Measuring irradiance, temperature and angle of incidence effects on ...

62
Measuring irradiance, temperature and angle of incidence effects on photovoltaic modules in Auburn Hills, Michigan by Michael S. Buday A practicum submitted in partial fulfillment of the requirements for the degree of Master of Science/Sustainable Systems (Natural Resources and Environment) at the University of Michigan August 2011 Advisors Professor Gregory Keoleian, Chair Bill Marion, Principal Scientist and Project Leader of Photovoltaic Research NREL

Transcript of Measuring irradiance, temperature and angle of incidence effects on ...

Measuringirradiance,temperatureandangleofincidenceeffectsonphotovoltaicmodulesinAuburnHills,Michigan

by

MichaelS.Buday

Apracticumsubmittedinpartialfulfillmentoftherequirements

forthedegreeofMasterofScience/SustainableSystems(NaturalResourcesandEnvironment)

attheUniversityofMichiganAugust2011

Advisors

ProfessorGregoryKeoleian,ChairBillMarion,PrincipalScientistandProjectLeaderofPhotovoltaicResearchNREL

ii

ContentsAbstract...............................................................................................................................iiiAcknowledgments...............................................................................................................ivIntroduction........................................................................................................................1LiteratureReview................................................................................................................3Methods..............................................................................................................................8Results...............................................................................................................................15Conclusion.........................................................................................................................20Glossary.............................................................................................................................22References........................................................................................................................24Appendices........................................................................................................................27

ListofTables

Table1:IEC618531Matrixbasedtextconditions.........................................................................1Table2:Modulesundertest..........................................................................................................14Table3:TrendsinpowerbyPVmaterial.......................................................................................15Table4:Powerat1000W/m2byPVmaterial................................................................................16Table5:ObservationsfittingIEC618531parameters..................................................................19

ListofFigures

Figure1:ImpactsoftemperaturecoefficientsonPVpower...........................................................4Figure2:Solarspectrameasurementsandlinefitfromonedayfromexistingliterature.............5Figure3:CalculatedmismatchfactorforaSimodulefromexistingliterature..............................6Figure4:Systemdiagram.................................................................................................................8Figure5:SampleIVcurve................................................................................................................9Figure6:K12430IVCharacteristicspulsemode..........................................................................10Figure7:Fourwireconnection......................................................................................................10Figure8:KI#7053Switchcardconnectionfor5

iii

AbstractUnitedSolarOvonic(USO)installedaphotovoltaic(PV)moduletestingsystemin

AuburnHills,Michigan(Latitude42.6978,Longitude83.2419)inMarchof2010forthepurposeofevaluatingtheimpactsofirradiance,temperatureandangleofincidence(AOI)effectsonPVmoduleperformance.Weconsideredvarioustestbeddesignsandultimately,constructedasourcemeterbasedcurrentandvoltagemeasurementsystemcoupledwithadataacquisitionsystemrecordingreadingsfromweatherstationinstrumentsthattracksolarirradiance,temperatureandwindspeed.Current,voltageandpowerobservations,correlatedtoourweatherstationdevicereadings,werecollectedfromcommerciallyavailablePVmodulesmanufacturedfrommonocrystallinesilicon(cSi),amorphoussilicon(aSi)andcopperindiumgalliumselenide(CIGS).WeobservedthermalannealinginaSiandtheeffectsoftemperatureoncSiandCIGS.cSimoduletemperaturesabove25Cappeartodiminishpowerbyapproximately0.5%/C.Theresultswereconsistentwithourexpectationsbasedonexistingliterature.Fromthis,weinferthatthetestbediseffectiveatmeasuringmoduleperformance.

Ourresultssupport,butdonotconfirmthehypothesisthataSimodulesdelivermoreenergy(kWhrs)perpeakwatt(Wp)thanotherPVmaterials.ConfirmingthehypothesiswouldrequirebothtestingastatisticallysignificantnumberofPVmodulesandperformingaquantitativeanalysisoftheaccuracyofthetestbed.ThisisimportantbecausePVistypicallysoldona$/Wpbasis.TheWpratingisbasedonamodulesperformanceunderstandardtestconditions(STC)of1000W/m2,1.5airmass(AM)and25Cmoduletemperature.AnewPVratingsystemproposedbytheInternationalElectrotechnicalCommission(IEC)createsaseriesoftestingconditionsbasedonavarietyofweatherconditions.USOsPVmeasurementsystemiscapableofcollectingobservationsfittingmost,butnotallofthesetestconditions.Duetothearraysnorthernlocation,noneofourobservationsfittheIECshightemperatureconditions.

iv

AcknowledgmentsThisprojectwasmadepossiblethroughsponsorshipbyUnitedSolarOvonic

(USO)anditsChairmanSubhenduGuha.Iamverygratefulfortheopportunitythathegaveme.IworkedunderthedirectsupervisionofUSOSeniorResearchScientist,KevinBeernink.Hisguidance,instruction,supportandparticipationwerecriticaltothesuccessoftheproject.IalsoreceivedhelpfrommanyotherUSOemployees,mostnotably,ChrisWorrel,DavidWolf,GregDimaggio,LoganRowe,GingerPietka,KiasYounan,EricAhkashian,BrentBatchelder,MikeOndocsin,TonyTurkin,MikeWalters,andJacobWashington.

JosephdelCueto,BillMarionandDarylMyers,allattheNationalRenewableEnergyLaboratory(NREL)holdararelevelofexpertiseinthisfield.Theirpublications,guidanceandfeedbackwerevitaltothedevelopmentofthisreport.

TimothyDierauf,AdrienneKimberandJohnPrevitalisubmittedpresentationsattheAmericanSolarEnergySocietys2011nationalconferenceandprovidedmewithreferencematerials.Throughtheirwork,theyhavefurtherdemonstratedtheimportanceofthisfieldofresearchinindustry.

SondraAuerbach,JenniferTaylorandDianaWoodworthintheSchoolofNaturalResourcesandEnvironments(SNRE)OfficeofAcademicProgramswelcomedmetotheSNREcommunityandfacilitatedmyeducation.OutsideofSNRE,ProfessorDebraRowe,RobertPratt,DavidLankheetandProfessorIanHiskensweremykeyteachersinthisdiscipline.Thesepeopleallhelpedputmeonthistrack,makingthisreportpossible.

SNREProfessorandCoDirectoroftheCenterforSustainableSystemsGregoryKeoleianwasinstrumentalinapproachingUSOregardinganinternshipandmastersproject.Thetimehehasspentteachingandmeetingwithmeoverthepastthreeyearshasbeeninvaluabletoboththisprojectandmyeducation.Hedevotedasignificantamountoftimetooverseeingthisprojectandcontributingtothecontentandstructureofthisreport.HelaineHunscher,ProgramCoordinatorattheCenterforSustainableSystems,alsoprovidedvitalfeedback.

DonnaandJosephNapolitanogavememyfirstjobinthesolarindustry.TheyhavealwaysencouragedmetolearnandtoapplywhatIlearn.TheSNRE,ErbInstituteandGreatLakesRenewableEnergyAssociationcommunitiesalsoprovidedmewithcollaborativelearningenvironments.

