M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM...

43
M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center (with many thanks to Christophe Phillips, Rik Henson, Gareth Barnes, Guillaume Flandin, Jean Daunizeau, Stefan Kiebel, Vladimir Litvak and Karl Friston) ? EEG/MEG SPM course - May 2013 - London

Transcript of M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM...

Page 1: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

M/EEG source analysis

Jérémie Mattout Lyon Neuroscience Research Center

(with many thanks to Christophe Phillips, Rik Henson, Gareth Barnes, Guillaume

Flandin, Jean Daunizeau, Stefan Kiebel, Vladimir Litvak and Karl Friston)

?

EEG/MEG SPM course - May 2013 - London

Page 2: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

“Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible” Jacques Hadamard (french mathematician, 1865-1963)

• usefulness of the Bayesian framework: - Explicit use of prior knowledge - Principled inference on both model parameters and model themselves

• ill-posed inverse problem: no unique solution

Inverse dir.

Forward dir.

Page 3: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Outline

1. The EEG/MEG forward model(s)

2. A variational Bayes dipolar approach

3. An empirical Bayes imaging approach

4. Multi-subject and Multi-modal integration

Page 4: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : physics

BY

VY

(EEG)

(MEG)

Measures

),( rjgY

Current density

j

r Orientation & amplitude

Location

Kirkoff’s law

Electrical potential

VE .

VE .

Quasi-static Maxwell’s Equations:

0 j

Ohm’s law

jB

B

E

E

0

0𝛻. 𝑗 = 𝜎𝐸

Page 5: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : physics

BY

VY

(EEG)

(MEG)

Current density Measures

j

r Orientation & amplitude

Location

depends on:

• The type/location/orientation of sensors

• The conductivity of head tissues

• The geometry of the head

g

g can have analytic of numeric form

),( rjgY

Page 6: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : head models

Concentric Spheres:

Pros: Analytic; Fast to compute

Cons: Head not spherical;

Conductivity is not isotropic,

neither homogeneous

Boundary Element Method (BEM) :

Pros: Realistic geometry

Homogeneous conductivity

within boundaries

Cons: Numeric; Slow

Approximation Errors

Page 7: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : surfaces / meshes

Realistic head model:

Scalp (skin-air boundary)

Outer Skull (bone-skin boundary)

Inner Skull (CSF-bone boundary)

Realistic source space:

Cortex (white-grey boundary)

Page 8: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : deriving individual meshes

Canonical meshes

Rather than extract surfaces from individual MRIs, why not warp Template

surfaces from an MNI brain based on spatial (inverse) normalisation?

Page 9: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : deriving individual meshes

Inverse spatial normalization

Individual MRI

Estimate Spatial Transform

Template

Deformation

Page 10: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : deriving individual meshes

Canonical meshes

Rather than extract surfaces from individual MRIs, why not warp Template

surfaces from an MNI brain based on spatial (inverse) normalisation?

Individual Canonical Template

(Inverse-Normalised)

Also provides a 1-to-1 mapping across subjects, so source solutions can be written directly to MNI space, and group-inversion applied

Mattout et al (2007), Comp Int & Neuro

Page 11: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : Bayesian form

Likelihood Prior

),|( mYp )|( mp

Posterior Evidence

)|( mYp),|( mYp

Forward Problem

Inverse Problem

Y

m

Data

Parameters

Model

Page 12: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

The EEG/MEG forward model(s) : dipolar vs. imaging

Likelihood

),( rjgY

j

r

Location

For small number of Equivalent Current Dipoles (ECD) anywhere in the brain:

is linear in but non-linear in

For large number of (Distributed) dipoles with fixed orientation and location:

is linear in

g j

r

g JrrrGY N .21

r

jrgY

.

Orientation & amplitude

Y Data

(ECD) (distributed)

Prior

Page 13: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Outline

1. The EEG/MEG forward model(s)

2. A variational Bayes dipolar approach

3. An empirical Bayes imaging approach

4. Multi-subject and Multi-modal integration

Page 14: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

With a Bayesian framework, explicit priors can be put on the locations and

orientations of the sources (e.g, symmetry constraints)

Kiebel et al (2008), Neuroimage

j

r

Y

j r

ejrgY

)|(),|()|(),|()|(),,,|()|,,,,( mpmjpmpmrpmpmjrYpmjrp jjrreeejr

A variational Bayes dipolar approach

Like standard ECD approaches, the solution is obtained by iterating the

optimization over location/orientation and is:

