs - CYP3A4/2C9

  • 5

    Diverse superfamily of

    hemoproteins

    Most common reaction is a

    monooxygenase reaction RH + O2 + 2H

    + + 2e– → ROH + H2O

    substrates become more polar

    (hydrophilic)

    Buried active site Access by channels

    Animal CYPs Highly promiscous (metabolize multiple

    substrates)

    Highly regio and stereospecific

    Membrane attached (ER or mit)

    Cytochrome P450 (CYP)

    CYP2C9 (1OG2) Williams et al., Nature 424, 464, 2003

  • 6

    Membrane associated

    (inner membranes of mitochondia, endoplasmic reticulum)

    How membrane affects CYP structure?

    How the membrane affects substrate binding and product release?

    Role of Membrane in Substrate Binding

    Black, S.D. FASEB J. 1992, 6, 680-685.

  • 7

    Literature review on

    CYP Membrane Anchoring

    Available structural information come from

    analysis of engineered enzymes with

    deleted N-terminal anchor

    Several different structural models in literature

    Wade, R. et al.

    BBA,1754,239,2005

    Orientations of Proteins in

    Membranes (OPM)

    Lomize, M.A.

    Bioinformatics, 22:5, 2006

    Zhao, Y. et al. JBC,

    281:9, 2006 Williams, P. et al. Mol Cell.

    2000, 5, 121 Poulos and Johnson, in. Cytochrome P450, III. Ed., 2005

  • Aims of the Modelling

    Prepare structural model of membrane anchored CYP

    Estimate penetration depth of a prototypic CYP substrate in the

    membrane

  • Cell membrane

    Environmental barrier

    Proteins (up to 50%)

    Lipid bilayer

    Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell, 4th edition.; 2002

    Singer, S. J.; Nicolson, G. L., The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720-31. 9

  • Four region model

    Glycerophopholipis

    • Phosphatidylcholine

    • Phosphatidylethanolamine

    • Phosphatidylserine

    • Phosphatidic acid

    Glycolipids

    The Cell - A Molecular Approach, Cooper, Geoffrey M., Sunderland (MA) Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell, 4th edition.; 2002

    Saturated fatty acids • Lauric, Myristic, Palmitic,

    Stearic acid

    Unsaturated fatty acids - cis • Oleic acid

    Cholesterol, Sphingomyelin

    Head groups region

    Polar

    Charge

    Volume

    Acyl tails regions

    Nonpolar

    Lenght

    Saturation

    [S.-J. Marrink, H.J.C. Berendsen, Simulation of water transport through a lipid membrane, J. Phys.Chem. 98 (1994) 4155–4168.]

    10

  • 11

    Composition of ER Membrane

    The Cell - A Molecular Approach, Cooper, Geoffrey M.,

    Sunderland (MA), Sinauer Associates, Inc.; c2000

    Endoplasmatic

    Reticulum

    Plasma

    Phosphatidylcholine PhosphatidylserinePhosphatidylethanolamine SphingomyelinGlycolipids CholesterolOthers

    Meer G., Voelker DR., Feigenson GW. Nat Rev Mol Cell

    Biol. 2008; 9(2): 112–124.

    http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is nihms89989f2.jpg [Object name is nihms89989f2.jpg]&p=PMC3&id=2642958_nihms89989f2.jpghttp://www.sinauer.com/

  • 12

    Membrane Simulations

    DOPC (Dioleoylphosphatidylcholine) Berger forcefield;

    Vacha et al. JPC A 2009

    CYP2C9 – homology model from 1OG2

    Molecular dynamics

    250-ns-long MD run (2x100 + 50), NPT, 300 K, 1 atm., in explicit solvent (SPC), 90.000 UA

    DOPC

  • 13

    Molecular Dynamics Simulations

    Gromacs 4.0, FF G56a6 (UA)

    MD run (50ns+2x100), NPT, 300 K, 1 atm., in explicit solvent (SPC), 90.000 UA

    i

    i

    i

    i

    i

    iiii

    rr

    E

    tmm

    rF

    raF

    2

    2

    integration

    t = 2 fs

    E

    empirical force fields

    Atomic resolution

    Sub-ps time resolution Quality of force fields Huge amount of data

    Data mining

  • 14

    Model Preparation

    Alignment

    CYP2C9

    CYP2B1

    CYP2B4

    regular α-helix

    N-terminal

    transmembrane

    domain (1-33) back mut. – wt-CYP2C9

  • System relaxes; topology of catalytic domain is saved …

    Simulation results

    15 Berka K, Hendrychova T, Anzenbacher P, Otyepka* M. J. Phys. Chem. A, 115(41), 11248-11255, 2011 Berka K, Paloncyova M, Anzenbacher P, Otyepka* M: J. Phys. Chem. B, 117(39), 11556-11564, 2013

  • 16

    4 nm

    accessible and inaccessible epitopes -4 nm

    4 nm

    Experiment:Model

    Epitopes

    Some part of cat. domain in the membrane:β1 sheet, B/C, F‘/G‘-loops in the membrane Res. 36, 69, 380 in the membrane:36 and 69 are in the mem., 380 in head group region

    Height above the membrane 3.5±0.9 nm:3.9±0.7 nm Occupied membrane area 6.8±0.95 nm2:7.9±0.6 nm2 Heme tilting angle 40-70°:35±5°

    Validation step:

    Comparison with experimental data

  • 17

    Where are Drugs in the Membrane?

    substrate

    ibuprofen

    product

    3-hydroxy ibuprofen

  • 18

    S = ibuprofen

    P = 3-OH ibuprofen

    S = ibuprofen (deprotonated)

    P = 3-OH ibuprofen (deprot.)