Finally,Iwouldliketothankmyparents,EdnaandGene,fortheirunconditionalsupportandencouragementthroughalengthycareertransition.

IntroductionPhotovoltaic(PV)moduleandarrayperformanceisdifficulttopredictdueto

variationsinweather,airmass(AM),andnonlinearperformancecharacteristicsofvariousmoduletechnologies.Manufacturers,distributorsanddeveloperstypicallysellPVonacostperpeakwatt($/Wp)basis.AmodulesWprating,alsoknownasitsPmax,isbasedonitsperformanceunderStandardTestConditions(STC)consistingof1000W/m2,1.5AMand25Cmoduletemperature.However,theseconditionsrarelyoccursimultaneouslyinnatureandtheperformanceofPVmaterialsvariesovertimeandbygeographiclocationbasedprimarilyondifferencesintemperatureandAM(Marion,Kroposki,Emery,delCueto,Myers,&Osterwald,1999).TheInternationalElectrotechnicalCommission(IEC)hasproposedPVratingstandards(IEC61853)thatincludecharacterizingmoduleperformancebasedonamatrixofvariousweatherconditions,includinghightemperatureconditions(HTC),STC,nominaloperatingcelltemperature(NOCT),lowtemperatureconditions(LTC)andlowirradianceconditions(LIC).ThecriteriafortheseconditionsappearinTable1below.NotethatIEC618531doesnotincludeevaluatingperformanceunderphotovoltaicsforutilityscaleapplicationstestconditions(PVUSAorPTC)of1000W/m2,20Cambienttemperature,windspeedof1meter/secondand1.5AM.

Table1:IEC618531Matrixbasedtextconditions

Abbrev. Description Irradiance(W/m2)Module

Temp.(oC)AmbientTemp.(oC)

WindSpeed(m/sec)

AM

HTC Hightemperatureconditions 1000 75 1.5

STC Standardtestconditions 1000 25 1.5

NOCT Nominaloperatingcelltemperature 800 20 1 1.5

LTC Lowtemperatureconditions 500 15 1.5

LIC Lowirradianceconditions 200 25 1.5

Withitsproposedratingsstandards,theIECseekstoimprovethemethodbywhichPVmoduleperformanceisevaluatedbymeasuringPVpowerunderasetoftestingconditions,insteadofonlySTC.ThestandardsalsoestablishguidelinesforratingPVbasedonenergyyield(watthours)andperformanceratio(PR)(Poissant,Pelland,&Turcotte,2008)(delCueto,2007).

AdvancesininvertertechnologyhavereducedthecostofPVarrayperformancemonitoringsubstantially,tolessthan$1000orto1%10%ofoverallsystemcostfora1

2

20kWgridtiedsystem(EnphaseEnergy,2011)(FroniusUSALLC,2011).ThisiswithinreachofmanyhomeownersinstallingPVsystems.Thesemonitoringsystemsreportonanarraysenergyyield.However,thesesystemsdonotprovidethelevelofinformationacquiredfromperformingafullcurrentvoltage(IV)sweep.Theyalsodonotincludeweatherstations.TheequipmentrequiredtoeffectivelyanalyzetheelectricalcharacteristicsofPVmodulesandarraysaswellastheeffectsofirradianceandmoduletemperaturerangesbetween$10,000and$50,000(notincludingthemodulesthemselves).TobetterunderstandandpredictPVsystemperformance,NRELsPerformanceandEnergyRatingTestbed(PERT)andOutdoorTestingField(OTF)gobeyondperformingbasicenergyyieldandpowerratingmeasurements.ResearchscientistsatNRELdesignedsystemswiththeabilitytoexaminetheelectricalandopticalresponsecharacteristicsofvariousproductionmodulesandprototypesovertime.

MichiganbasedPVmodulemanufacturer,UnitedSolarOvonic(USO)soughttodevelopasystemwithPVmoduletestcapabilitiessimilartoNRELsstandalonetestingsysteminordertoconducttheirowncharacterizationofcompetitorsmodulesandUSOsnextgenerationofproductsonafractionofNRELsbudget.ThesystemwentliveinMarchof2010andcontinuestoperformandrecordregularmeasurements(IVsweeps)on20PVmoduleseverytenminutesduringdaylighthours.Italsorecordsbasicmeteorologicalconditionswitheachsweep,includingplaneofarray(POA)irradiance,ambientandmoduletemperature,andwindspeed.WecollectedandbundledfieldobservationsintothestandardscategoriesrepresentingvariousweatherconditionsinordertoverifythecapabilityofUSOsmeasurementsystemtotestIEC618531.

OncewedesignedandinstalledourPVmoduletestingsystemandbegancollectingdata,wethenhadtheinformationneededtoevaluatemoduleenergyproductionaswellastheelectricalandbasicopticalresponsecharacteristicsofthevariousPVmodulesundertest.Weappliedourtestmethodandfoundresultsconsistentwithourexpectationsbasedonexistingliterature,whichishighlightedinthenextsection.Inthispaper,wereportontherelationshipswefoundbetweenpowerandirradianceaswellasbetweenpowerandmoduletemperaturebasedonobservationstakenfromselectamorphoussilicon(aSi),crystallinesilicon(cSi),andcopperindiumgalliumselenide(CIGS)modulesfromJulythroughDecemberof2010.(ObservationsfromDecember14ththrough20thwereignoredbecausemanyofthemoduleswerecoveredinsnow.)Wewereunabletoobtaincadmiumtelluride(CdTe)modulesduetothemanufacturerstightcontrolofitsdistributionchannel.

Giventhatpoweristheproductofvoltage(V)andcurrent(I),theproposedstandardcallsforevaluatingopencircuitvoltage(Voc)andshortcircuitcurrent(ISC),and

3

fillfactor(FF)againstbothirradianceandmoduletemperature(delCueto,2007).FFindicatesamodulesrelativeefficiency.WedesignedandbuiltasystemcapableofmeasuringalloftheseparametersandothersincludingVmp.(ManyoftheserelationshipsappearinAppendices5through7.)However,themeasurementsystemisnot100%accurate.Thereisalevelofuncertaintyinthedataitgenerates.

LiteratureReviewThirtyyearsago,researchersinthePVfieldacknowledgedtheneedtogo

beyondSTC,suggestingthatmoduleperformancebecharacterizedbycategoriesofweatherconditions(hotsunny,coldsunny,hotcloudy,coldcloudy,andnice)(Marion,Kroposki,Emery,delCueto,Myers,&Osterwald,1999)(Gay,Rumberg,&Wilson,1982).TheIECscurrentproposedstandardseekstoaddressthisneed(delCueto,2007).

ThemainpurposeoftheliteraturereviewwastoexamineexistingresearchinordertoidentifythekeyvariablesaffectingPVpowergenerationandtodeterminehowtomeasurethosevariableseffectively.Existingliteraturewashelpfulinestablishingoursystemarchitecture,indefiningperformancemetricsandinidentifyingareasofopportunityforfurtherlearning.WesoughttodevelopmeasurementandtestingcapabilitiesapproachingthoseofawellfundedgovernmentlaboratoryandsofocusedourresearchonpublicationsfromNRELandSandiaLabs.WealsoreviewedarticlesrelatingtoperformanceanalysisofinstalledPVarraysranginginsizefrom2500kWp.