1. Left with the question of how many dipoles

2. Sensitive to the initial prior location

Page 15: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Maximising the (free-energy approximation to the) model evidence

offers a natural answer to such questions

)|( mYp

A variational Bayes dipolar approach

Kiebel et al (2008), Neuroimage

Page 16: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Outline

1. The EEG/MEG forward model(s)

2. A variational Bayes dipolar approach

3. An empirical Bayes imaging approach

4. Multi-subject and Multi-modal integration

Page 17: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Y = Data n sensors

J = Sources p sources ( >> n)

G = forward op. n sensors x p sources

E = Error n sensors…

…drawn from Gaussian covariance 𝐂𝐞

Given p sources fixed in location (e.g, on a cortical mesh), the

forward model turns linear:

The distributed or imaging source model

𝐘 = 𝐆𝐉 + 𝐄

𝐄 ~ 𝐍 𝟎, 𝐂𝐞

Since p >> n, regularization is needed such as in the classical L2-norm

approach…

Page 18: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

𝐉 = 𝐚𝐫𝐠𝐦𝐢𝐧 𝐂𝐞−𝟏 𝟐 . 𝐘 − 𝐆𝐉

𝟐+ 𝛌 𝐖𝐉 𝟐

Phillips et al (2002), Neuroimage

W

W

W

DDW

IW

11

1

)(

)(

py

T

pp

T

T

GCGdiag

GGdiag

“Minimum Norm”

“Loreta” (D=Laplacian)

“Depth-Weighted”

“Beamformer”

“L-curve” method ||Y – GJ||2

||WJ||2

= regularisation

(hyperparameter)

“Tikhonov”, weighted minimum norm or least-square solution

= 𝐖𝐓𝐖−𝟏𝐆𝐓 𝐆 𝐖𝐓𝐖

−𝟏𝐆𝐓 + 𝛌𝐂𝐞

−𝟏

𝐘

𝐘 = 𝐆𝐉 + 𝐄 𝐄 ~ 𝐍 𝟎, 𝐂𝐞

The classical L2 or weighted minimum norm approach

Regularization or Hyperparameter

Weighting or Constraint matrix

Page 19: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Phillips et al (2005), Neuroimage; Mattout et al., (2006), Neuroimage

Likelihood 𝐩 𝐘 𝐉 = 𝐍 𝐆𝐉, 𝐂𝐞

𝐂𝐞 = n x n Sensor (error) covariance

Prior 𝐩 𝐉 = 𝐍 𝟎, 𝐂𝐣

Posterior 𝐩 𝐉 𝐘 ∝ 𝐩 𝐘 𝐉 𝐩 𝐉

A 2-level hierarchical linear model:

Its Parametric Empirical Bayes (PEB) generalization

𝐘 = 𝐆𝐉 + 𝐄𝐞 𝐄𝐞 ~ 𝐍 𝟎, 𝐂𝐞

𝐂𝐣 = p x p Source (prior) covariance 𝐄𝐣 ~ 𝐍 𝟎, 𝐂𝐣 𝐉 = 𝟎 + 𝐄𝐣

Maximum A Posteriori (MAP) estimate

𝐉𝐌𝐀𝐏 = 𝐂𝐣𝐆𝐓 𝐆𝐂𝐣𝐆

𝐓 + 𝐂𝐞−𝟏𝐘

When compared to classical weighted minimum norm:

𝐖𝐓𝐖−𝟏𝐆𝐓 𝐆 𝐖𝐓𝐖

−𝟏𝐆𝐓 + 𝛌𝐂𝐞

−𝟏

⟹ 𝐂𝐣 = 𝐖𝐓𝐖−𝟏

Y

𝐉 𝐄𝐞

𝐂𝐞 𝐂𝐣

Page 20: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Priors are specified in terms of covariance components

Its Parametric Empirical Bayes (PEB) generalization

C = Sensor/Source covariance

Q = Covariance components

λ = Hyper-parameters

Friston et al (2008) Neuroimage

𝐂 = 𝛌𝐢𝐐(𝐢)

𝐢

1. Sensor components, (error):

“IID” (white noise):

# sensors

# s

en

so

rs

Empty-room (MEG):

# sensors

# s

en

so

rs

𝐐𝐞(𝐢)

2. Source components, (priors/regularisation):

“IID” (min norm):

