Measurements*of*Two/Par1cle*Correla1ons...

71
Measurements of TwoPar1cle Correla1ons with respect to HigherOrder Event Planes in √s NN =200 GeV Au+Au collisions at RHICPHENIX PreDefense Session Nov 6 th 2013 Takahito Todoroki High Energy Nuclear Physics Group 2013/11/06 preDefense 1

Transcript of Measurements*of*Two/Par1cle*Correla1ons...

Page 1: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Measurements  of  Two-­‐Par1cle  Correla1ons  with  respect  to  Higher-­‐Order  Event  Planes  

in  √sNN=200  GeV  Au+Au  collisions  at  RHIC-­‐PHENIX  

Pre-­‐Defense  Session  Nov  6th  2013  

Takahito  Todoroki  High  Energy  Nuclear  Physics  Group

2013/11/06 pre-­‐Defense 1

Page 2: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Outline •  Introduc)on  –  Quark  Gluon  Plasma  (QGP)  –  Previous  Measurements  and  Theore)cal  Models  –  Higher-­‐Order  Flow  Contribu)ons  in  Two-­‐Par)cle  Correla)ons  

•  Analysis  –  Data  Set  &  Experimental  Set  Up  –  Flow  and  Two-­‐Par)cle  Correla)on  Measurements  –  Correla)ons  with  respect  to  Event  Planes    

•  Results  &  Discussion  –  Inclusive  Trigger  Correla)ons  –  Event  Plane  Dependent  Correla)ons  

•  Summary  

2013/11/06 pre-­‐Defense 2

Page 3: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

INTRODUCTION

2013/11/06 pre-­‐Defense 3

Page 4: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Quark  Gluon  Plasma  (QGP) •  A  fluid  of  quark  and  gluons  deconfined  from  hadrons  at  high  energy-­‐density  ε  &  temperature  T  

•  Predicted  transi)on  ε  &  T  by  LaRce-­‐QCD  

–  εc  ~  1.0  [GeV/fm3]  –  Tc  ~  170  [MeV]    

•  Rela)vis)c  Heavy  Ion  Collisions  at  RHIC  

–  ε  ~5.0  -­‐  15.0  [GeV/fm3]  

2013/11/06 pre-­‐Defense 4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/Tc

�/T4 �SB/T4

3 flavour2+1 flavour

2 flavour

F.  Karsch,  Lect.  Notes  Phys.  583,  209  (2002)  

Page 5: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Rela1vis1c  Heavy  Ion  Collider

•  Accelerators  at  Brookhaven  Na)onal  Laboratory  –  Tandem  van  de  Graaff  –  Linear  Accelerator  –  Booster  Synchrotron  –  Alterna)ng  Gradient  Synchrotron  –  Rela)vis)c  Heavy  Ion  Collider

2013/11/06 pre-­‐Defense 5

Year Species !s [GeV ] "Ldt Ntot (sampled) Data SizeRun1 2000 Au - Au 130 1 !b-1 10 M 3 TB

Au - Au 200 24 !b-1 170 M 10 TBAu - Au 19 < 1 M

p - p 200 0.15 pb-1 3.7 B 20 TBd - Au 200 2.74 nb-1 5.5 B 46 TBp - p 200 0.35 pb-1 6.6 B 35 TB

Au - Au 200 241 !b-1 1.5 B 270 TBAu - Au 62.4 9 !b-1 58 M 10 TBCu - Cu 200 3 nb-1 8.6 B 173 TBCu - Cu 62.4 0.19 nb-1 0.4 B 48 TBCu - Cu 22.4 2.7 !b-1 9 M 1 TB

p - p 200 3.8 pb-1 85 B 262 TBp - p 200 10.7 pb-1 233 B 310 TBp - p 62.4 0.1 pb-1 28 B 25 TB

Run-7 2007 Au - Au 200 813 !b-1 5.1 B 650 TBd - Au 200 80 nb-1 160 B 437 TBp - p 200 5.2 pb-1 115 B 118 TB

Au - Au 9.2 few k

Run-6

Run-8

2002/03

2006

2007/08

2005

2001/02Run2

Run3

Run4 2003/04

Run5

•  p+p  :  510  GeV  •  d+Au,  Cu+Cu,  Cu+Au,  Au+Au:  200GeV  •  U+U  :  193  GeV    

PHENIX  Run  Summary  

Page 6: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Space-­‐Time  Evolu1on

2013/11/06 pre-­‐Defense 6

�µT �µ = 0�µjµ

B = 0

Hydrodynamic  Expansion

Number  &  Species  of  Par1cles  Fixed  

(Kine1c  Equilibrium)

Break  of  Kine1c  Equilibrium  

Page 7: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Collec1ve  Expansion •  Pressure  Gradient  due  to  small  λ/R<<1

2013/11/06   pre-­‐Defense   7  

Smooth  Parton  Density

Fluctua1ng  Parton  Density

Px

Py Pz

•  Expansion  with  respect  to  Ψn

Ed3N

dp3=

d2N

2�dpT d�

�1 +

�2vn cos n(���n)

vn =< cosn(���n) >

� : azimuthal angle of emitted particles� : azimuthal angle of event plane

Ed3N

dp3=

d2N

2�dpT d�

�1 +

�2vn cos n(���2)

vn =< cosn(���2) >

PRC81.054905  (2010)

Page 8: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Higher-­‐Order  Flow  Harmonics

•  None-­‐zero  vn(n>2)  •  Disentanglement  of  a  degeneracy  among  models  –  Ini)al  Condi)on,  Sheer  Viscosity  in  Hydrodynamics  

•  Backgrounds  in  correla)on  studies

2013/11/06 pre-­‐Defense 8

PRL107.252301  (2011)

Page 9: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Jet-­‐Quenching

•  Suppression  of  par)cles  compared  to  p+p  collisions  –  Nuclear  modifica)on  Factor  RAA<1  –  Away-­‐Side  suppression  of  Correla)ons

2013/11/06 pre-­‐Defense 9

p+p� Au+Au�

RAA =d2NAA/dpT d�

Ncolld2Npp/dpT d�

PRL91.072304  (2003)

Page 10: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

Au+Au  200GeV  20-­‐60%

Path  Length  Dependence  of  High  pT  Correla1ons

•  v2  and  v4{Ψ2}  subtracted  •  Monotonic  suppression  of  away-­‐side  •  Parton  Energy  Loss  depending  on  path  

length  2013/11/06   pre-­‐Defense   10  

Short  path  length

Long  path  length

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

I AA  =

 YAA/Y

pp

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

SUPPRESSION OF AWAY-SIDE JET FRAGMENTS WITH . . . PHYSICAL REVIEW C 84, 024904 (2011)

FIG. 6. (Color online) Per-trigger azimuthal jet yields for the mostin-plane, !s = 0–15! (solid circles), and out-of-plane, !s = 75–90!

(open circles), trigger particle selections in midcentral (20%–60%)collisions for various partner momenta. Insets show away-sideregion on a zoomed scale. Bars indicate statistical uncertainties.Underlying event modulation systematic uncertainties are representedby bands through the points while the corresponding normalizationuncertainties are shown as dashed lines around zero. Near- andaway-side jet yield integration windows are indicated with arrows.

this source of systematic uncertainty has little correlationbetween the centrality and momentum selections.

For central events the near-side suppression is consistentwith a constant as a function of !s within the statisticaland !s-correlated systematic uncertainties. The values arealso consistent with no suppression when considering theglobal scale uncertainty that appears on the trigger particleorientation averaged IAA. On the away-side, there is significantsuppression in central events, as evidenced by the triggerparticle averaged IAA, but the statistical precision with whichto determine the !s variation is limited.

Midcentral (20%–60%) events, have greater eccentricityand could be expected to show correspondingly larger triggerparticle orientation dependence due to path-length variationthrough the collision zone. The same set of representativeper-trigger azimuthal yields is shown in Fig. 6 for themidcentral selection. Again, the near-side jets for the most

FIG. 7. (Color online) Nuclear jet suppression factor IAA byangle with respect to the reaction plane !s for near- and away-sideangular selections, circles and squares, respectively, in midcentral(20%–60%) collisions for various partner momenta. Bars indicatestatistical uncertainties. The shaded band shows the systematicuncertainty on the reaction-plane resolution unsmearing correction.Solid points show trigger particle angle averaged results and theglobal scale uncertainty.

in-plane and most out-of-plane trigger particle orientationsare consistent with each other, a direct indication of littlevariation with respect to the reaction plane. The mid-"! arealso in agreement with zero, as before, further demonstratingthat the underlying event flow correlations are well describedby Eqs. (6)–(9). In contrast to the near-side, the away-sidemeasurements (see insets in Fig. 6) change between thein-plane and out-of-plane trigger particle orientations withthe latter having consistently smaller yield for all partnermomenta.

The integrated near- and away-side per-trigger jet yieldsfor midcentral (20%–60%) collisions are shown in Fig. 7.The near-side jet is essentially flat, with negligible suppres-sion [IAA(!s) = 1]. The away-side jet yield is increasinglysuppressed with increasing !s . This falling trend results inonly small associated particle yield remaining for out-of-planetrigger particle orientations.

024904-9

PRC.84.024904  (2011)

Page 11: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Double-­‐Humps  &  Ridge  of  Interm.  pT  Correla1ons

•  Near-­‐side  long-­‐range  rapidity  correla)ons  (Ridge)  •  Away-­‐side  double-­‐humps  of  azimuthal  correla)ons  

–  v2  contribu)on  subtracted  •  Addi)onal  Effect  to  Parton  Energy-­‐Loss  

–  Lost  Energy-­‐Redistribu)on  –  Boost  of  jet  by  medium  expansion  

2013/11/06 pre-­‐Defense 11

B. I. ABELEV et al. PHYSICAL REVIEW C 80, 064912 (2009)

!"

-3-2

-10

12

3#"

-1.5-1

-0.50

0.51

1.5

) #" d!"

N/(d

2 d

4647484950515253

-310

Au+Au central3<pt

trig<4 GeV/c

!"

-3-2

-10

12

3#"

-1.5-1

-0.50

0.51

1.5

) #" d!"

N/(d

2 d 4850525456586062

-310

Au+Au central4<pt

trig<6 GeV/c

!"

-3-2

-10

12

3#"

-1.5-1

-0.50

0.51

1.5

)#" d!"

N/(d

2 d

02468

101214

-310

d+Au minimum bias3<pt

trig<4GeV/c

!"