IrradiancehasthegreatestimpactonPVpower.Beyondirradiance,moduletemperature,angleofincidence(AOI)andAMalsoaffectamodulesoranarrayspowerandproduction(delCueto,2007)(Myers,2009)(King,Kratochvil,&Boyson,1997).Moduletemperatureisinturn,influencedbyambienttemperature,cloudpatternsandwindspeed.ResearchershaveusedsophisticatedtestingandmeasurementdevicesinPVperformancetestingforover30years,yetpredictingmoduleperformanceremainscomplexandforecastersmustacceptarelativelyhighlevelofuncertaintyinpredictingenergyproductionfromaPVarray.Additionally,underrapidlychangingandextremeweatherconditions,inverterramptimesandclippingbothdiminishACpowergeneration(vanCleef,Lippens,&Call,2001).

Researchersusepyranometerstomeasureirradiance,buttherearedifferentclassesofpyranometers.SecondarystandardandfirstclassthermopiletypepyranometersmeasureirradiancethroughouttherangeoffrequenciestowhichPVresponds(3002800nm).Silicondiodepyranometersonlyrespondtoanarrowerrangeoffrequencies(4001100nm),butarestillusedinPVweatherstationsbecausetheyarelessexpensivethanthermopilesandbecausetheyareactuallymoresensitivethan

4

thermopilesintherangeoffrequenciestowhichtheydorespond.Furthermore,siliconbasedPVisalsoprimarilyresponsivewithinthisrange.

MeasuringmoduletemperatureisimportantbecausecSiandotherPVmaterialsproducelesspowerathightemperatures.Figure1(below)indicatestheimpactsofmoduletemperatureonvariousPVmaterials.Estimatingmoduletemperatureisachievedwiththeuseofathermocoupleattachedtothebackofthemodule.However,undermostconditions,themoduletemperatureislikelytobewarmerthanthebackofthemodule.Furthermore,thetemperatureofthemoduleisnotlikelytobeconsistentthroughoutitsentiresurface.Forthesereasons,researchersapplyastandardadjustmenttothebackofthemoduletemperaturereadingtocompensateforthetemperaturedifferencebetweenthebackofthemoduleandsurfaceofthemoduleandtheymayplacemorethanonethermocoupleinseveralspecificpositionsonthebackofamoduleinordertocalculateanaveragetemperature.

Figure1:ImpactsoftemperaturecoefficientsonPVpower

AhighAOIcansignificantlyreducePVpowergeneration.RedaandAndreasprovidedthesolarpositionalgorithm(Reda&Andreas,2008)weusedtofindzenith,declination,andazimuthanglesrequiredtocalculateAOIinordertoplotitagainst%Pmaxandothervariables.

PVperformanceistypicallyreportedtoAM1.5.(ThisvaluewaschosenbecauseitrepresentstheaverageAMatsolarnoonforoptimallytiltedPVarraysatlatitudesinthecontinentalUS.)AM1.5reference(orstandard)referstotherelativepathlengthofthedirectsunlightthroughtheatmosphere.Withthesundirectlyoverhead(zenith)AMis1.0(uncorrected).Withlongerpathlengths,thereismorescatteringandabsorptionofsolarradiationbyatmosphericconstituentssuchaswatervaporandaerosols.Similarto

60%

80%

100%

120%

0 10 20 30 40 50 60 70

Relativ

evalueofP

max

(25oC=

100%

)

ModuleTemperature(oC)

CIGS

cSI

aSi

sova

thmIoinst

Fi(K

olarspectruarywithtim

WhenhePVdiffersmoduleoraroannides,MncreasingAMtudybyKenn

igure2:SolaKenny,Ioanni

m(King,Krae,date,and

ntheactualssfromthererayperformullejans,&DM.Figure3(nyetal.

arspectramdes,Mullejan

tochvil,&Bodlocation(Ri

solarspectrueferencedevanceisstateDunlop,2004below)exhib

measuremenns,&Dunlop,

5

oyson,1997iordan&Hu

umdeviatesvice(i.e.,theedasaspect4).Figure2(bitsirradian

tsandlinef,2004)

7),bothAMaulstron,1990

fromAM1.5epyranomettralmismatc(below)illuscedensityb

fitfromone

andatmosp0).

5orthespeter),theimpchfactor(K)stratestheinbywavelengt

dayfromex

hericcondit

ctralresponpactofAMo(Kenny,ncreaseinKthbasedon

xistinglitera

tions

nseofonPV

witha

ature

Figure3:(Kenny,Io

Ocommerc1100nm,onOpticaspectralcsunlightdDelCueto

Equation

wreferencespectralthetestd2003).Threducesuonthedelocation

Calculatedoannides,Mu

Ourworkdidcialphotodio,addinguncalAirMasscorrectionfadividedbytho,&Zaaiman

n1

where isespectrum,responsivitydevicewithheyfoundthuncertaintyetectorempandtimede

mismatchfallejans,&Du

notincludeodepyranomertaintyinto,KeithEmeractorderivehefullspectn,2003).Th

....

thetotalirraisthe

yoftherefermeasuredshhatusingaminspectralcployedandthependent.In

6

actorforaSnlop,2004)

correctingfmeterscannotheresultsry,JosephDdfromapotrumirradianeequationc

adiance,spectralirrarencedetecthortcircuitcmatchedrefecorrectionbuheairmasstheirpaper

6

Simodulefr

forspectralotmeasure.However,ielCueto,andlynomialfitonceasafunccanbewritt

....

isthespadianceofthtor,andcurrentISC(Eerencecelltoutmakesthebasedspect,theyalson

romexisting

mismatchanspectralirrainSpectraldWillemZaaofISCmeasuctionofairmenas:

.

pectralirradihesolarspec

isthespeEmery,DelComeasuretecorrectionralcorrectionotedthata

gliterature

ndtheUSOadianceabovCorrectionsaimanofferuredundernmass(Emery

anceofthectrum,ectralresponCueto,&ZaatotalirradiannequationdeonfactorisbSiismuchm

systemsveBasedanaturaly,

isthensivityofiman,nceependantbothmore

7

sensitivetowatervaporandturbiditythancSi,CIGSandCdTe.AsstatedpreviouslyoursystemdoesnotincludeaCdTemoduleundertestbecauseofthemanufacturerstightlycontrolleddistributionchannel.Instead,wereliedonexistingliteraturetoprovideabasiccomparisontotheresultswefoundforcSi,aSiandCIGSmodules(delCueto,2007).

WealsorecordedwindspeedandambienttemperaturewitheachmodulesIVsweep,eventhoughMyersshowednostrongcorrelationbetweenpowerandeitherwindspeedorambienttemperature(Myers,2009).

