Measuring the Astrometric Signature of Transiting Planets...

38
Measuring the Astrometric Signature of Transiting Planets with SIM Scott Gaudi, Ohio State University

Transcript of Measuring the Astrometric Signature of Transiting Planets...

  • Measuring theAstrometric Signatureof Transiting Planets

    with SIMScott Gaudi, Ohio State University

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

  • Rel

    ativ

    e fl

    ux

    Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • Time

    Rad

    ial V

    elo

    city

  • X o

    r Y

    Po

    siti

    on

    Time

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Time

    X o

    r Y

    Po

    siti

    on

  • Order of Magnitude

    • Centroid:

    • Uniform surface brightness, full transit:

    • Amplitude of the centroid shift:

    !"x =#*$x I( $x , $y )d $x d $y%%I( $x , $y )d $x d $y%%

    , !"y =#*$y I( $x , $y )d $x d $y%%I( $x , $y )d $x d $y%%

    !"x=#*

    $

    1%$x, !"

    y=#*

    $

    1%$y, where $ =

    Rp

    R*

    &

    '(

    )

    *+

    2

    is the transit depth

    !

    !T "#*$

    1%$& 2.5µas

    Rp

    RJ

    '

    ()

    *

    +,

    2

    R*

    R"

    '

    ()

    *

    +,

    %1

    d

    20pc

    '

    ()

    *

    +,

    %1

  • Astrometric Wobble and Transit Signal• HD 189733• M*=0.81M, R*=0.79R, d=19.3pc• Mp=1.15MJ, Rp=1.16RJ, a=0.031AU• Astrometric Wobble Amplitude

    • Astrometric Transit Amplitude

    • Ratio of Amplitudes

    • Ratio of Durations

    !

    !T "#*$

    1%$& 2.5µas

    Rp

    RJ

    '

    ()

    *

    +,

    2

    R*

    R"

    '

    ()

    *

    +,

    %1

    d

    20pc

    '

    ()

    *

    +,

    %1

    !

    !W "a

    d

    M p

    M* +Mp# 1.9µas

    a

    0.04AU

    $

    %&

    '

    ()Mp

    MJ

    $

    %&

    '

    ()M*

    M"

    $

    %&

    '

    ()

    *1

    d

    20pc

    $

    %&

    '

    ()

    *1

    !

    !T

    !W

    " 1 Rp

    RJ

    #

    $%

    &

    '(

    2

    R*

    R"

    #

    $%

    &

    '(

    )1

    a

    0.04AU

    #

    $%

    &

    '(

    )1M

    p

    MJ

    #

    $%

    &

    '(

    )1

    M*

    M"

    #

    $%

    &

    '(

    Period of Orbit

    Transit Duration=!a

    R*

    ~ 30

  • Parameter Dependence• Transit Duration

    • Parallel Amplitude

    • Perpendicular Amplitude

    Duration = 2!0(1" b

    2)

    1/2, where !

    0#PR

    *

    2$a

    ~!T(1" b

    2)1/2

    ~!Tb

  • Observable Parameters

    • Photometric

    • Astrometric

    b, r !Rp

    R*

    , t0, "

    0

    b, r !Rp

    R*

    , t0, "

    0, #

    *, $

    !

    φ = angle of projected planet orbit normal w.r.t. sky coordinates

  • What is it good for?

    • Measure M* and R*.• Measure Mp and Rp.• Confirm or constrain polarized reflected

    light measurements.• Determine the inclination of the planet orbit

    w.r.t. more distant companions.• Remove degeneracies is multiple transiting

    planets systems.

  • Signal-to-Noise Ratio and Uncertainties

    • Signal-to-Noise Ratio– Duration decreases with b– Signal amplitude increases with b

    • Parameter Uncertainties– Assume photometric parameters

    are known– Fisher matrix

    S

    N=Q

    2

    3(1! b2 )1/2 (1+ 2b2 )

    "

    #$%

    &'

    1/2

    , Q ( ()*0)1/2 +T

    ,

    !

    "#* /#* ~ "$ ~ (S /N)%1

  • Known Systems• Estimated S/N per transit

    pair– 10% Out-of-transit data– Two transits with

    orthogonal baselines– Four V=10 ref. Stars– Three chop cycles– 30s integrations

    • Also S/N for 30 total hrs– Three systems with S/N>3

    • GJ436b, S/N~7.3• HD189733b, S/N~16.9• HD209458b, S/N~3.9

    – Three with 1.5

  • To Do

    • Practical application.– Refined S/N estimates.– Suitable reference stars?– Optimal strategies.– Expected uncertainties.

    • Additional systems?• Astrometric signature of eclipsing binaries.