-3-2

-10

12

3#"

-1.5-1

-0.50

0.51

1.5

)# " d!"

N/(d

2 d

0

2

4

6

8

10

12

-310

d+Au minimum bias4<pt

trig<6 GeV/c

FIG. 1. Charged-di-hadron distribution [Eq. (1)] for 2 GeV/c < passoct < passoc

t . Upper left: central Au + Au, 3 < ptrigt < 4 GeV/c; upper

right: central Au + Au, 4 < ptrigt < 6 GeV/c; lower left: minimum bias d + Au, 3 < p

trigt < 4 GeV/c; lower right: minimum bias d + Au,

4 < ptrigt < 6 GeV/c. Note the different vertical scales, as well as the suppressed zero in the upper panels.

by event mixing. Associated particles have 2 < passoct <

ptrigt GeV/c for consistency with previous results [5], except

for a new analysis, which directly compares correlations fordifferent p

trigt (Section VI A), where 2 < passoc

t < 4 GeV/cwas used.

Figure 1 shows distributions of the associated particle yielddefined in Eq. (1) for central Au + Au events with triggers3 < p

trigt < 4 and 4 < p

trigt < 6 GeV/c (upper panels) and for

d + Au events with the same ptrigt selections (lower panels). A

near-side peak centered on (!",!#) = (0, 0) is evident in allpanels and is consistent with jet fragmentation. In addition, asignificant enhancement of near-side correlated yield is seenat large !" for central Au + Au events but not for d + Auevents: the ridge.

In this analysis we examine the shape of the near-sideassociated yield distribution in detail via projections on the!" and !# axes. We characterize the shapes of both theridge and the jet-like peak and study the pt dependence ofthe ridge and jet-like yields.

IV. RIDGE SHAPE IN !"

To study the ridge quantitatively, the di-hadron distributionis projected onto the !" axis in intervals of !#:

dN

d!"

!!!!a,b

!" b

a

d!#d2N

d!#d!"; (2)

similarly for projection onto !#:

dN

d!#

!!!!a,b

!"

|!"|"[a,b]d!"

d2N

d!#d!". (3)

The contribution to the di-hadron distribution of ellipticflow (v2) in nuclear collisions [3] is estimated via

B!#[a, b] ! b!#

" b

a

d!##1 + 2

$v

trig2 vassoc

2

%cos 2!#

&, (4)

where the mean uncorrelated level b!# is fixed by theassumption of zero correlated yield at the minimum of theprojected distribution, in this case 1.0 < !# < 1.2 (zero

064912-4

PRC.80.064912  (2009) PRC.78.014901  (2008) DIHADRON AZIMUTHAL CORRELATIONS IN Au+Au . . . PHYSICAL REVIEW C 78, 014901 (2008)

(rad)!"0 2 4

(rad)!"0 2 4

!"/d

ab)d

Na

(1/N

0

0.01

0.02

0.03

0-5%

2.0-3.0 GeV/c#2.0-3.0 FIG. 9. (Color online) Per-trigger yield !" distribution

and corresponding fits for 2–3 ! 2–3 GeV/c in 0–5%Au+Au collisions. FIT1 (FIT2) is shown in the left panel(right panel). The total fit function and individual com-ponents are shown relative to the # level indicated by thehorizontal line.

jet fragmentation contribution and is parametrized to have thesame width as that for the p + p away-side jet. FIT1 has sixfree parameters: background level # , near-side peak integraland width, and shoulder peak location D, integral, and width.In addition to the parameters of FIT1, FIT2 has a parameterthat controls the integral of the fragmentation component.

The separate contributions of FIT1 and FIT2 are illustratedfor a typical pa

T ! pbT in Fig. 9.

The two fits treat the region around !" = $ differently.FIT2 tends to assign the yield around $ to the centerGaussian, while FIT1 tends to split that yield into the twoshoulder Gaussians. Note, however, that a single Gaussiancentered at $ can be treated as two shoulder Gaussianswith D = 0. Thus FIT1 does a good job at low pT andhigh pT , where the away-side is dominated by shoulder andhead components, respectively. It does not work as well forintermediate pT , where both components are important. Thecenter Gaussian and shoulder Gaussians used in FIT2 arestrongly anticorrelated. That is, a small shoulder yield implies alarge head yield and vice versa. In addition, the center Gaussiantends to “push” the shoulder Gaussians away from $ , and thisresults in larger D values than obtained with FIT1.

Figure 10(a) shows the D values obtained from the twofitting methods as a function of centrality for the pT selection2–3 ! 2–3 GeV/c. The systematic errors from v2 are shownas brackets (shaded bars) for FIT1 (FIT2). The values of Dfor FIT1 are consistent with zero in peripheral collisions, butgrow rapidly to "1 for Npart " 100, approaching "1.05 inthe most central collisions. The D values obtained from FIT2are slightly larger ("1.2 rad) in the most central collisions.They are also relatively stable to variations of v2 because mostof the yield variation is “absorbed” by the center Gaussian

[cf. Fig. 10(b)]. Thus, the associated systematic errors are alsosmaller than those for FIT1.

For Npart < 100, the centrality dependence of D is also quitedifferent for FIT1 and FIT2. As seen in Fig. 10, the D valuesfor FIT2 are above 1. However, the away-side yield in the SR,associated with these D values, are rather small, and the away-side distribution is essentially a single peak centered around$ . For such cases, the values of D are prone to fluctuationsand non-Gaussian tails. The deviation between the D valuesobtained with FIT1 and FIT2 for Npart < 100 simply reflectsthe weak constraint of the data on D in peripheral collisions.

Figure 11 shows the pT dependence of D in 0–20% centralAu+Au collisions. The values from FIT2 are basically flatwith pb

T . Those from FIT1 show a small increase with pbT ,

but with a larger systematic error. At low pT , the valuesfrom FIT1 are systematically lower than those from FIT2.However, they approach each other at large pa,b

T . From FIT1and FIT2, it appears that the values of D cover the range 1–1.2rad for pa

T , pbT

<" 4 GeV/c. This trend ruled out a Cherenkovgluon radiation model [34] (with only transition from scalarbound states), which predicts decreasing D with increasingmomentum.

2. Away-side jet per-trigger yield

Relative to p + p, the Au+Au yield is suppressed in theHR but is enhanced in the SR (cf. Fig. 6). A more detailedmapping of this modification pattern is obtained by comparingthe jet yields in the HR and SR as a function of partner pT .Such a comparison is given in Fig. 12 for central Au+Au andfor p + p collisions. The figure shows that relative to p + p,

partN

D (ra

d)

0

0.5

1

(a)1.5

2.0-3.0 GeV/c!2.0-3.0

FIT1FIT2

partN0 100 200 300 400

shou

lder

-pea

k fra

ctio

n

0

0.2

0.4

0.6

0.8

1

fraction of shoulder-peakyield from FIT2

0 100 200 300 400

(b)

FIG. 10. (Color online) (a) D vs Npart fromFIT1 (solid circles) and FIT2 (open circles) for2–3 ! 2–3 GeV/c bin. The error bars are thestatistical errors; shaded bars and brackets arethe systematic errors due to v2. (b) Fraction ofthe shoulder Gaussian yield relative to the totalaway-side yield as function of Npart determinedfrom FIT2.

014901-13

v2    subtracted  

Page 12: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Conical  Emission  of  Away-­‐Side

2013/11/06 pre-­‐Defense 12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.05

0.1

0.15

0.2d+Au(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4ZDC 12% Au+Au(b)

)/2 (circles and histograms)2q6-

1q6=(6 (squares) or /)/2-

2q6+

1q6=(Y

)6

or d

Y d

N/(d

Trig

1/N

Trigq-

1q=

1q6

Trig

q- 2q= 2q6

)2q

6d1

q6

N/(d

2 d

Trig1/N-1 0 1 2 3 4 5

0

1

2

3

4

5

00.020.040.060.080.10.120.14(a)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14(b)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25(c)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1(d)

-1 0 1 2 3 4 5

0

1

2

3

4

5

00.20.40.60.811.21.41.6(e)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1.2(f)

Trigq-

1q=

1q6

Trig

q- 2q= 2q6

)2q

6d1

q6

N/(d

2 d

Trig1/N-1 0 1 2 3 4 5

0

1

2

3

4

5

00.020.040.060.080.10.120.14(a)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14(b)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25(c)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1(d)

-1 0 1 2 3 4 5

0

1

2

3

4

5

00.20.40.60.811.21.41.6(e)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1.2(f)

Trigq-

1q=

1q6

Trig

q- 2q= 2q6

)2q

6d1

q6

N/(d

2 d

Trig1/N-1 0 1 2 3 4 5

0

1

2

3

4

5

00.020.040.060.080.10.120.14(a)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14(b)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25(c)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1(d)

-1 0 1 2 3 4 5

0

1

2

3

4

5

00.20.40.60.811.21.41.6(e)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1.2(f)

Trigq-

1q=

1q6

Trig

q- 2q= 2q6

)2q

6d1

q6

N/(d

2 d

Trig1/N-1 0 1 2 3 4 5

0

1

2

3

4

5

00.020.040.060.080.10.120.14(a)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14(b)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25(c)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1(d)

-1 0 1 2 3 4 5

0

1

2

3

4

5

00.20.40.60.811.21.41.6(e)

-1 0 1 2 3 4 5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1.2(f)

Trig

q- 1q= 1q6

Trig q-2q=2q6

)2

q6d1

q6N/(d2 dTrig1/N

-10

12

34

5

012345

00.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

-10

12

34

5

012345

00.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)

-10

12

34

5

012345

00.05

0.1

0.15

0.2

0.25

(c)

-10

12

34

5

012345

00.2

0.4

0.6

0.8

1(d

)

-10

12

34

5

012345

00.2

0.4

0.6

0.8

11.2

1.4

1.6

(e)

-10

12

34

5

012345

00.2

0.4

0.6

0.8

11.2

(f)

PRL102.052302  (2009)

2-particle correlation 3-particle correlation Experimental  Data

Page 13: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Cherenkov  Gluon  Radia1on •  Gluon  Radia)on  from  a  superluminal  parton  

•  Momentum  dependence  of  gluon  opening  angle  

2013/11/06 pre-­‐Defense 13

cos �c = c/n(p)vpart � 1/n(p)

n(p) = p/p0

Superluminal!parton!