    Umbrella sampling, WHAM

    Gromacs, 1 Å spacing, 2x50 windows, 5 ns each

    Population of states

    gives ∆G

    P1/P2 = exp (∆G/kBT)

  • 19

    S = ibuprofen

    P = 3-OH ibuprofen

    S = ibuprofen (deprotonated)

    P = 3-OH ibuprofen (deprot.)

    Umbrella sampling, WHAM

    Gromacs, 1 Å spacing, 2x50 windows, 5 ns each

    Population of states

    gives ∆G

    P1/P2 = exp (∆G/kBT)

  • 20

    S=ibuprofen

    P=3-OH ibuprofen

    product shifted to the polar phase

    Paloncyova M et al J. Phys. Chem. B, 117(8), 2403-2410, 2013

    Paloncyova M et al J. Phys. Chem. B, 118 (4), 1030–1039, 2014

  • CYP2C9 active site is buried

    21

    21

    Active site

  • Access/Egress Paths

    • MOLE – more robust, quicker, overcomes some CAVER

    shortcomings

    – stand-alone

    – online analysis, clustering etc.

    – http://mole.chemi.muni.cz

    • Nomenlature by Wade et al. – Cojocaru et al. BBA, 1770:390,2007

    Petrek, Kosinova, Koca, Otyepka, Structure 15(11):1357, 2007

    http://mole.chemi.muni.cz/

  • • PDB structure (PDBID,

    structural assembly, own

    pdb)

    • Starting point

    (automatic, Catalytic

    Site Atlas, XYZ,

    sequence, manual

    selection of residues)

    • Ignore (automatically

    waters, possible

    HETATM, or manual

    selection of residues)

    • Parameters (Probe

    radius, Interior Threshold

    radius, Origin radius,

    Surface Cover radius)

    http://mole.upol.cz

    Berka K et al, Nuc. Acids Res., 40(W1), W222-W227, 2012

    Sehnal D et al, J. Cheminform., 5, 39, 2013

    de Beer TAP et al, Nucl. Acids Res. 42(D1): D292-D296, 2013

    MOLEonline 2.0 – channels (input)

    http://mole.upol.cz/

  • Visualization in Jmol

    Channels (visualization, profile,

    list of channel-lining residues)

    Physicochemical properties

    (charge, hydrophobicity,

    hydropathy, polarity and

    mutability)

    Cavities (visualization, volume)

    Molecular surface (alpha shape)

    Starting points (visualization,

    optimization)

    Pores (merged channels,

    automatic)

    Re-calculation (with new

    parameters)

    Export (PDB , Pymol)

    2j0d

    CYP

    3A4

    MOLEonline 2.0 – channels (output)

  • 25

    Channels Found by MOLE

    Channels enable substrate passage to

    the deeply buried active site and

    product release from the active site

  • 26

    S 2x 2x

    S = ibuprofen

    P = 3-OH ibuprofen

    S = ibuprofen (deprotonated)

    P = 3-OH ibuprofen (deprot.)

    Drug CYP interaction

  • 27

    • Atomic model of CYP2C9/membrane

    – agrees with most available experimental data

    – consistent with interaction of CYP with CPR and cyt(b)

    – TM-helix, 1 sheet, G‘ helices are in membrane

    – B‘, F‘, G helices are on membrane surface

    • Channels 2x (2b, 2a, 2e, 2c) - toward the membrane

    – corresponds to the free energy minimum of substrate (ibuprofen)

    • Solvent channel - membrane/solvent interface

    – corresponds to the free energy minimum of product (3-hydroxyibuprofen)

    In sum:

    2x channels can be involved in substrate access,

    solvent channel can be involved in product release

    Summary

  • 28

    Berka K et al. J. Phys. Chem. A, 115(41), 11248-11255, 2011

  • 29

    Acknowledgements

    Olomouc, CZ

    Pavel Anzenbacher

    Michal Otyepka

    Karel Berka

    Markéta Paloncýová

    Ondřej Hanák (http://mole.upol.cz)

    Josef Skopalík

    Tereza Hendrychová

    Veronika Navrátilová

    Martin Šrejber

    Brno, CZ

    David Sehnal, Radka Svobodova Vařeková,

    Jaroslav Koča (MOLE 2.0)

    Martin Petřek (MOLE)

    http://mole.chemi.muni.cz

    Finantial Supports

    CSF, Ministry of Education ...

    http://mole.upol.cz/http://mole.chemi.muni.cz/http://mole.chemi.muni.cz/http://mole.chemi.muni.cz/

  • Thank you for your attention

    • Any questions?

    autor 30