# sources

# s

ou

rces

Multiple Sparse

Priors (MSP): # sources

# s

ou

rces

𝐐𝐣(𝐢)

Page 21: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

When some Q’s are correlated, estimation of hyperparameters λ can be difficult

(e.g. local maxima), and they can become negative (improper for covariances)

To overcome this, one can:

2) impose weak, shrinkage hyperpriors:

( ) ~ ( , )p Nα η Ω 4 η , 16a a Ω I

uninformative priors are then “turned-off” (cf. “Automatic Relevance Determination”)

0

1) impose positivity on hyperparameters:

𝛼𝑖 = 𝑙𝑛 𝜆𝑖 ⟺ 𝜆𝑖 = exp 𝛼𝑖

Hyperpriors

Prestim Baseline Anti-Averaging

Smoothness Depth-Weighting

Se

nso

r p

rio

rs

So

urc

e p

rio

rs

pro

jec

ted

to

se

ns

ors

Page 22: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

When multiple Q’s are correlated, estimation of hyperparameters λ can be difficult

(e.g. local maxima), and they can become negative (improper for covariances)

To overcome this, one can:

1) impose positivity on hyperparameters:

2) impose weak, shrinkage hyperpriors:

𝛼𝑖 = 𝑙𝑛 𝜆𝑖 ⟺ 𝜆𝑖 = exp 𝛼𝑖

Hyperpriors

( ) ~ ( , )p Nα η Ω 4 η , 16a a Ω I

Useless priors are then “turned-off” (cf. “Automatic Relevance Determination”)

0

Page 23: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Fixed

Variable

Data

Source and sensor space

Full graphical representation

Y

𝐉 𝐄𝐞

𝐂𝐞 𝐂𝐣

Standard Minimum Norm

Page 24: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Fixed

Variable

Data

...

Y

,η Ω

...

Source and sensor space

Full graphical representation

𝐉 𝐄

𝐂𝐣 𝐂𝐞 𝛌𝐣(𝐢) 𝛌𝐞

(𝐢)

𝐐𝐣(𝟏) 𝐐𝐣

(𝟐) 𝐐𝐞(𝟏) 𝐐𝐞

(𝟐)

Empirical Bayes

Page 25: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

ˆ max ( | ) maxp F

λ Y λ

1. Obtain Restricted Maximum Likelihood (ReML) estimates of the

hyperparameters (λ) by maximising the variational “free energy” (F):

ˆˆ max ( | , ) maxj j

p F J J Y λ

2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J):

Model estimation

ˆˆln ( | ) ln ( , , | ) ( , , )p m p m d d F Y Y J λ J λ Y α Σ

3. Maximal F approximates Bayesian (log) “model evidence” for a model, m:

𝒎 = 𝑮,𝑸, 𝜼, 𝜴

Page 26: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Hyperpriors allow the extreme of 100’s source priors

Friston et al (2008) Neuroimage

Multiple Sparse Priors (MSP)

# sources

# s

ou

rces

Multiple priors combined

Q(2)j

Left patch

… …

Q(2)j+1

Right patch

Q(2)j+2

Bilateral patches

Page 27: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Hyperpriors allow the extreme of 100’s source priors

Friston et al (2008) Neuroimage

Multiple Sparse Priors (MSP)

Page 28: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

• Automatically “regularises” in a principled fashion…

• …allows for multiple constraints (priors)…

• …to the extent that multiple (100’s) of sparse priors possible (MSP)…

• …(or multiple error components or multiple fMRI priors)…

• …furnishes estimates of model evidence, so can compare constraints

Summary

The empirical Bayesian approach…

Page 29: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Outline

1. The EEG/MEG forward model(s)

2. A variational Bayes dipolar approach

3. An empirical Bayes imaging approach

4. Multi-subject and Multi-modal integration

Page 30: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Group inversion

Friston et al. (2008) Neuroimage

...

Y

,η Ω

...

Fixed

Variable

Data

Source and sensor space Single subject

𝐉 𝐄

𝐂𝐣 𝐂𝐞 𝛌𝐣(𝐢) 𝛌𝐞

(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞

(𝟏)

Page 31: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Group inversion

Multiple subjects

Litvak & Friston (2008) Neuroimage

...

1Y

,η Ω

...

2Y

...