Cherenkov Gluon�

θc�

vpart~  c  at  GeV/c  scale  

:  Index  of  Reflec1on

PRL96.172302  (2006)

Page 14: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Mach  Cone  Shock  Wave •  Shock  Wave  from  a  supersonic  parton  

•  pT  independence  of  double-­‐hump  posi)on  

–  vpart~  constant  at  GeV  scale  –  cs  ~  constant  at  Au+Au  200  GeV  

2013/11/06 pre-­‐Defense 14

θMach�Supersonic!parton!

Mach-Cone!Shock Wave�

cos �Mach = cs/vpart

cs :  speed  of  sound

PRC73.011901(R)  (2006)

Page 15: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Jet  Deflec1on   •  Deflec)on  from  ini)al  direc)on  –   Boost  by  medium  expansion  –   Energy-­‐momentum  loss  

•  Hydro  +  Energy-­‐Momentum  Loss  

2013/11/06 pre-­‐Defense 15

Jet Deflection�

Medium Expansion�

Parton� Initial Direction��µTµ� = S�

S�(t, �x) =1

(�

2��)3exp� [�x� �xjet(t)]2

2�2

��

dE

dt,dM

dt, 0, 0

� �T (t, �x)Tmax

�3

PRL105.222301  (2010)

Page 16: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Hot-­‐Spot  Model

•  Hot-­‐Spot  :  domain  of  high  parton  density  •  Hot-­‐Spot  +  Hydrodynamic  Expansion  •  Double-­‐humps  without  hard-­‐scanered  partons

2013/11/06 pre-­‐Defense 16

PLB712.226  (2012)

Page 17: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Contribu1ons  of  vn  (n>2)  in  correla1ons

•  Double-­‐hump  &  ridge  of  long-­‐rapidity  correla)on  explained  •  Short-­‐rapidity  correla)on  with  vn  subtrac)on  to  discuss  parton  

behavior  2013/11/06 pre-­‐Defense 17

Track at |η|<2.5  with  EP  from  full  FCAL  3.3<|η|<4.8

vn with EP Method

2Par. Correlation

PRC86.014907  (2012)

ATLAS

Page 18: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Mo1va1on  of  this  Disserta1on •  Focus  on  azimuthal  two-­‐par)cle  correla)ons  •  Provide  robust  experimental  results  aoer  vn  subtrac)on  –  Centrality  &  pT  dependence,  double-­‐humps  etc.  –  Revisit  of  previous  models    

•  Diagnose  correla)on  phenomena  at  intermediate-­‐pT  with  control  of  parton  path  length  with  respect  to  event-­‐planes  (Ψ2,Ψ3)    

–  Parton-­‐Energy  Loss  –  Re-­‐distribu)on  of  lost  energy  from  partons  –  Possible  boost  of  Jet  by  medium  expansion  

2013/11/06 pre-­‐Defense 18

Page 19: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

My  Contribu1ons

2013/11/06 pre-­‐Defense 19

M1,2  :  AY  2008~2009

DNP-­‐JPS  Joint  Mee1ng

D1  (RIKEN  JRA)    :  AY  2010

Heavy  Ion  Pub PHENIX  Run9   PHENIX  Run10  

PHENIX  Run12  

JPS  Spring

D2  (RIKEN  JRA)    :  AY  2011

D3  (RIKEN  JRA)    :  AY  2012

JPS  Fall WPCF2011 Hard  Probes2012

Quark  Mamer2012 Nagoya-­‐Mini  Workhop2012

HIC•HIP

preliminary  request    Au+Au  ridge  analysis

preliminary  request    Au+Au  vn-­‐correla1on

preliminary  request    Au+Au  PID  vn

preliminary  request    Au+Au  correla1ons  w.r.t.  EP

vn  EP  calibra1on

*Oral  (intern.) *Oral  (Domes1c) *Experimental *Analysis *Service  work Ac1vity  Categories

D4  :  AY  2013

PHENIX  Run13  

Detector  Maintenance

Detector  Maintenance

Detector  Maintenance

Page 20: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

ANALYSYS

2013/11/06 pre-­‐Defense 20

Page 21: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Data  Set  &  Par1cle  Selec1on •  PHENIX  year  2007  Experiment  •  Au+Au  collisions  at  √sNN=200  GeV  – Minimum  Bias  Trigger  –  4.4  billion  events  

•  Charged  Hadron  Selec)on  –  2σ  Matching  Cut  –  Electron  Veto  –  Energy/Momentum  cut  for  High  pT  par)cles  

•  Background  rejec)on  –  Pair  cut  of  miss-­‐reconstructed  hadron  pairs  

2013/11/06 pre-­‐Defense 21

Page 22: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

PHENIX  Detector  -­‐  2007  Experiment •  Trigger,  collision  vertex,  centrality  –  Beam-­‐Beam-­‐Counter  (BBC)  –  Zero-­‐Degree-­‐Calorimeter(ZDC)  

•  Event  Plane  –  BBC  –  Reac)on-­‐Plane-­‐Detector(RXN)  

•  Central  Arm,  Δφ=π |η|<0.35 – Momentum,  Tracking,  Electron  Veto  

•  Drio  Chamber  (DC)  •  Pad  Chamber(PC)  •  Electromagne)c  Calorimeter(EMC)  •  Ring  Image  Cherenkov  Detector(RICH)

2013/11/06 pre-­‐Defense 22

West

South Side�  View

Beam�  View

PHENIX�  Detector2007

North

East

MuTr

MuID MuIDHBDRxNP

MPC HBDRxNP

PbSc PbSc

PbSc PbSc

PbSc PbGl

PbSc PbGl

TOF

PC1 PC1

PC3

PC2

Central�  Magnet

CentralMagnet

North�  Muon�  M

agnetSouth�  Muon�  Magnet

TECPC3

BBMPC

BB

RICH RICH

DC DC

ZDC�  NorthZDC�  South

aerogel

TOF

RXN

BBC

ZDC

DC

RICH

PC3

EMC

Charged  Track

Page 23: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Centrality

•  BBC  charge  sum  divided  in  percen)le  

–  Same  number  of  events  in  each  bins  

2013/11/06   pre-­‐Defense   23  

BBC

Page 24: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Num

ber o

f eve

nts

*2 [rad]2Ψ *3 [rad]3Ψ *4 [rad]4Ψ-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3

40455055606570758085

610×

obsnΨ Re-centnΨ FouriernΨ

=200GeVNNsAu+Au Reaction Plane Detetor

|<2.8η1.0<|

Event  Plane  Calibra1on

2013/11/06 pre-­‐Defense 24

Raw  distribu1on

Re-­‐centering

n⇥Fouriern = n⇥Rec

n + n�⇥n

n�⇥n =�

k

�Ak cos (kn⇥Rec

n ) + Bk sin (kn⇥Recn )

Ak = �2k

�cos (kn⇥Rec

n )�, Bk =

2k

�sin (kn⇥Rec

n )�

Fourier  correc1on

�i :wi :

Azimuthal  angle

Weight  (Charge  etc.)

Qx =�

i wi cos(n�i)�i wi

, Qy =�

i wi sin(n�i)�i wi

�n =1n

tan�1

�Qy

Qx

QRecx =

Qx � �Qx��x

, QRecy =

Qy � �Qy��y

�Recn =

1n

tan�1�QRec

y /QRecx

i�

Page 25: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Event  Plane  Resolu1on  &  vn  Measurements

•  Resolu)on  +/-­‐η

2013/11/06 pre-­‐Defense 25

vn =vobs

n

�EPn

=�cos n(⇥ � �EP

n )�

�cos n(�EPn � �n)�

EP  Resolu1on PRC58.1671

⇥EPn =

�cos kn(�EP±�

n ��n)�

=��

cos kn(�EP (+�)n ��EP (��)

n )�

=�

8⇤2

n

�I(k�1)/2

�⇤2

n

4

�+ I(k+1)/2

�⇤2

n

4

��2

�EPn =

82�2

n

�I(k�1)/2

�2�2

n

4

�+ I(k+1)/2

�2�2

n

4

��2

•  Resolu)on  +&-­‐η –  χ->√2χ

•  vn  measurements    

Centrality %0 20 40 60 80 100

)]> 2Ψ-

obs

<cos

[2*(

0

0.2

0.4

0.6

0.8

1

Centrality %0 20 40 60 80 100

)]> 3Ψ-

obs

<cos

[3*(

00.1

0.20.30.4

0.50.6

η RXN:In+Out,+&-

η BBC:+&-

Centrality %0 20 40 60 80 100

)]> 4Ψ-

obs

<cos

[4*(

0

0.05

0.1

0.15

0.2

Centrality %0 20 40 60 80 100

)]> 2Ψ-

obs

<cos

[4*(

0

0.2

0.4

0.6

0.8

1

Page 26: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

vn  Results •  Consistent  results  with  previous  measurements  –  Used  for  background  subtrac)on  

2013/11/06 pre-­‐Defense 26

2V3V

4V} 2

Ψ{ 4V

[GeV/c]T

p

=200GeV, EP MethodNNsAu+Au

0 1 2 3 4 5 6 7 8-0.05

00.05

0.10.150.2

0.250.3 40-50, (e)

0 1 2 3 4 5 6 7 8-0.05

00.05

0.10.150.2

0.250.3 30-40, (d)

0 1 2 3 4 5 6 7 8-0.05

00.05

0.10.150.2

0.250.3 20-30, (c)

0 1 2 3 4 5 6 7 8-0.05

00.05

0.10.150.2

0.250.3 10-20, (b)

0 1 2 3 4 5 6 7 8-0.05

00.05

0.10.150.2

0.250.3 0-10, (a)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2(j)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2(i)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2(h)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2(g)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2(f)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2 (o)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2 (n)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2 (m)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2 (l)

0 1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2 This Ana. integratedT This Ana. P

PRL107.052301

(k)

0 1 2 3 4 5 6 7 8-0.020

0.020.040.060.08

0.1 (t)

0 1 2 3 4 5 6 7 8-0.020

0.020.040.060.08

0.1 (s)

0 1 2 3 4 5 6 7 8-0.020

0.020.040.060.08

0.1 (r)

0 1 2 3 4 5 6 7 8-0.020

0.020.040.060.08

0.1 (q)

0 1 2 3 4 5 6 7 8-0.020

0.020.040.060.08

0.1 (p)