Theliteraturealsoprovidedabasisforunderstandingthelevelofuncertaintywecouldexpectfromouranalysis.Thereareseveralsourcesofuncertaintyincludingalackofprecisioninthemeasurementdevicesandrapidlychangingconditions(e.g.,irradiance)duringtestperiods.TheprecisionratingsofourmeasurementdevicesareavailableinAppendix1.Duringoneexperimentconductedin1998,MarionatNRELfoundthatBecauseoferrorsinmeasurementsandenergyratingmethodology,differencesof8%orlessintheenergyratingsoftwoPVmodulesarenotsignificant.IfoneofthemodulesisaSi,differencesof13%orlessintheenergyratingsoftwoPVmodulesarenotsignificant.(Marion,2000)

MethodF

connectiothercom

Figure4:

Tmeter.MmoduleufirstfindicurrentavoltagerxVocxFFpoweran

dsigure4showonsbetweemponentsw

Systemdia

heheartoftMeasuremenundertestwingVOC(wheatsuchaninreadszero(wF,wherethendFFreflect

wsthekeyelnthePVmowithinthetes

gram

thetestbedtsofamodu

whilesensingereI=0).ThetervaltoallowhichoccursproductIscxtsitsrelative

8

lementsoftodulesunderstbed.

disa1kWKeulespowergitsvoltage.softwarethowforapprosatIsc).ThexVocrepreseeefficiency,

8

hemeasurertestandth

eithleyInstruareobtaineThesourceheninstructsoximately80resultisanIentsthemoasshownin

ementsystememeasurem

uments(KI)dbysourcinmetercondsthesource0pointsorsIVcurvewithdulestheorFigure5be

mincludingtmentdevices

model#2430ngcurrenttoductsanIVsmetertoinstepsbeforehPmax=Impxreticalmaximlow.

thesand

0sourceotheweepbyncreasethe

xVmp=Iscmum

9

Figure5:SampleIVcurvewithYaxisA(left)andPowercurvewithYaxisW(right)

NotethattheillustrationaboveshowsastandardfirstquadrantIVcurve,butthatthesysteminfactcarriesoutfourthquadrantsweeps.InadditiontoVocandIsc,thefilealsorecordsPmax(thepointatwhichtheproductofVxIreachesitsmaximumpowervalue),FF[=(VmpxImp)/(VocxIsc)]andatimestamp.ThesysteminitiatesanIVsweepeverytenminuteswhenirradianceisgreaterthan20W/m2(2%offullsun).Thisisnotasfinearesolutionassomeothermonitoringsystems(e.g.,NRELsOTF)whichtakemeasurementseveryminuteorevenmorefrequently.

Alternatedwithitssweeps,thesoftwarecallsforreadingsfromdevicesconnectedtothedataacquisitionsystem,namelyaMaximummodel#41threecupanemometer,typeKthermocouplesattachedtothebackofeachmoduleandtwoambientpoints(shadedandnotshaded),andseveralKippandZonenSPLite2photodiodedetectorpyranometers.WealsoaddedasecondarystandardKippandZonenCMP21thermopileinMarch2011.Aspreviouslystated,alloftheotherfindingsinthisreportarebasedonobservationstakenbetweenJulyandDecember2010.However,thefindingsbasedonCMP21measurementsweretakenbetweenMarchandJuly2011.(ThemeasuredcorrelationbetweenaSPLite2andtheCMP21appearsinAppendix2.)However,theCMP21wascalibratedbythemanufacturerandnotputthroughNRELsmorerigorouscalibrationprocess(Emery,etal.,2005)(DevicePerformance,2006).

PmaxImp

Vmp Voc

Isc

0

10

20

30

40

50

60

70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100

WA

V

Figure6:

Figure7:

TpulsemocharactemeterfopulsedelonlyhansplittingttheISCofexceededchannelsthemoduonthem

K12430IV

Fourwirec

heKI#2430odewithaforisticsofoururwireconnlayat0.05mdleupto4AthecurrentfmanyPVmd3.2(=4/1.2sallowedtheulesundert

market.

Characteris

connection

iscapableofourwireconrsourcemenection.(Wemilliseconds.A.Wewereabetweentheodules,inclu25safetyfacecircuittoaest,butthis

1

sticspulsem

fsourcingornnection.Figterinpulseesetourpu)However,tabletodoubecardstwoudingsomector).Splittinccommodatwasinsuffic

10

mode

rsensingupgure6(abovemode.Figurlsewidthatthesystemsbletheswitcochannels(Hofthemodungthecurrentetheexpeccientfortest

to+/10Aae)indicatesre7(above)0.0025millisKI#7053swchingcardsH/L).Thiswaulesthatwentbetweenctedmaximutingsomehi

and+/100VthesourceashowsthesisecondsandwitchingcardtolerancetoasimportantwantedtotthecardsHumcurrentfighcurrent

Vdcinandsinksourcedourdscano8Abytbecausetest,H/Lromallofmodules

9

Fi

Fi

#mm

Figureisaphotogr

igure8:KI#7

igure9:KI#7

Other7002switchmainframedimodulesrout

e8showsthraphofone

7053Switch

7053Switch

rkeycompoingmainframirectsthesytedtofixed

eswitchcarofourKI#70

hcardconne

hcardwiths

nentsofthemeandaKI#stemtoseleloadresistor

11

rdconnectio053switchc

ectionfor5>9 Compile,tabulate,andinterpretdata. >>

2010117/2009 8/2009 9/2009 10/2009 2/2010 3/2010 201011/200912/2009 1/2010

14

Wecalculatedenergyyieldsas:

Equation3

,withatimeincrementbetweenmeasurementssetto10minutesduringdaylighthours.

Wethenindexedpowerandenergybyarea(m2)andweestimatedmoduletemperatureasmeasuredbackofmoduletemperatureplus3Cper1000W/m2,basedontheindustrystandard.

InfluencedbydelCuetosrecentstudy,wereportedourresultsinaseriesofgraphsplotting%Pmax,Isc,VocandFFagainstPOAirradiance,aswellas%PmaxagainstAOI,%PmaxandFFagainstmoduletemperature,andFFand%Pmaxovertimeintervals(delCueto,2007).Wealsocalculatedlinearandpolynomiallinefitsfor%Pmaxversusirradiance.Finally,usingtheequationbelow,wecalculatedforpowercorrectionbasedontemperaturecoefficientinordertohelpassesstheimpactofmoduletemperatureandtoestimatetheeffectsofAMandotherfactors:

Equation4

% % withtemperaturecoefficient,

delCuetofilteredoutobservationstakenduringhazyskyconditionsconsistingofprimarilydiffuseradiationinordertoanalyzePVperformanceunderclearskyconditionsordirectradiation(delCueto,2007).Ourworkdidnotincludesignificantfilteringortheapplicationofdatacorrectionfactors,buttheseareareasofpotentialfurtherresearch.Instead,wefocusedonreportingpowergenerationandelectricalcharacteristicsundertherealworldconditionsthatthetestmodulesexperienced.PVmodulesundertestappearinTable2below.