Fixed

Variable

Data

Source and sensor space

𝐉𝟏 𝐉𝟐 𝐄𝟐 𝐄𝟏

𝐂𝐣 𝐂𝐞,𝟏 𝛌𝐞,𝟏 𝐂𝐞,𝟐 𝛌𝐞,𝟐 𝛌𝐣(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞,𝟏 𝐐𝐞,𝟐

Page 32: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Group inversion

Litvak & Friston (2008) Neuroimage

MMN MSP MSP (Group)

Page 33: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

...

Y

,η Ω

...

Fixed

Variable

Data

Source and sensor space Single modality

𝐉 𝐄

𝐂𝐣 𝐂𝐞 𝛌𝐣(𝐢) 𝛌𝐞

(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞

(𝟏)

Multi-modal integration: EEG-MEG fusion

Page 34: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Multiple modalities

Henson et al. (2009) Neuroimage

...

1Y

,η Ω

...

2Y

...

Fixed

Variable

Data

Source and sensor space

𝐉 𝐄𝟐 𝐄𝟏

𝐂𝐣 𝐂𝐞,𝟏 𝛌𝐞,𝟏 𝐂𝐞,𝟐 𝛌𝐞,𝟐 𝛌𝐣(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞,𝟏 𝐐𝐞,𝟐

Multi-modal integration: EEG-MEG fusion

Page 35: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

MEG mags MEG grads

EEG FUSED

+31 -51 -15 +19 -48 -6

+43 -67 -11 +44 -64 -4

IID noise for each modality; common MSP for sources

Scrambled

150-190ms Faces – Scrambled,

Faces

Henson et al (2009) Neuroimage

Multi-modal integration: EEG-MEG fusion

Page 36: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Multi-modal integration: fMRI priors

...

Y

,η Ω

...

Fixed

Variable

Data

Source and sensor space

𝐉 𝐄

𝐂𝐣 𝐂𝐞 𝛌𝐣(𝐢) 𝛌𝐞

(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞

(𝟏)

Page 37: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Multi-modal integration: fMRI priors

...

Y

,η Ω

...

Fixed

Variable

Data

Source and sensor space

𝐉 𝐄

𝐂𝐣 𝐂𝐞 𝛌𝐣(𝐢) 𝛌𝐞

(𝐢)

𝐐𝐣(𝟏) 𝐐𝐞

(𝟏)

𝐘𝐟𝐌𝐑𝐈

Page 38: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

T1-weighted MRI

Anatomical data

{T,F,Z}-SPM

Gray matter

segmentation

Cortical surface

extraction

3D geodesic

Voronoï diagram

Functional data

1. Thresholding and connected component labelling

2. Projection onto the cortical surface

using the Voronoï diagram

3. Prior covariance components ( )j

iQ

Henson et al (2010) Hum. Brain Map.

Multi-modal integration: fMRI priors

Page 39: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

SPM{F} for faces versus

scrambled faces,

15 voxels, p<.05 FWE

5 clusters from SPM of fMRI data from separate group of (18)

subjects in MNI space

1 2

3 4 5

Henson et al (2010) Hum. Brain Map.

Multi-modal integration: fMRI priors

Page 40: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Multi-modal integration: fMRI priors

fMRI priors counteract superficial bias of L2-norm

None Global Local (Valid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Henson et al (2010) Hum. Brain Map.

Page 41: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Magnetometers (MEG)

* *

* *

Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Negative F

ree E

nerg

y (

a.u

.)

(model evid

ence)

*

*

* *

*

*

*

Henson et al (2010) Hum. Brain Map.

Multi-modal integration: fMRI priors

Page 42: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Conclusion

1. SPM offers standard forward models (via FieldTrip)…

(though with unique option of Canonical Meshes)

2. …but offers unique Bayesian approaches to inversion:

2.1 Variational Bayesian ECD

2.2 A PEB approach to Distributed inversion (eg MSP)

3. PEB framework in particular offers multi-subject and

(various types of) multi-modal integration

Page 43: M/EEG source analysis - Wellcome Trust Centre for … · M/EEG source analysis ... EEG/MEG SPM course - May 2013 ... offers a natural answer to such questions p(Y|m) A variational

Transition

EEG/MEG Observations (Y)

Auditory-Visual Stimulations (u)

Y = g(x,)

Classical (static) source reconstruction

Dynamic causal modelling EEG/MEG Observations (Y)

Auditory-Visual Stimulations (u)

Y = g(x,)

dx/dt = f(x,,u)