Page 27: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

φΔ

-3 -2 -1 0 1 2 3 ηΔ-0.6-0.4-0.2 0 0.2 0.4 0.6

# of

Ent

ries

0123456789

310×

φΔ

-3 -2 -1 0 1 2 3 ηΔ-0.6-0.4-0.2 0 0.2 0.4 0.6

# of

Ent

ries

02468

1012

310×

Real  Pair

Mixed  Pair

Two  Par1cle  Correla1ons

2013/11/06   pre-­‐Defense   27  

•  Pair  distribu)ons  in  real  and  mixed  events  �� = �a � �t,�� = �a � �t

C(��,��) =N ta

mix

N tareal

d2N tareal/d��d��

d2N tamix/d��d��

φΔ

-3 -2 -1 0 1 2 3 ηΔ-0.6-0.4-0.2 0 0.2 0.4 0.6

)ηΔ,φ

ΔC(

0.81

1.21.41.61.8

•  Two-­‐Par)cle  Correla)ons  

Near-­‐Side  :  Δφ=0

Away-­‐Side  :  Δφ=±π

Page 28: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

φΔ-1 0 1 2 3 4

2C

0.920.940.960.98

11.021.041.061.08

Expr.2: C

2: Fit to Expr. C

: Pure Flow (ZYAM)

=200 GeV, 20-30%NNsAu+Au 1-2 GeV/c⊗=2-4a

Tp⊗t

Tp

Flow  Subtrac1on  &  Pair  Yield  per  a  Trigger  (PTY)   •  Analy)cal  Formula  of  Pure  Flow  

2013/11/06 pre-­‐Defense 28

j(��) = C(��)� b0

�1 +

n=1

2vtnva

n cos (n��)

F (��) = 1 +�

2V�n cos (n��)

= 1 +�

2vtnva

n cos (n��)

•  Flow  subtrac)ons  –  Zero  Yield  At  Minimum  Assump)on  

1N t

dN ta

d�⇥=

12�⇤

N ta

N tj(�⇥)

•  Pair  yield  per  a  trigger  

� : Tracking  efficiency  of  associate  par1cles

Page 29: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Event-­‐Plane  Dependence

•  Selec)ng  trigger  par)cle  w.r.t.  Ψ2 & Ψ3

•  Control  of  parton  path  length  inside  medium  •  Sensi)vity  to  each  harmonic  plane  

2013/11/06 pre-­‐Defense 29

!Trig.

!Asso.

!s

"2

#!

!Trig.

!Asso.

!s

"3

#!

Page 30: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Flow  Contribu1ons  with  respect  to  EP •  No  analy)cal  formula  of  pure  flow  w.r.t  EP  •  Run  a  Monte  Carlo  simula)on  •  Azimuthal  distribu)on  –  Using  Measured  vn  

•  Observed  Event  Plane  Resolu)on  •  Observed  correla)on  between  EP  –  <4(Ψ2-Ψ4)>=v4{Ψ2}/v4{Ψ4}    –  <6(Ψ2-Ψ3)>=0  

2013/11/06 pre-­‐Defense 30

Ed3N

dp3=

d2N

2�dpT d�

�1 +

n=2,3,4

2vn cos n(���n)

Page 31: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Flow  Contribu1ons  with  respect  to  EP

•  pTT  :  2-­‐4,  pTa:1-­‐2  GeV/c  •  Good  reconstruc)on  of  correla)on  shape  by  MC  simula)on  for  both  Ψ2, Ψ3 dependence    

•  Except  around  Δφ=0, π where  affected  by  jet  

2013/11/06 pre-­‐Defense 31

)>4Ψ-2Ψ(n=2,3,4) + <cos4(n=200GeV, Pure Flow : vNNsAu+Au

[rad]tφ-aφ = φΔ

1-2

GeV

/c⊗

), 2-

Δ d

epen

dent

Cf(

2,3

Ψ

-1 0 1 2 3 40.70.80.9

11.11.21.3

<02Ψ-tφ<8

π-:In-plane 2Ψ

(b)

-1 0 1 2 3 40.70.80.9

11.11.21.3 Correlations

Pure Flow

8π-3<2Ψ-

tφ<8

π-4:Out-of-plane 2Ψ

20-30% (a)

-1 0 1 2 3 40.85

0.9

0.951

1.051.1

<03Ψ-tφ<12

π-:In-plane 3Ψ

(d)

-1 0 1 2 3 40.85

0.9

0.951

1.051.1

12π-3<3Ψ-

tφ<12

π-4:Out-of-plane 3Ψ

(c)

Page 32: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Resolu1on  Correc1on  for  Trigger  Selec1on •  FiRng  Method  –  Azimuthal  anisotropy  of  correla)ons  yield  

–  Resolu)on  correc)on  in  analogous  to  vn  measurements  

•  Itera)on  Method  –  Trigger  smearing  effect  by  measured  resolu)on  S  

–  Correla)on  Yield  A  –  Smeared  Correla)ons  B  –  Effec)ve  correc)on  coefficient  C  –  Itera)on  un)l  convergence  2013/11/06 pre-­‐Defense 32

2Ψ-tφ=sφ

-1.5 -1 -0.5 0 0.5 1 1.5

)φΔ, sφ(

cor

) & 1

+Yφ

Δ, sφ(ra

w1+

Y

1

1.05

1.1

1.15

1.2

Corected curveFit to raw dataCorrected dataRaw data

)φΔ+sφcos4(raw4

)+2vφΔ+sφcos2(raw2=1+2vraw)sφF(

)φΔ+sφcos4(42σ/raw4

)+2vφΔ+sφcos2(2σ/raw2=1+2vcor)sφF(

/24.π=-φΔAu+Au 20-30%,

B(n) = SA(n)

C(n) = A(n)/B(n)

CA(n) = A(n+1)

Page 33: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Systema1c  Uncertain1es •  Flow  vn  Measurements  –  Fluctua)on  within  RXN  EP  –  Rapidity  dependence  of  EP  :  RXN-­‐BBC  difference  – Matching  cut  of  CNT  Par)cles  

•  Two-­‐Par)cle  Correla)ons  –  Systema)cs  from  vn  – Matching  cut  of  CNT  Par)cles  

•  Event  Plane  Dependent  Correla)ons  –  Unfolding  Method  :  Fit  &  Itera)on  –  Parameter  in  itera)on  method

2013/11/06 pre-­‐Defense 33

Page 34: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Results  &  Discussion

2013/11/06 pre-­‐Defense 34

Page 35: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Two-­‐Par1cle  Correla1ons •  Suppression  of  Away-­‐Side  in  most  central  collisions  

•  Away-­‐side  shape  in  peripheral  collisions  

–  Single  peak  at  high  pT  –  Double  hump  at  intm.  pT  

•  pT  independence  of  double  hump  posi)on  below  pT<4  GeV/c  

2013/11/06 pre-­‐Defense 35

(n=2,3,4) subtractedn=200 GeV, vNNsAu+Au

[rad]tφ-aφ = φΔ

φΔ

/dta

dN

tPT

Y=1/

N

-1 0 1 2 3 40

0.0050.01

0.0150.02

30-40%(b)

-1 0 1 2 3 40

0.0050.01

0.0150.02 4-10x4-10 GeV/c

0-10%(a)

-1 0 1 2 3 40

0.020.040.060.080.1 (d)

-1 0 1 2 3 40

0.020.040.060.080.1 4-10x2-4 GeV/c (c)

-1 0 1 2 3 40

0.0050.01

0.0150.020.0250.030.035 (f)

-1 0 1 2 3 40

0.0050.01

0.0150.020.0250.030.035 2-4x2-4 GeV/c (e)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (h)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 2-4x1-2 GeV/c (g)

Page 36: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Hardness  of  Correla1on  Yields

•  Hardness  increase  with  trigger  and  associate  pT  –  Different  Physics  depending  on  pT

2013/11/06 pre-­‐Defense 36

1pa

T

dY

d�pT=

1pa

T

1(pa,max

T � pa,minT )

�d��

1Ntrig

dN

d��

[GeV/c]T

Associate p0 1 2 3 4 5

φΔd Tp

Δdpa

irN2 d

asso

cTp1

trig

N1

-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-1101

10210

310

410

0-10%-210-20% x 10-420-30% x 10-630-40% x 10-840-50% x 10

subtracted}4Ψ{4 v3 v2v

Au+Au 200GeV/4|π|<|φΔNear Side:|

[GeV/c]T

Associate p0 1 2 3 4 5

φΔd Tp

Δdpa

irN2 d

asso

cTp1

trig

N1

-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-1101

10210

310

410

:4-10 GeV/ctrigT

p

:2-4 GeV/ctrigT

p

:1-2 GeV/ctrigT

p

subtracted}4Ψ{4 v3 v2v/4|π|<|π-φΔAway Side:|

•  pT  spectra  of  correla)on  yield

Page 37: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Comp.  w/  Model  :  Cherenkov  Gluon  Radia1on

•  Strong  momentum  dependence  •  Disfavored  by  pT  independence  of  experimental  data

2013/11/06 pre-­‐Defense 37

to the parton energy loss. Adopting the results obtained forphoton Cherenkov radiation [27] we can estimate thisenergy loss by

dEdx! 4!"s

Zn"p0#>1

p0

!1$ 1

n2"p0#

"dp0; (4)

where n"p0# ! j ~pj=p0 is the index of reflection. Using thedispersion relation in our simple model, the typical energyscale for the soft mode where Cherenkov radiation canhappen is p0 % T. The Cherenkov energy loss is aboutdE=dx% 0:1 GeV=fm for T % 300 MeV. This is muchsmaller than the normal radiative energy loss induced bymultiple scattering of the energetic partons [9]. As dis-cussed in Ref. [16], bremsstrahlung, induced by multiplescattering, of soft gluons with a spacelike dispersion rela-tion can still lead to Cherenkov-like angular distributionsdue to Landau-Pomeranchuck-Migdal interference. SuchCherenkov-like gluon bremsstrahlung will lead to a similaremission pattern of soft hadrons as pure Cherenkov radia-tion. Thus, a distinctive experimental signature of theCherenkov-like gluon radiation is the strong momentumdependence of the emission angle of soft hadrons leadingto the disappearance of a conelike structure for large pTasssociated hadrons.

In conclusion, we have shown how bound states in theQGP or more generally additional mass scales give rise toradiation of Cherenkov gluons off a fast jet traversing themedium. These Cherenkov gluons lead to a conelike emis-sion pattern of soft hadrons. The cone angle with respect tothe jet direction exhibits a strong momentum dependencein contrast to a Mach cone. Pure Cherenkov radiation leadsto energy loss which, however, is too small to account forthe jet suppression observed in RHIC experiments.Collision-induced Cherenkov-like bremsstrahlung [16]can explain both the observed energy loss and the emissionpattern of soft hadrons in the direction of quenched jets.