Table2:PVModulesundertest

Tech Module Pmax(W)ISC(A)

IMP(A)

VOC(V)

VMP(V)

FillFactor

TempCoeffPwr(%/oC)

Area(m2) Efficiency

cSi STP160S24/Ab1 160 5.0 4.65 43.2 34.4 0.74 0.48 1.2766 12.5%

aSi KanekaGSA060 60 1.19 0.9 92 67 0.55 NA 0.9504 6.3%

CIGS GSEPN33030O 30 2.2 1.7 25 17.5 0.54 0.5 0.3937 7.6%

CIGS SolyndraSL001165 165 2.74 2.37 93.9 69.6 0.64 0.24 1.9656 8.4%

aSi USOPVL68 68 5.1 4.13 23.1 16.5 0.58 0.0021 1.1225 6.1%

R

cVte

PPirir

T

inasttera

ResultsThere

Si,andCIGSVocandFFagemperature,

TheIEmaxwithrespmaxtoirradiarradiance.Tarradiance.

able3:Tren

Alinenallcases(Alinearequattronglinearemperatureangesof%Pm

esultsofourSmodulesreainstPOAir,andFFand

ECproposedpecttotempanceandtheable3(below

ndsinpower

ModuMateri

aSi

CIGS

cSi

earrelationsAppendices5tion,especiarelationshipandairmasmaxreadings

rnumericalaespectively.radiance,%P%Pmaxover

ratingstandperatureandeequationVw)showsthe

rbyPVmate

leial

0.0

shipbetween57a).Apolyallybelow10pbetweenposs)alsoaffecatfullsun(

15

analysesappEachappendPmaxagainsttimeinterva

dardcallsfodirradianceV(POAIrr)=veequations

erial

%

Tren

0.0010Ir

0000004Irr2+

0.000898

npowergenynomialequ000W/m2.Aowerandirrctpowergen1000W/m2)

pearinAppedixconsistsAOI,%Pmaxaals.

rlinearinteaswellasav1xln(POAthatwefou

Pmax

ndline

rr0.0740

+0.0012Irr0.

8Irr0.0138

nerationanduationforCIGAsshowninTradiance,othnerationresu:

endices5throfgraphsplandFFagain

rpolationsopolynomialIrr)+v2toindforfitting

R2

0.98

.0187 0.97

0.99

dirradiancecGSprovidesTable4beloherfactors(ultinginthe

rough7foraotting%Pmanstmodule

ofIsc,Voc,VmpinterpolationterpolateVg%Pmaxto

2

86

74

94

clearlyemerabetterfit

ow,despitet(mostnotabfollowing

aSi,x,Isc,

pandonofVocto

rgesthanthely,

16

Table4:Powerat1000W/m2byPVmaterial

ModuleMaterial

%PmaxatFullSun(+/0.5%)

Mean Low High

aSi 101.1% 90.2% 106.1%

CIGS 78.9% 76.6% 86.0%

cSi 86.2% 79.8% 94.1%

Inaccuratemeasurementdevicesandrapidlychangingconditionsduringtestperiodsalsoimpactresults.

AsindicatedinFigure14below,theaSimoduleclearlydemonstratesasuperiorpowerindextoirradianceperformanceratio.ThiscorrespondstotheequationspresentedinTable3above.

Figure14:PowervsPOAIrradianceforaSi,cSiandCIGSmodules

aSimodulesdeliversuperiorperformanceindexresultsathigherlevelsofirradianceduetoafavorabletemperaturecoefficient.Themanufacturersstate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Percen

tageSTC

Pmax

POAIrradiance(W/m2)

aSi

mcSi

cylindricalCIGS

17

temperaturecoefficientsof0.38%/C,0.48%/C,and0.0021%/CfortheirCIGS,cSiandaSimodulesrespectively.

ForaSiandcSi,moduletemperaturestypicallyaverage5060Catfullsun.ForcSi,onecanexpecta5060CmoduletemperaturetoreducePmax12.517.5%[(6025)x0.48%=17.5%]toaPmaxbetween82.587.5%ofSTC.Thisisconsistentwithourresults.

CorrectingfortemperatureonthecSimodule,alinearfitofPmaxcorr=0.00106xPOAIrr0.0582(R2=0.976)yields100.2%Pmaxat1000W/m2.ApolynomialfitofPmaxcorr=0.00000012POAIrr2+0.00118POAIrr0.711yields98.9%Pmaxat1000w/m2.TemperaturecorrectedobservationsandtheircorrespondinglinearandpolynomialfitsappearinFigure15.Thisimpliesthatathighirradianceconditions,whenAMtypicallyrangesbetween1and2,AMdoesnotsignificantlyimpactpowergeneration.However,AMcanexceed10neardawnandduskandhasamuchgreaterinfluenceoverpowerunderthose,butnotalllowirradianceconditions.

Figure15:TemperaturecorrectedPmaxcSi

BecausetheUSOtestbedlackstheabilitytomeasureAMandbecausetheremaybeinaccuraciesinitsmeasurementsofmoduletemperature,ourabilitytomeasureandisolatetemperaturedependenceislimited.However,havingcapturedbothnearbyambientandbackofmoduletemperaturesalongwithpowergeneration,POAirradianceandwindspeed,wewereableobserveperformanceunderavarietyofrealworld

y=0.00106x 0.05823R=0.97634

y=0.00000012x2 +0.00117777x 0.07105246R=0.97727378

20%

0%

20%

40%

60%

80%

100%

120%

140%

0 200 400 600 800 1000 1200 1400

%P m

ax

POAIrradiance(W/m2)

Linear(TempCorr) Poly.(TempCorr)

18

conditions.SimilartoMyersfindings,observationsfromourstudy,presentedinAppendix8indicatethatwindspeeddoesnotstronglyimpactpower(Myers,2009).

AlsoasexpectedforaSi,weseeanoscillationinfillfactors(i.e.,efficiency)throughouttheseasonsfromapproximately0.60inmidJulyto0.53inlateDecember(Appendix5c).Intermsofmoduletemperature,FFrangesfrom0.53near0Cto0.60between30and50C(Appendix5h).ThedownwardtrendfromsummertowinteristheresultofanincreasedStaeblerWronskieffectunderlowtemperatureconditionsandthermalannealingduringwarmperiods(Gregg,Blieden,Chang,&Ng,2005).cSiandCIGSmoduleFFs,ontheotherhand,remainsteadierduringthetestperiodat0.70and0.64,respectively(Appendices6and7c).ThemanufacturerslistFFsof0.74,0.64,and0.55forcSi,CIGSandaSi,respectively.