We thank F. Karsch and E. Shuryak for helpful discus-sions. Research supported by the Director, Office ofEnergy Research, Office of High Energy and NuclearPhysics, Division of Nuclear Physics, U.S. Department ofEnergy under Contract No. DE-AC02-05CH11231.

*Current address: Department of Physics, Duke University,Durham, NC 27708, USA.

[1] F. Karsch and E. Laermann, hep-lat/0305025.[2] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. Lett. 83,

2906 (1999); J. O. Andersen, E. Braaten, and M. Strick-land, Phys. Rev. D 61, 074016 (2000).

[3] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569(1990); J. Frenkel and J. C. Taylor, Nucl. Phys. B334,199 (1990).

[4] S. Datta, F. Karsch, P. Petreczky, and I. Wetzorke, Phys.Rev. D 69, 094507 (2004); M. Asakawa and T. Hatsuda,Phys. Rev. Lett. 92, 012001 (2004).

[5] M. Asakawa, T. Hatsuda, and Y. Nakahara, Nucl. Phys.A715, 863 (2003); Nucl. Phys. B, Proc. Suppl. 119, 481(2003).

[6] E. V. Shuryak and I. Zahed, Phys. Rev. D 70, 054507(2004); Phys. Rev. C 70, 021901 (2004).

[7] V. Koch, A. Majumder, and J. Randrup, Phys. Rev. Lett.95, 182301 (2005); S. Ejiri, F. Karsch, and K. Redlich,Phys. Lett. B 633, 275 (2006).

[8] K. H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001);S. S. Adler et al., Phys. Rev. Lett. 91, 182301 (2003).

[9] M. Gyulassy, I. Vitev, X. N. Wang, and B. W. Zhang, nucl-th/0302077; X. N. Wang, Nucl. Phys. A750, 98 (2005).

[10] S. S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003).[11] C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003).[12] A. Majumder and X. N. Wang, Phys. Rev. D 70, 014007

(2004); 72, 034007 (2005).[13] J. Adams et al., Phys. Rev. Lett. 95, 152301 (2005);

F. Wang, J. Phys. G 30, S1299 (2004).[14] S. S. Adler et al., nucl-ex/0507004.[15] I. Vitev, hep-ph/0501255.[16] A. Majumder and X.-N. Wang, nucl-th/0507062 [Phys.

Rev. C (to be published)].[17] J. Casalderrey-Solana, E. V. Shuryak, and D. Teaney,

J. Phys.: Conf. Ser. 27, 22 (2005).[18] L. M. Satarov, H. Stoecker, and I. N. Mishustin, hep-ph/

0505245.[19] J. Ruppert and B. Muller, Phys. Lett. B 618, 123 (2005).[20] I. M. Dremin, JETP Lett. 30, 140 (1979) [Pis’ma Zh. Eksp.

Teor. Fiz. 30, 152 (1979)]; Nucl. Phys. A767, 233 (2006).[21] P. Petreczky, F. Karsch, E. Laermann, S. Stickan, and

I. Wetzorke, Nucl. Phys. B, Proc. Suppl. 106, 513 (2002).[22] G. F. Bertsch, B. A. Li, G. E. Brown, and V. Koch, Nucl.

Phys. A490, 745 (1988).[23] H. A. Weldon, Phys. Rev. D 28, 2007 (1983).[24] S. M. H. Wong, Phys. Rev. D 64, 025007 (2001); A. Ma-

jumder and C. Gale, Phys. Rev. C 65, 055203 (2002).[25] E. V. Shuryak and I. Zahed, hep-ph/0406100.[26] S. J. Sin and I. Zahed, Phys. Lett. B 608, 265 (2005).[27] J. D. Jackson, Classical Eletrodynamics (John Wiley &

Son, New York, 1975), 2nd ed.

0 0.5 1 1.5p

0

20

40

60

80

100

! c

m1=1T,m2=3Tm1=0.5T,m2=3Tm1=0.5T,m2=1T

FIG. 5 (color online). Dependence of the Cherenkov angle onmomentum of the emitted particle.

PRL 96, 172302 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending5 MAY 2006

172302-4

Cherenkov  Gluon  Radia1on Experimental  Results ) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

(n=2,3,4) subtractedn=200 GeV, vNNsAu+Au

[rad]tφ-aφ = φΔ

φΔ

/dta

dN

tPT

Y=1/

N

-1 0 1 2 3 40

0.0050.01

0.0150.02

30-40%(b)

-1 0 1 2 3 40

0.0050.01

0.0150.02 4-10x4-10 GeV/c

0-10%(a)

-1 0 1 2 3 40

0.020.040.060.080.1 (d)

-1 0 1 2 3 40

0.020.040.060.080.1 4-10x2-4 GeV/c (c)

-1 0 1 2 3 40

0.0050.01

0.0150.020.0250.030.035 (f)

-1 0 1 2 3 40

0.0050.01

0.0150.020.0250.030.035 2-4x2-4 GeV/c (e)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (h)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 2-4x1-2 GeV/c (g)

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

Page 38: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Comp.  w/  Model  :  Jet-­‐Deflec1on  &  Mach-­‐Cone

•  Momentum  Loss  to  obtain  pT  independent  Double-­‐hump  –  Energy  +  Momentum  Loss  is  most  realis)c  

•  Mach-­‐Cone  also  shows  pT  independence

2013/11/06 pre-­‐Defense 38

pTa=2GeV/c pTa=3GeV/c

pTt=3.5  GeV/c pTt=3.5  GeV/c

Mach-­‐Cone Mach-­‐Cone

dE/dt = 1GeV/fmdM/dt = (1/v)(dE/dt)

(v = 0.999)

Energy-­‐Momentum  Loss  Rate

PRL105.222301  (2010)

Page 39: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Comp.  w/  Model  :  Jet-­‐Deflec1on  &  Hot-­‐Spot

•  Intermediate  pT  :  Both  models  consistent  with  data  •  Hot-­‐Spot  disfavored  by  the  double-­‐hump  at  high-­‐pT  •  Consistent  with  the  behavior  of  pT  spectra  

2013/11/06 pre-­‐Defense 39

Hot and Cold Baryonic Matter – HCBM 2010

0

0.005

0.01

0.015

0.02

0.025

0.03

-1 0 1 2 3 4

1/N

dN

/d(Δφ)

φ [rad]

Hot SpotJets

0

0.005

0.01

0.015

0.02

0.025

-1 0 1 2 3 41/

N d

N/d

(Δφ)

φ [rad]

Hot SpotJets

Fig. 3. Two-particle correlation function from a hot spot event (dashed blue lines) and averaged jet events (blacksolid lines), assuming a passocT = 2.0 GeV and ptrigT = 3.5 GeV (left panel) as well as p

trigT = 8.0 GeV (right panel).

case and it is also not necessary to average over many events since there is no trigger jet axis and thusall events can be converted into each other due to rotational symmetry.

Fig. 3 shows the two-particle correlation function for such a hot spot event (blue dashed lines)assuming a passocT = 2.0 GeV and a ptrigT = 3.5 GeV (left panel) as well as a ptrigT = 8.0 GeV (rightpanel), obtained according to

1NdNd!"

=1N

!

dNd"

dNd(!" ! ")

d" (8)

and compared with the averaged jet events from Fig. 1 (black solid line). Here we chose !e/e0 = 6,other ratios give similar results.

As can be seen, the double-peak structure is more pronounced in case of a hot spot and gets evenstronger for larger ptrigT , in contrast to the averaged jet events where the two peak structure starts tocoalesce into one peak for larger ptrigT like seen in the data.

However, it seems rather unlikely that a hot spot creates particles with very large pT . But for smallptrigT [16,17] a superposition of fluctuating events (hot spots) and jets might probably lead to a ratherclean double-peak structure. This should also be seen at the LHC.

It is important to note in this context that the e!ect of triangular flow and hot spots are very closelylinked to each other and might actually not be disentangled. Each hot spot (and thus fluctuating initialconditions) will lead to a nonzero triangular flow.

In conclusion, we have shown that a double-peak structure on the away side of soft-hard corre-lations obtained via averaging over di!erent jet events in which the particles are emitted from thedeflected wakes created by jets [37] coalesces into one peak for larger ptrigT as seen in experimentaldata [16,17], in contrast to the the two-peak structure obtained from hot spots. Since such a distinctionis not possible experimentally, it is necessary to study soft-hard correlations induced by heavy-flavortagged jets [42] with those induced by light-flavor jets at RHIC and LHC in order to disentangle themedium e!ects (hot spots) from jets and to test if a conical correlation occurs even for subsonic “jets”[37].

B.B. thanks J. Noronha, G. Torrieri, M. Gyulassy, and D. Rischke for all the discussions andacknowledges support from the Alexander von Humboldt foundation via a Feodor Lynen fellowshipand DOE under Grant No. DE-FG02-93ER40764.

References1. I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005).2. K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005).3. B. B. Back et al., Nucl. Phys. A 757, 28 (2005).

pTt=3.5  GeV/c  pTa=2.0GeV/c pTt=8.0  GeV/c  

pTa=2.0GeV/c  

(n=2,3,4) subtractedn=200 GeV, vNNsAu+Au

[rad]tφ-aφ = φΔ

φΔ

/dta

dN

tPT

Y=1/

N -1 0 1 2 3 40

0.0050.01

0.0150.02

40-50%(e)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (j)-1 0 1 2 3 4

00.0050.01

0.0150.02

30-40%(d)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (i)-1 0 1 2 3 4

00.0050.01

0.0150.02

20-30%(c)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (h)-1 0 1 2 3 4

00.0050.01

0.0150.02

10-20%(b)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (g)-1 0 1 2 3 4

00.0050.01

0.0150.02 4-10x4-10 GeV/c

0-10%(a)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 2-4x1-2 GeV/c (f)

(n=2,3,4) subtractedn=200 GeV, vNNsAu+Au

[rad]tφ-aφ = φΔφ

Δ/d

ta d

Nt

PTY=

1/N -1 0 1 2 3 4

00.0050.01

0.0150.02

40-50%(e)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (j)-1 0 1 2 3 4

00.0050.01

0.0150.02

30-40%(d)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (i)-1 0 1 2 3 4

00.0050.01

0.0150.02

20-30%(c)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (h)-1 0 1 2 3 4

00.0050.01

0.0150.02

10-20%(b)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 (g)-1 0 1 2 3 4

00.0050.01

0.0150.02 4-10x4-10 GeV/c

0-10%(a)

-1 0 1 2 3 40

0.020.040.060.080.1

0.120.14 2-4x1-2 GeV/c (f)

Experimental  Results Hot-­‐Spot  :  PLB712.226  (2012) Jet  :  PRL105.222301  (2010)

Page 40: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

)> by ZYAM4Ψ-2Ψ(n=2,3,4) + <cos4(n=200GeV, Pure Flow: vNNsAu+Au

[rad]tφ-aφ = φΔ

1-2

GeV

⊗),

2-4

φΔ

dep

ende

nt P

TY(

-1 0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0.5 40-50%

/8π<-32Ψ-tφ/8<π-4

<02Ψ-tφ/8<π-

-1 0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0.5 0-10%

/8π<-32Ψ-tφ/8<π-4

<02Ψ-tφ/8<π-

Ψ2  dependence  of  PTY •  Mach-­‐Cone  disfavored  –  Double-­‐hump  must  always  appear  in  Mach-­‐Cone  

•  In-­‐plane  trigger  –  Enhance  in  peripheral  collisions:  with  thin  medium  

–  Parton  Energy  Loss  •  Out-­‐of-­‐plane  trigger  –  Enhance  in  central  collisions:  thick  medium  

–  Energy  re-­‐distribu)on  &  boost  by  collec)ve  expansion  

2013/11/06 pre-­‐Defense 40

Page 41: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

)> by ZYAM4Ψ-2Ψ(n=2,3,4) + <cos4(n=200GeV, Pure Flow: vNNsAu+Au

[rad]tφ-aφ = φΔ

1-2

GeV

⊗),

2-4

φΔ

dep

ende

nt P

TY(

-1 0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0.5 40-50%

/12π<-33Ψ-tφ/12<π-4

<03Ψ-tφ/12<π-

-1 0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0.5 0-10%

/12π<-33Ψ-tφ/12<π-4

<03Ψ-tφ/12<π-

Ψ3  dependence  of  PTY

•  Similar  but  weaker  trends  as  Ψ2  dependence  

•  In-­‐plane  trigger  –  Enhance  in  peripheral  collisions  with  thin  medium

•  Out-­‐of-­‐plane  trigger  –  Possible  enhance  in  central  collisions  with  thick  medium  

•  Weaker  Ψ3  dependence  than  Ψ2  

2013/11/06 pre-­‐Defense 41

Page 42: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

/8π<-32Ψ-tφ/8<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

/8π<-32Ψ-tφ/8<π-4

Ψ2  dependence  of  PTY  (Polar  Coordinate)

•  Yield  correlates  with  geometry    

•  Enhance  of  In-­‐plane  yield  with  increase  of  centrality  

–  Shortest  average  path  length  •  Enhance  of  Out-­‐of-­‐plane  yield  with  decrease  of  centrality  

–  Longest  average  path  length  

2013/11/06 pre-­‐Defense 42

Page 43: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

/12π<-33Ψ-tφ/12<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

/12π<-33Ψ-tφ/12<π-4

Ψ3  dependence  of  PTY  (Polar  Coordinate)

•  Enhance  of  In-­‐plane  yield  with  increase  of  centrality  

–  Shortest  average  path  length  •  Possible  enhance  of  Out-­‐of-­‐plane  yield  with  decrease  of  centrality  

2013/11/06 pre-­‐Defense 43

Page 44: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Azimuthal  anisotropy  of  PTY  :  vnPTY

•  Extrac)on  of  vnPTY  by  fiRng

2013/11/06 pre-­‐Defense 44

Au+Au 200GeV1-2GeV/c⊗=2-4asso

Tp⊗trig

Tp

/4|π<|φΔNear-Side,

/4|π<|π-φΔAway-Side,

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

10-10%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

110-20%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0In

tegr

ated

Yie

ld0

0.20.4

0.60.8

120-30%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

130-40%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

140-50%

Au+Au 200GeV1-2GeV/c⊗=2-4asso

Tp⊗trig

Tp

/4|π<|φΔNear-Side,

/4|π<|π-φΔAway-Side,

[rad]3Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

-0.10

0.10.20.30.40.50.6 0-10%

[rad]3Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

-0.10

0.10.20.30.40.50.6 10-20%

[rad]3Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

-0.10

0.10.20.30.40.50.6 20-30%

[rad]3Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

-0.10

0.10.20.30.40.50.6 30-40%

[rad]3Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

-0.10

0.10.20.30.40.50.6 40-50%

104 CHAPTER 5. DISCUSSIONS

which might indicate the correlated yield per a trigger is boosted into out-of-plane direction bythe v4{ 4}. While the v2 is 2.5 times larger than v4{ 4} in peripheral collisions, so that jet ismore-boosted in in-plane direction.

For 3 dependent correlated yield per a trigger, we find the similar trends as 2 dependentcorrelations. In in-plane trigger case, the associate yield in in-plane direction increases with in-crease of centrality, where the average thickness of medium decreases. In out-of-plan trigger case,the associate yield at out-of-plane shows a hint of possible enhance, which is almost independentof centrality. The increase of away-side yield from out-of-plane to in-plane suggests the existenceof energy-momentum loss correlated with 3. In addition, the hint of enhance in associate yieldlocated in out-of-plane direction may suggest the re-distribution of lost energy also correlateswith 3. We can again mention the boost of jet by expanding medium. The third-order flowharmonics v3 may play main role for the enhance at in-plane direction, and possible sixth-orderflow with respect to 3:v6{ 3}, which has not been measured yet, may works for the hint ofenhance of out-of-plane yiled, in analogous to the boosted jet scenario suggested in 2 dependentcorrelations.

The parton energy-loss, possible energy-redistribution, and the boost of jet by medium ex-pansion seem to be more strongly ruled by second-order harmonics of a QGP medium geometrythan third-order harmonics of it. This observed trends may be due to di↵erent strength of partic-ipant eccentricity between second and third-order as shown in Fig.5.14 calculated by a GlauberMonte Carlo Simulation.

5.2.2 Path-length Dependence of Per Trigger Yield

For more quantitative discussion on this observation, integrated correlated yield at near-side(�� <

|⇡|) and away-side(��� ⇡ < |⇡|) as a function of associate angle from 2 and 3 are plotted inFig.5.15 and 5.16 for 5 di↵erent centrality selections.

The azimuthal anisotropy of correlated associate yield vPTYn is obtained by Fourier fitting to

the yield as a function of associate angle with respect to event-plane for 2 dependent correlationsas

F (�a � 2) = a{1 + 2vPTY2 cos 2(�a � 2) + 2vPTY

4 cos 4(�a � 2)}, (5.4)

and for 3 dependent correlations as

F (�a � 3) = a{1 + 2vPTY3 cos 3(�a � 3)}, (5.5)

where a is the average of the yields. The results of vPTYn as a function of Npart, converted

from centrality, is shown in Fig.5.17. One can see the negative vPTY2 at Npart > 200 and the

consistently positive vPTY4 in both near and away-side in 2 dependent correlations, and the

negative vPTY3 of away-side at Npart > 200 in 2 dependent correlations.

The ⇡0 v2 as a function of Npart at pT = 6-9 GeV/c, where dominated by particles originatingfrom jets, is compared with model calculations that employs various models with (left) quadraticand (right) cubic path-length dependence of parton energy loss in Fig.5.18.

We find the parton energy-momentum loss forms the negative vn, and other physics e↵ectis required to obtain the negative vn. This comparison complements the interpretation given inthe last section; there exists at least an additional e↵ect in addition to parton energy loss.

104 CHAPTER 5. DISCUSSIONS

which might indicate the correlated yield per a trigger is boosted into out-of-plane direction bythe v4{ 4}. While the v2 is 2.5 times larger than v4{ 4} in peripheral collisions, so that jet ismore-boosted in in-plane direction.

For 3 dependent correlated yield per a trigger, we find the similar trends as 2 dependentcorrelations. In in-plane trigger case, the associate yield in in-plane direction increases with in-crease of centrality, where the average thickness of medium decreases. In out-of-plan trigger case,the associate yield at out-of-plane shows a hint of possible enhance, which is almost independentof centrality. The increase of away-side yield from out-of-plane to in-plane suggests the existenceof energy-momentum loss correlated with 3. In addition, the hint of enhance in associate yieldlocated in out-of-plane direction may suggest the re-distribution of lost energy also correlateswith 3. We can again mention the boost of jet by expanding medium. The third-order flowharmonics v3 may play main role for the enhance at in-plane direction, and possible sixth-orderflow with respect to 3:v6{ 3}, which has not been measured yet, may works for the hint ofenhance of out-of-plane yiled, in analogous to the boosted jet scenario suggested in 2 dependentcorrelations.

The parton energy-loss, possible energy-redistribution, and the boost of jet by medium ex-pansion seem to be more strongly ruled by second-order harmonics of a QGP medium geometrythan third-order harmonics of it. This observed trends may be due to di↵erent strength of partic-ipant eccentricity between second and third-order as shown in Fig.5.14 calculated by a GlauberMonte Carlo Simulation.

5.2.2 Path-length Dependence of Per Trigger Yield

For more quantitative discussion on this observation, integrated correlated yield at near-side(�� <

|⇡|) and away-side(��� ⇡ < |⇡|) as a function of associate angle from 2 and 3 are plotted inFig.5.15 and 5.16 for 5 di↵erent centrality selections.

The azimuthal anisotropy of correlated associate yield vPTYn is obtained by Fourier fitting to

the yield as a function of associate angle with respect to event-plane for 2 dependent correlationsas

F (�a � 2) = a{1 + 2vPTY2 cos 2(�a � 2) + 2vPTY

4 cos 4(�a � 2)}, (5.4)

and for 3 dependent correlations as

F (�a � 3) = a{1 + 2vPTY3 cos 3(�a � 3)}, (5.5)

where a is the average of the yields. The results of vPTYn as a function of Npart, converted

from centrality, is shown in Fig.5.17. One can see the negative vPTY2 at Npart > 200 and the

consistently positive vPTY4 in both near and away-side in 2 dependent correlations, and the

negative vPTY3 of away-side at Npart > 200 in 2 dependent correlations.

The ⇡0 v2 as a function of Npart at pT = 6-9 GeV/c, where dominated by particles originatingfrom jets, is compared with model calculations that employs various models with (left) quadraticand (right) cubic path-length dependence of parton energy loss in Fig.5.18.