InAppendices5through7b,theupperbandofobservationsupto105AOIrepresentsclearskyconditionswhereasthelowermassofobservationsreflectmeasurementstakenunderovercastconditions.Outliersabovethebandmostlikelyindicatemostlysunnyconditionswithscatteredcloudsenhancingpowerthroughdiffuseirradiancethatenhancesoverallirradiancewithoutobstructingdirectsunlight.Intheseextremecases,totalPOAirradianceexceedsfullsun(POAIRR>1000W/m2).Thisworkdidnotincludeseparatingclearskyobservationsfromcloudyskies,butdelCuetomeasuredaspecificPVmodulesperformanceunderclearskyconditionswithPOAIrradiance=A+Bxcos(AOI)andfound:

A B 1standarddeviation

87.47.8W/m2 1142.520.9W/m2 93.711.2W/m2

HedidthisbyfittingitsphotoresponseasafunctionofAOIintosegments(

19

Table5:UnitedSolarOvonicsTestbedPVPower(W)ObservationsfittingIEC618531parameters

aSI cSi CIGS

HTC*

%Pmax 0.999 0.821 0.709

Avg 60 131.3 117

Min 55.8 124.8 102.1

Max 63.9 139.2 130.8

Obs 17 47 30

STC

%Pmax 0.968 0.921 0.643

Avg 58.1 147.4 106.0

Min 53.1 138.7 86.3

Max 63.2 160.9 127.2

Obs 5 4 91

NOCT

%Pmax 0.766 0.72 0.632

Avg 46.0 115.1 104.3

Min 39.3 104.8 97.1

Max 52.6 132.6 125.7

Obs 95 82 63

LTC

%Pmax 0.408 0.507 0.455

Avg 24.5 71.6 75.0

Min 20.5 63.7 62.4

Max 30.4 81.2 105.7

Obs 24 20 122

LIC

%Pmax 0.185 0.157 0.195

Avg 11.1 25.2 32.2

Min 5.3 14.3 20.7

Max 15.8 35.2 50.2

Obs 191 195 360

*Thecool,humidconditionattheAuburnHills,MichigantestsitedidnotyieldHighTemperatureConditions,sotheseHTCobservationsincluderesultsformoduletemperaturesaslowas60C,ratherthantheIECproposedstandardof75C.

20

ConclusionTheoutdoorPVmoduletestingsystemdevelopedbyUnitedSolarOvonic

dramaticallyincreasedtheorganizationscapabilitiestotesttheperformanceofitscompetitorsanditsownPVmodulesincludingprototypes.USOalsoreliesonSpiresimulators,acceleratedtestingandothermeansoftestingPVinordertobetterunderstandandultimatelyfacilitatetheadvancementofPVtechnology.

TheUSOtestbediseffectiveattestingPVmoduleswithIsc

21

ResearchersanalyzetheconstituentparametersofPVpower,butdevelopersandconsumersunderstandablyonlycareaboutpowergeneration.Themodulesinthisstudyproducedbetween0.76and0.95WperkWhofPOAirradianceperSTCWPmax.TheseresultsappearinAppendix9.

Themodulesundertestproducedbetween51.5and105.1dcWperkWhofPOAirradianceperm2.GiventhatPVmodulesaresoldona$/Wpbasis,efficiencybecomesasecondaryfactorwhenselectingamodule.However,efficiencyquicklycomesbackintoplayassystemdevelopersandbuyersconsiderspaceconstraints(i.e.,roofrent)andbalanceofsystemcosts.1000squaremetersofarraywillrequireapproximatelythesameamountofracking,wire,overcurrentprotection,laborcosts,etc.regardlessofthetechnologyandefficiencyofthemodules.Inthiscase,asystemwithahigherefficiencymodulewillgeneratemoreenergyinthesameamountofspaceasalessefficientpanelandthoughthemoduleswouldhavecostmorebasedontheirSTCratings,modulecostrepresentsonlyafractionoftheoverallsystemcost.ThebalanceofsystemsarelikelytocostapproximatelythesameamountregardlessofthePVmodulematerial.ForthesereasonsPVmoduleefficiencyremainsanimportantfactorforconsideration.

22

Glossary Efficiencywithrespecttoreferenceconditions

Wavelength

A Testmodulearea

aSi AmorphousSilicon

AM AirMass

AOI AngleofIncidence

cSi CrystallineSilicon

CIGS CopperIndiumGaliumSelenide

Energyyield Whrs/Wp

Eref() Referencespectralirradiance

Es() Measuredspectralirradianceofthelightsource

Et Totalirradiance

FF Fillfactor

Imp CurrentatPmax

Isc Testmoduleshortcircuitcurrent

IEC InternationalElectrotechnicalCommission

Inverterramptimes

ACpowerlossesthatoccurduringsuddenfluctuationsinirradiance

Inverterclipping ACpowerlossesthatoccurwhenarraypowerexceedsinvertercapability

IRR Calibratedcurrentofthereferencecellunderthereferenceconditions

ITM Measuredtestcellcurrent

ITR Calibratedcurrentofthetestcellunderthereferenceconditions

IV Currentversusvoltage

K Spectralcorrectionfactor,inverseofM

M Spectralmismatchparameter

Pmax Testmodulemaximumpowerunderreferenceconditions

POA PlaneofArray

St() Measuredspectralresponsivityofthetestmodule

23

Sr() Measuredspectralresponsivityofthereferencemodule

STC StandardTestConditions(1000W/m2,25Cmodtemp,1.5AM)

Vmp TestmodulevoltageatPmax

Voc Testmoduleopencircuitvoltage

24

References

DevicePerformance.(2006,June).MeasurementandCharacterizationNationalCenterforPhotovoltaics.Golden,CO:NationalRenewableEnergyLaboratory.

EnphaseEnergy.(2011).RetrievedJuly15,2011,fromhttp://enphase.com/products/enlighten/

FroniusUSALLC.(2011).RetrievedJuly15,2011,fromhttp://www.fronius.com/cps/rde/xchg/SID523BEC851CC3FCC9/fronius_usa/hs.xsl/2714_1458.htm

KeithleyInstruments.(2011).RetrievedJuly15,2011,fromhttp://www.keithley.com/rpCMSimg/50675.

delCueto,J.A.(2007).PVModuleEnergyRatingsPartII:FeasibilityofUsingthePERTinDerivingPhotovoltaicModuleEnergyRatings.Golden,CO:NationalRenewableEnergyLaboratory.

Dierauf,T.(2011,May20).SunPowerEnergyManagementServicesASESSolar2011.Raleigh,NC.

Emery,K.(2009).UncertaintyAnalysisofCertifiedPhotovoltaicMeasurementsattheNationalRenewableEnergyLaboratory.Golden,CO:NationalRenewableEnergyLaboratory.

Emery,K.A.,Osterwald,C.R.,Cannon,T.W.,Myers,D.R.,Burdick,J.,Glatfelter,T.,etal.(1985).MethodsforMeasuringSolarCellEfficiencyIndependentofReferenceCellorLightSource.18thPhotovoltiacSolarConference(pp.623628).LasVegas,NV:InstituteforElectricalandElectronicEngineers.

Emery,K.,Anderberg,A.,Kiehl,J.,Mack,C.,Moriarty,T.,Rummel,S.,etal.(2005).TrustButVerify:ProcedurestoAchieveAccurateEfficiencyMeasurementsforAllPhotovoltaicTechnologies.31stIEEEPhotovoltaicSpecialistsConferenceandExhibition(pp.15).LakeBuenaVista,FL:InstituteofElectricalandElectronicEngineers.

Emery,K.,DelCueto,J.,&Zaaiman,W.(2003).SpectralCorrectionsBasedonOpticalAirMass.PhotovoltaicSpecialistsConference,2002.ConferenceRecordoftheTwentyNinthIEEE(pp.17251728).NewOrleans,LA:IEEE.

Gay,C.F.,Rumberg,J.E.,&Wilson,J.H.(1982).AMPM:alldaymoduleperformancemeasurements.Proceedings16thIEEEPhotovoltiacSpecialist'Conference(pp.10411046).SanDiego,CA:IEEE.