We find the parton energy-momentum loss forms the negative vn, and other physics e↵ectis required to obtain the negative vn. This comparison complements the interpretation given inthe last section; there exists at least an additional e↵ect in addition to parton energy loss.

Ψ2  dependence

Ψ3  dependence  

Au+Au 200GeV1-2GeV/c⊗=2-4asso

Tp⊗trig

Tp

/4|π<|φΔNear-Side,

/4|π<|π-φΔAway-Side,

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0In

tegr

ated

Yie

ld

00.20.4

0.60.8

10-10%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

110-20%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

120-30%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

130-40%

[rad]2Ψ-associateφ

-1.4 -1.2 -1 -0.8 -0.6-0.4 -0.2 0

Inte

grat

ed Y

ield

00.20.4

0.60.8

140-50%

Page 45: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

vnPTY  &  vnEP

•  vnPTY  is  a  part  of  vnEP  •  vnPTY  amplitude  is  one  order  larger  than  vnEP  

2013/11/06 pre-­‐Defense 45

partN0 50 100 150 200 250 300 350 400

/4π|<φ

Δ N

ear-S

ide:

|PT

Ynv

-1.5

-1

-0.5

0

0.5

1

1.5

}2Ψ{4PTYv

}2Ψ{4EPv

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

partN0 50 100 150 200 250 300 350 400

/4π|<π-φ

Δ A

way

-Sid

e:|

PTY

nv-1.5

-1

-0.5

0

0.5

1

1.5

}2Ψ{4PTYv

}2Ψ{4EPv

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

partN0 50 100 150 200 250 300 350 400

/4π|<φ

Δ N

ear-S

ide:

|PT

Ynv

-1.5

-1

-0.5

0

0.5

1

1.5 }3Ψ{3PTYv

}3Ψ{3EPv

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

partN0 50 100 150 200 250 300 350 400

/4π|<π-φ

Δ A

way

-Sid

e:|

PTY

nv

-1.5

-1

-0.5

0

0.5

1

1.5 }3Ψ{3PTYv

}3Ψ{3EPv

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

partN0 50 100 150 200 250 300 350 400

/4π|<φ

Δ N

ear-S

ide:

|PT

Ynv

-1.5

-1

-0.5

0

0.5

1

1.5

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

}2Ψ{2PTYv

}2Ψ{2EPv

partN0 50 100 150 200 250 300 350 400

/4π|<π-φ

Δ A

way

-Sid

e:|

PTY

nv

-1.5

-1

-0.5

0

0.5

1

1.5

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

}2Ψ{2PTYv

}2Ψ{2EPv

Page 46: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

v2PTY  &  High-­‐pT  π0  v2

•  Models  with  parton  energy-­‐loss  provide  posi)ve  π0  v2  •  Addi)onal  effects  required  to  explain  nega)ve  v2  

2013/11/06 pre-­‐Defense 46

for a quadratic dependence (!ldl) of energy loss in alongitudinally expanding medium (!1=l), and ! is tunedto reproduce the central RAA data. The medium density " isgiven by two leading candidates of the initial geometry:MC Glauber geometry "GL"x; y# $ 0:43"part"x; y# %0:14"coll"x; y#, i.e., a mixture of participant density profileand binary collision profile from PHOBOS [26]; and MCCGC geometry "CGC"x; y# of Drescher and Nara [14]. Theeffect of fluctuations for both profiles were included via thestandard rotation procedure [13]. The short-dashed curvesin Fig. 3(a) show that the result for Glauber geometrywithout rotation ("GL) compares reasonably well withthose from WHDG [21] and a version of ASW modelfrom [27]. Consequently, we use the JW model to estimatethe shape distortions due to fluctuations and CGC effects.The results for Glauber geometry with rotation ("Rot

GL ) andCGC geometry with rotation ("Rot

CGC) each lead to a!15%–20% increase of v2 in midcentral collisions.However, these calculated results still fall below the data.

Figure 3(b) compares the same data with three JWmodels for the same matter profiles, but calculated for aline integral motivated by AdS/CFT correspondence I $Rdll". The stronger l dependence for "GL significantly

increases (by >50%) the calculated v2, and brings it closeto the data for midcentral collisions. However, a sizablefractional difference in the central bin seems to require anadditional increase from fluctuations and CGC geometry.Figure 3(b) also shows a MR model from [27], whichimplements the AdS/CFT l dependence within the ASWframework [28]; it compares reasonably well with the JW

model for "GL (short-dashed curves). Note that the MR andJW models in Fig. 3 have been tuned independently toreproduce the 0–5% #0 RAA data, and they all describe thecentrality dependence of RAA very well [see Figs. 3(c) and3(d)]. On the other hand, these models predict a strongersuppression for dihadrons than for single hadrons, oppositeto experimental findings [29]; thus a global confrontationof any model with all experimental observables iswarranted.In summary, we presented results on #0 azimuthal an-

isotropy (v2) in 1<pT < 18 GeV=c in Au% Au colli-sions at

!!!!!!!!sNN

p $ 200 GeV. The measurements indicatesizable v2"pT# that decreases gradually for 3 & pT &7–10 GeV=c, but remains positive for pT > 10 GeV=c.This large v2 exceeds expectations of PQCD energy-lossmodels even at pT ! 10 GeV=c. Estimates of the v2 in-crease due to modifications of initial geometry from gluonsaturation effects and fluctuations indicate that they areinsufficient to reconcile data and theory. Incorporating anAdS/CFT-like path-length dependence for jet quenching ina PQCD-based framework [27] and a schematic model [25]both compare well with the data. However, more detailedstudy beyond these simplified models are required toquantify the nature of the path-length dependence. Ourprecision data provide key constraints on the initial ge-ometry, medium space-time evolution, and the jet-quenching mechanisms.We thank the staff of the Collider-Accelerator and

Physics Departments at BNL for their vital contributions.We acknowledge support from the Office of Nuclear

0 100 200 300

v 2

0

0.05

0.1

0.15

0.2

6 - 9 GeV/c

GL!dl "JW: I ~

RotGL

!dl "JW: I ~

RotCGC

!dl "JW: I ~

WHDG MR: ASW(a)

0 100 200 300

6 - 9 GeV/c

MR: AdS/CFT

GL!dl l"JW: I ~

RotGL

!dl l"JW: I ~

RotCGC

!dl l"JW: I ~

(b)

Npart Npart

0 100 200 300

RA

A

(c)0.20.30.40.60.81.0

0 100 200 300

(d)

FIG. 3 (color online). v2 vs Npart in 6–9 GeV=c compared with various models: (a) WHDG [21] (shaded bands), ASW [27] (solidtriangle), and three JW calculations [25] with quadratic l dependence with longitudinal expansion for Glauber geometry (dashed lines),rotated Glauber geometry (long dashed lines), and rotated CGC geometry (solid lines); (b) Same as (a) except that AdS/CFT modifiedcalculation in ASW framework (triangle) from [27] is shown and the JW calculations were done for cubic l dependence withlongitudinal expansion; (c)–(d) the comparison of calculated RAAs from these models with data.

PRL 105, 142301 (2010) P HY S I CA L R EV I EW LE T T E R Sweek ending

1 OCTOBER 2010

142301-6

partN0 50 100 150 200 250 300 350 400

/4π|<φ

Δ N

ear-S

ide:

|PT

Ynv

-1.5

-1

-0.5

0

0.5

1

1.5

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

}2Ψ{2PTYv

}2Ψ{2EPv

partN0 50 100 150 200 250 300 350 400

/4π|<π-φ

Δ A

way

-Sid

e:|

PTY

nv

-1.5

-1

-0.5

0

0.5

1

1.5

=200 GeVNNsAu+Au 1-2 GeV/c⊗=2-4

Tap⊗

Ttp

}2Ψ{2PTYv

}2Ψ{2EPv

Page 47: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Path  length  dependence  of  PTY

•  Angle  from  EP  converted  to  Path-­‐Length  by  Glauber  Model  •  Non-­‐monotonic  behavior  •  Yields  does  not  scale  on  a  universal  curve  

2013/11/06 pre-­‐Defense 47

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

ΔN

ear S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

1

1.2=200 GeVNNsAu+Au

:2-4x1-2 GeV/cT

p

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

ΔAw

ay S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

ΔN

ear S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

ΔAw

ay S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

ΔN

ear S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

1

1.2=200 GeVNNsAu+Au

:2-4x1-2 GeV/cT

p

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

ΔAw

ay S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

ΔN

ear S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

ΔAw

ay S

ide

Yiel

d : |

-0.2

0

0.2

0.4

0.6

0.8

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

Page 48: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Path  length  dependence  of  PTY/Npart

•  Approximately  scaled  on  a  curve  •  Associate  yields  from  QGP  medium  

2013/11/06 pre-­‐Defense 48

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|pa

rtN

ear S

ide

Yiel

d/N

-2

0

2

4

6

8

10

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|pa

rtAw

ay S

ide

Yiel

d/N

-2

0

2

4

6

8

10

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|pa

rtN

ear S

ide

Yiel

d/N

-101

234567

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|pa

rtAw

ay S

ide

Yiel

d/N

-101

234567

-310×

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|pa

rtN

ear S

ide

Yiel

d/N

-2

0

2

4

6

8

10

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|pa

rtAw

ay S

ide

Yiel

d/N

-2

0

2

4

6

8

10

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|pa

rtN

ear S

ide

Yiel

d/N

-101

234567

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|pa

rtAw

ay S

ide

Yiel

d/N

-101

234567

-310×

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

Page 49: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Path  length  dependence  of  PTY/Ncoll

•  Also  approximately  scaled  on  a  curve  •  Associate  yields  from  hard-­‐scanering  at  ini)al  collisions  •  Coupling  of  jet  with  medium  

2013/11/06 pre-­‐Defense 49

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llNe

ar S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

Page 50: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Summary  -­‐  I •  Two-­‐Par)cle  correla)ons  were  measured  with  subtrac)on  of  backgrounds  from  vn(n=2,3,4)  

•  New  experimental  data  disfavored  theore)cal  models  –  Cherenkov  Gluon  Radia)on  – Mach-­‐Cone  Shock  Wave  –  Hot-­‐Spot  Models  

•  Jet-­‐Deflec)on  model  is  qualita)vely  consistent  with  data  

2013/11/06 pre-­‐Defense 50

Page 51: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Summary  -­‐  II •  Event-­‐Plane  dependent  correla)ons  shows  two  compe)ng  effects  