Gregg,A.,Blieden,R.,Chang,A.,&Ng,H.(2005).PerformanceAnalysisofLargeScale,AmorphousSiliconPhotovoltaicPowerSystems.31stPhotovoltaicSpecialistConferenceandExhibition.LakeBuenaVista,FL:InstituteofElectricalandElectronicsEngineers.

25

Gregg,A.,Parker,T.,&Swenson,R.(2005).A"RealWorld"ExaminationofPVSystemsDesignandPerformance.31stPhotovoltaicSpecialistConferenceandExhibition.LakeBuenaVista,FL:InstituteofElectricalandElectronicsEngineers.

Jansen,K.W.,Kadam,S.B.,&Groelinger,J.F.(2006).TheHighEnergyofAmorphousSiliconModulesinaHotCoastalClimate.21stEuropeanPhotovoltaicSolarEnergyConference,(pp.25352538).Dresden(Germany).

Kenny,R.P.,Dunlop,E.D.,Ossenbrink,H.A.,&Mullejans,H.(2006,December19).APracticalMethodfortheEnergyRatingofcSiPhotovoltaicModulesBasedonStandardTests.ProgressinPhotovoltaics:ResearchandApplications,14:155166.

Kenny,R.P.,Ioannides,A.,Mullejans,H.,&Dunlop,E.D.(2004).Spectraleffectsontheenergyratingofthinfilmmodules.Proceedingsofthe19thEUPVSEC,(pp.24512454).Paris,France.

Kimber,A.(2011,May20).PVSystemCapacityTesting:Methods,ConstraintsandApplications.Raleigh,NC.

King,D.L.,Kratochvil,J.A.,&Boyson,W.E.(1997).MeasuringSolarSpectralandAngleofIncidenceEffectsonPhotovoltaicModulesandSolarIrradianceSensors.26thIEEEPhotovoltaicsSpecialistsConference(pp.16).Anaheim,CA:SandiaNationalLaboratories.

Marion,B.(2000).ValidationofaPhotovoltaicModuleEnergyRatingsProcedureatNREL.NCPVProgramReviewMeeting(pp.8586).Denver,CO:NREL.

Marion,B.,Kroposki,B.,Emery,K.,delCueto,J.,Myers,D.,&Osterwald,C.(1999).ValidationofaPhotovoltaicModuleEnergyRatingsProcedureatNREL.Golden,CO:NationalRenewableEnergyLaboratory.

Myers,D.(2009).EvaluationofthePerformanceofthePVUSARatingMethodolgyAppliedtoDualJunctionPVTechnology.AmericanSolarEnergySocietyAnnualConference(pp.111).Buffalo,NY:NationalRenewableEnergyLaboratory.

Poissant,Y.,Pelland,S.,&Turcotte,D.(2008).ACOMPARISONOFENERGYRATINGMETHODOLOGIESUSINGFIELDTESTMEASUREMENTS.23rdEuropeanPVSolarEnergyConferenceandExhibition(pp.16).Valencia,Spain:CANMETEnergyTechnologyCenter.

Previtali,J.(2011,May20).AnIndependentEngineer'sviewsonPVPerformanceTesting.Raleigh,NC.

Reda,I.,&Andreas,A.(2008).SolarPositionAlgorithmforSolarRadiationApplications.Golden,CO:NationalRenewableEnergyLaboratory.

26

Riordan,C.,&Hulstron,R.(1990).WhatisanAirMass1.5Spectrum?ConferenceRecordoftheTwentyFirstIEEE(pp.10851088).Kissimmee,FL:PhotovoltaicSpecialistsConference.

vanCleef,M.,Lippens,P.,&Call,J.(2001).SuperiorEnergyYieldsofUNISOLARTripleJunctionThinFilmSiliconSolarCellscomparedtoCrystallineSiliconSolarCellsunderRealOutdoorConditionsinWesternEurope.17thEuropeanPhotovoltaicSolarEnergyConferenceandExhibition.Munich(Germany).

27

AppendicesAppendix1:MeasurementDeviceDataSheets...............................................................28Appendix2:Comparisonofpyranometerreadings.........................................................32Appendix3:SystemDesign...............................................................................................33Appendix4:ModuleDataSheets.....................................................................................36Appendix5:aSimoduleResults......................................................................................42Appendix6:cSimoduleResults.......................................................................................47

GraphAxis

x ya POAIrrW/m2 %Pmaxb AOI %Pmaxc Date FillFactord POAIrrW/m2 FillFactore POAIrrW/m3 ISCf POAIrrW/m4 VOCg ModuleTempoC %Pmaxh ModuleTempoC FillFactori Date %Pmax

Appendix7:CIGSmoduleResults.....................................................................................52

GraphAxis

x ya POAIrrW/m2 %Pmaxb AOI %Pmaxc Date FillFactord POAIrrW/m2 FillFactore POAIrrW/m3 ISCf POAIrrW/m4 VOCg AmbientTempoC %Pmaxh AmbientTempoC FillFactori Date %Pmax

Appendix8:PowerversuswindspeedcSimodule.........................................................57Appendix9:Conclusions...................................................................................................58

Appendix

x1:Measur

K

rementDevi

ippandZon

2

iceDataShe

nenSPLite2P

28

eets

PhotodiodePyranometter

Kipp

SpecificISOClasResponsZerooff(a)therm(b)tempNonstaNonlineDirectiobeam)TemperTilterroSensitivImpedaLevelacOperatiSpectraTypicalsMaximuExpecteRecomm

andZonen

cationsssificationsetime(95%fsetsmalradiatioperaturechability(changearity(0to1onalerror(up

raturedepenor(at1000Witynceccuracyngtemperatlrange(50%signaloutpuumirradianceddailyuncemendedapp

CMP21Sec

%)

n(200W/m2ange(5K/hrge/year)1000W/m2)pto80owit

ndenceofseW/m2)

ture%points)utforatmospceertaintylications

29

condaryStan

2)r)

)th1000W/m

ensitivity

phericapplic

ndardTherm

CMSe

KeithleeyInstrume

3

ntsModel#

30

#2700DataAAcquisitionSSystem

31

KI2430SourceMeterSpecifications:

VoltsRanges 0.2,2,20,100VBasicVSourceAccuracy 0.02%BasicVMeasureAccuracy 0.015%

1,10,100A1,10,100mA1,3,10A

BasicISourceAccuracy 0.045%BasicIMeasureAccuracy 0.035%

2,20,2002,20,200k2,20,200M

BasicOhmsMeasureAccuracy 0.06%110WDC

1000WPulse

IRanges

OhmsRanges

MaximumPower

32

Appendix2:Comparisonofpyranometerreadings

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 200 400 600 800 1,000 1,200 1,400

CMP2

1/SPLite2Irrad

iance

CMP21Irradiance(W/m)

CMP21POAIrr=1.0346xSPLite2POAIrr

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600Irrad

iancefrom

CMP2

1Pyrano

meterat

25deg

tilt(W

/m)

IrradiancefromSPLite2Pyranometerat25degTilt(W/m)

33

Appendix3:SystemDesign

SystemComponentsKeithleyInstruments(KI)SourceMeter#2430KISwitchingMainframe#7002FourKISwitchingModules#70534Achannels(x2=8A)100mH/LchannelballastresistorsKIDMMDataAcquisitionSystem#2700/7700Kipp&ZonenCMP21thermopilepyranometerThreeKipp&ZonenPyranometersSPLite2(flat,15,and27)MaximumAnemometer#41Type(K)Thermocouples(eachmoduleandtwoambient)PCwithGPIBinterfaceVBA.netFixedloadresistors(MinimumPowerRating=Vmp/ImpX1.25)Blockballastednonpenetratingracks

3

System

34

Diagram

Ro

35

ooftopSchematic

Appendixx4:ModuleeDataShee

3

ts

36

37

338

39

440

41

42

Appendix5:aSimoduleResults

y=0.001x 0.0074R=0.9859

0%

20%

40%

60%

80%

100%

120%

140%

0 200 400 600 800 1000 1200 1400

P max

POAIrradianceW/m2

0%

20%

40%

60%

80%

100%

120%

140%

0 10 20 30 40 50 60 70 80 90 100 110

P max

AngleofIncidence

5(a)

5(b)

43

aSimodulefillfactorovertimeandPOAIrradiance

Notethedropinefficiency(fillfactor)duringcoldermonths(above).

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

7/1/2010 8/1/2010 9/1/2010 10/2/2010 11/2/2010 12/3/2010

FillFactor

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 200 400 600 800 1,000 1,200 1,400

FillFactor

POAIrradianceW/m2

5(c)

5(d)

44

aSimoduleelectricalcharacteristicscurrent(I)andvoltage(V)versusPOAIrradiance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 200 400 600 800 1000 1200 1400

Isc

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

Voc

POAIrradianceW/m2

5(e)

5(f)

45

aSimodulePowerandEfficiencyversusModuleTemperature

0%

20%

40%

60%

80%

100%

120%

140%

10 0 10 20 30 40 50 60 70

P max

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

20 10 0 10 20 30 40 50 60 70

FillFactor

ModuleTemperatureOC

5(h)

5(g)

46

aSimoduleEnergyyieldsforthreeconcurrentdaysinJuly,SeptandDec2010

0%

20%

40%

60%

80%

100%

120%

7/3/2010 7/4/2010 7/5/2010 7/6/2010

Pmax

0%

20%

40%

60%

80%

100%

9/21/2010 9/22/2010 9/23/2010 9/24/2010

Pmax

0%

20%

40%

60%

12/24/2010 12/25/2010 12/26/2010 12/27/2010

Pmax

5(i)

47

Appendix6:cSimoduleResults

y=0.000898x 0.013802

0%

20%

40%

60%

80%

100%

120%

140%

0 200 400 600 800 1000 1200 1400

P max

POAIrradianceW/m2

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60 70 80 90 100 110

P max

AngleofIncidence

6(a)

6(b)

48

cSImodulefillfactor

0.30

0.40

0.50

0.60

0.70

0.80

0.90

7/1/2010 8/1/2010 9/1/2010 10/2/2010 11/2/2010 12/3/2010

FillFactor

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 200 400 600 800 1,000 1,200 1,400

FillFactor

POAIrradianceW/m2

6(c)

6(d)

49

cSimoduleelectricalcharacteristicscurrent(I)andvoltage(V)versusPOAIrradiance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 200 400 600 800 1000 1200 1400

Isc

10

20

30

40

50

0 200 400 600 800 1000 1200 1400

Voc

POAIrradianceW/m2

6(e)

6(f)

50

cSimodulePowerandEfficiencyversusModuleTemperature

0%

20%

40%

60%

80%

100%

120%

140%

10 0 10 20 30 40 50 60 70

P max

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 0 10 20 30 40 50 60 70

FillFactor

ModuleTemperatureOC

6(g)

6(h)

51

cSimoduleEnergyyieldsfromthreeconcurrentdaysinJuly,SeptandDec2010

0%

20%

40%

60%

80%

100%

120%

7/3/2010 7/4/2010 7/5/2010 7/6/2010

P max

0%

20%

40%

60%

80%

100%

9/21/2010 9/22/2010 9/23/2010 9/24/2010

P max

0%

20%

40%

60%

12/24/2010 12/25/2010 12/26/2010 12/27/2010

P max

6(i)

52

Appendix7:CIGSmoduleResults

y=4E07x2 +0.0012x 0.0187R=0.9744

0%

20%

40%

60%

80%

100%

120%

0 200 400 600 800 1000 1200 1400

P max

POAIrradianceW/m2

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60 70 80 90 100

P max

AngleofIncidence

7(a)

7(b)

53

CIGSmodulefillfactorovertimeandintensityoflight(POAIrr)

0.30

0.40

0.50

0.60

0.70

0.80

7/1/2010 8/1/2010 9/1/2010 10/2/2010 11/2/2010 12/3/2010

FillFactor

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0 200 400 600 800 1000 1200 1400

FillFactor

POAIrradianceW/m2

7(c)

7(d)

54

CIGSmoduleelectricalcharacteristicscurrent(I)andvoltage(V)versusPOAIrradiance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 200 400 600 800 1000 1200 1400

Isc

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

Voc

POAIrradianceW/m2

7(e)

7(f)

55

CIGSmodulePowerandEfficiencyversusAmbientTemperature

0%

20%

40%

60%

80%

100%

120%

10 5 0 5 10 15 20 25 30 35 40

P max

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10 5 0 5 10 15 20 25 30 35 40

FillFactor

AmbientTemperatureOC

7(g)7(g)

7(h)

56

CIGSmoduleEnergyyieldsfromthreeconcurrentdaysinJuly,SeptandDec2010

0%

20%

40%

60%

80%

100%

7/3/2010 7/4/2010 7/5/2010 7/6/2010

P max

0%

20%

40%

60%

80%

100%

9/21/2010 9/22/2010 9/23/2010 9/24/2010

P max

0%

20%

40%

60%

12/24/2010 12/25/2010 12/26/2010 12/27/2010

P max

7(i)

57

Appendix8:PowerversuswindspeedcSimodule

0%

20%

40%

60%

80%

100%

120%

0 5 10 15

P max

Windspeed(m/sec)

AppendixPe

rcen

tageSTC

Pmax

DCPow

erGen

erated

(W

/m2 )

0.0

0.2

0.4

0.6

0.8

1.0

m2 /kW

Whr

x9:Conclus

0%

20%

40%

60%

80%

100%

120%

0

0

20

40

60

80

100

120

140

0

(W/m

)

0

2

4

6

0.8390.879

r/(IrrkWh

sions

200

aSi

200

90.757

0.951

hr/m2)/ST

5

400

mcSi

400 6

POAIrrad

TCPmax

cSi

CIGS@P

CIGS@T

aSi(1x)

58

600 80

cylindric

600 800

diance(W/

POAIrr

TiltIrr

)

2

00 1000

calCIGS

0 1000

/m2)

0

20

40

60

80

100

120 105

m2

Whr/(Ir

0 1200

1200

.1

73.863.6

rrkWhr/m

60.1

m2)