–  Increase  /  decrease  of  correla)on  yield  with  increase  of  path-­‐length  

•  Anisotropy  of  correla)on  yield  vnPTY  –  Addi)onal  Effect  in  addi)on  to  parton-­‐energy  loss  

•  Scale  of  Correla)on  Yield  by  Npart  &  Ncoll  –  Jet-­‐Medium  Coupling  

•  Energy-­‐Loss,  Energy  Re-­‐distribu)on,  and  boost  of  jet  by  medium  need  to  be  considered  in  future  theore)cal  models

2013/11/06 pre-­‐Defense 51

Page 52: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

BACK  UP  

2013/11/06 pre-­‐Defense 52

Page 53: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

•  Two-­‐Par)cle  Correla)ons  at  CNT  – Without  rapidity  gap,  where  Jet  contribu)on  survives  

•  Flow  Measurements  –  CNT  Par)cle  &  Forward  Event  Plane  at  RXN,  BBC  –  Jet  contribu)on  suppressed  

Rapidity  Selec1on  in  the  Measurements

2013/11/06   pre-­‐Defense 53

vn =< cos n(���n) >

0 5 -5 η

dN/dη"

CNT : |η|<0.35

BBC : 3.0<|η|<3.9

RXN : 1.0<η<2.8

Page 54: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Tracking  Efficiency

2013/11/06   pre-­‐Defense   54  

� =�uncor

�cor

GeV/cT

p0 1 2 3 4 5]

-2[(G

eV/c

)ηd T

/dp

2)d

Nev

tN Tpπ

1/(2

-1510-1310-1110-910-710-510-310-110

10310510710910

11101210

0-10% -210-20%x10-420-30%x10-630-40%x10-840-50%x10

Solid: PRC69.034910σBlack Open: Uncorrected:2.5σColord Open: Uncorrected :2

Fit  Func)on

F (pT ) = p0 ��

p1

p1 + pT

�p2

•  Efficiency  correc)on  by  ra)o  of  uncorrected  invariant  yield  over  corrected  ones  

Page 55: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

EP  Resolu1on  in  Monte  Carlo

•  Convert  resolu)on  to  χ

2013/11/06 pre-­‐Defense 55

[rad]realΨ-obsΨ)=obsΨ-φ)-(realΨ-φ(-1.5 -1 -0.5 0 0.5 1 1.5

]2 z e{1

+Erf(

z)}

π[1

+z/22

χ- eπ1

0

0.2

0.4

0.6

0.8

1

1.2

)realΨ-obsΨ cos2(χz = =1.1χ=1.0χ=0.9χ=0.8χ=0.7χ=0.6χ=0.5χ=0.4χ=0.3χ=0.2χ=0.1χ=0.0χ

Centrality0 5 10 15 20 25 30 35 40 45 50

/4)]

2 nχ( 1/4

)+I

2 nχ( 0[I/42 nχ- e nχ 2

of

0

0.5

1

1.5

2

]2Ψ for Res[2χ

]3Ψ for Res[3χ

]4Ψ for Res[4χ

dNeve

d[kn(�obsn ��real

n )]=

1�

e��2n/2

�1 + z

��[1 + erf(z)]ez2

�cos [kn(�obs

n ��realn )]

�=�

2�

2�ne��2

n/4

�I(k�1)/2

��2

n

4

�+ I(k+1)/2

��2

n

4

��.

•  Distribu)on  between  real  and  observed  EP  using  χ

Page 56: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Ψ2-Ψ4  correla1on  in  Monte  Carlo

•  Ψ2-Ψ4  correla)on  :  

2013/11/06 pre-­‐Defense 56

Centrality %0 5 10 15 20 25 30 35 40 45 50

/4)]

2 42χ( 1/4

)+I

2 42χ( 0[I/4

2 42χ- e42χ 2

of

42χ 0

0.2

0.4

0.6

0.8

1

1.2=1-2&2-4GeV/c

Taverage p

=2-4GeV/cT

p

=1-2GeV/cT

p

Centrality %0 5 10 15 20 25 30 35 40 45 50

} 4Ψ{ 4

/v} 2Ψ{ 4

)>=v

2Ψ- 4

Ψ<c

os4(

0

0.2

0.4

0.6

0.8

1

1.2=1-2&2-4GeV/c

Taverage p

=2-4GeV/cT

p

=1-2GeV/cT

p

�cos [4(�2 ��4)]� =�

2�

2�42e

��242/4

�I0

��2

42

4

�+ I1

��2

42

4

��•  Obtain  χ  &  reconstruct  distribu)on  

dNeve

d[kn(�obsn ��real

n )]=

1�

e��2n/2

�1 + z

��[1 + erf(z)]ez2

[rad]2Ψ-4Ψ-0.6 -0.4 -0.2 0 0.2 0.4 0.6

]2 z e{1

+Erf(

z)}

π[1

+z/22

χ- eπ1

0

0.2

0.4

0.6

0.8

1

1.2

_2)Ψ_4-Ψ cosr4(χz = =1.1χ=1.0χ=0.9χ=0.8χ=0.7χ=0.6χ=0.5χ=0.4χ=0.3χ=0.2χ=0.1χ=0.0χ

�cos [4(�2 � �4)]� = v4 {�2} /v4 {�4}

Page 57: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

2Ψ-tφ=sφ

-1.5 -1 -0.5 0 0.5 1 1.5

)φΔ, sφ(

cor

) & 1

+Yφ

Δ, sφ(ra

w1+

Y1

1.05

1.1

1.15

1.2

Corected curveFit to raw dataCorrected dataRaw data

)φΔ+sφcos4(raw4

)+2vφΔ+sφcos2(raw2=1+2vraw)sφF(

)φΔ+sφcos4(42σ/raw4

)+2vφΔ+sφcos2(2σ/raw2=1+2vcor)sφF(

/24.π=-φΔAu+Au 20-30%,

Unfolding  :  Fisng  Method

•  Offset  λ=1.0  to  avoid  possible  division  by  zero  

•  Assuming  correla)on  yield  has  anisotropy  w.r.t.  EP  

•  Correc)on  by  EP  resolu)on  

2013/11/06   pre-­‐Defense   57  

� + Y cor(⇤s,�⇤) =� + b0

�1 + 2vY

2 /⇥ cos 2(⇤s + �⇤) + 2vY4 /⇥42 cos 4(⇤s + �⇤)

� + b0

�1 + 2vY

2 cos 2(⇤s + �⇤) + 2vY4 cos 4(⇤s + �⇤)

� (� + Y (⇤s,�⇤))

� + Y cor(⇤s,�⇤) =� + b0

�1 + 2vY

3 /⇥3 cos 3(⇤s + �⇤)�

� + b0

�1 + 2vY

3 cos 3(⇤s + �⇤)� (� + Y (⇤s,�⇤))

Ψ2 dependent  case

Ψ3 dependent  case Fisng

Fisng

PRC.84.024904  (2011)

Page 58: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Unfolding  :  Itera1on

2013/11/06 pre-­‐Defense 58

[rad]realΨ-obsΨ)=obsΨ-φ)-(realΨ-φ(-1.5 -1 -0.5 0 0.5 1 1.5

]2 z e{1

+Erf(

z)}

π[1

+z/22

χ- eπ1

0

0.2

0.4

0.6

0.8

1

1.2

)realΨ-obsΨ cos2(χz = =1.1χ=1.0χ=0.9χ=0.8χ=0.7χ=0.6χ=0.5χ=0.4χ=0.3χ=0.2χ=0.1χ=0.0χS =

�����������

s0 s1 s2 s3 s4 s3 s2 s1

s1 s0 s1 s2 s3 s4 s3 s2

s2 s1 s0 s1 s2 s3 s4 s3

s3 s2 s1 s0 s1 s2 s3 s4

s4 s3 s2 s1 s0 s1 s2 s3

s3 s4 s3 s2 s1 s0 s1 s2

s2 s3 s4 s3 s2 s1 s0 s1

s1 s2 s3 s4 s3 s2 s1 s0

�����������

,A(k) =

�����������

1 + Y (0, k)1 + Y (1, k)1 + Y (2, k)1 + Y (3, k)1 + Y (4, k)1 + Y (5, k)1 + Y (6, k)1 + Y (7, k)

�����������

,

cii = A(i, k)/B(i, k) Acor(k) = C(k)A(k)

•  Smearing  of  measured  correla)ons

•  Correc)on  factor B(k) = SA(k)

cij(i �=j) = 0

Correla)on  +  Offset Smearing  Effect

•  Corrected  yield

Page 59: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Unfolding  :  Itera1on

•  Itera)on  un)l  conversion 2013/11/06 pre-­‐Defense 59

c(n)ii (k) = (1� r)c(n)

ii (k) + (r/2) c(n)ii (k � 1) + (r/2) c(n)

ii (k + 1)

3.6. TWO PARTICLE CORRELATIONS 63

A(1)=Offset(1) + PTY A(n)=A(n-1)C(n)�

Smeared PTY B(n)=SA(n)�

Correction Matrix C(n)=A(n)/B(n)�

Smoothing Correction Matrix C(n)=(1-r)C(n)+rC(n)(k-1)

+rC(n)(k+1)�A(300)-Offset(1)�

A(1)=Offset(1) + PTY, Smearing Matrix : S�

300 Loops�

Figure 3.13: Flow chart of the Iteration Method of Unfolding.

[rad]realΨ-obsΨ)=obsΨ-φ)-(realΨ-φ(-1.5 -1 -0.5 0 0.5 1 1.5

]2 z e{1

+Erf(

z)}

π[1

+z/22

χ- eπ1

0

0.2

0.4

0.6

0.8

1

1.2

)realΨ-obsΨ cos2(χz = =1.1χ=1.0χ=0.9χ=0.8χ=0.7χ=0.6χ=0.5χ=0.4χ=0.3χ=0.2χ=0.1χ=0.0χ

Figure 3.14: ��-�z correlations in (Left) PC1 and (Right) PC3 after pair selection in PC1.

A� A(n)

B� B(n)

C� C(n)

Acor � A(n+1)

Smoothing

Nota1on  in  itera1on

Page 60: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Zero  Yield  at  Near-­‐Side

•  Correla)on  and  Pure  Flow  is  fined  at  Δφ=0

•  Double-­‐hump  is  not  so  sensi)ve  to  flow  subtrac)on

2013/11/06 pre-­‐Defense 60

φΔ-1 0 1 2 3 4

φΔ

/dpair

dN tr1/N

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

PTY pTt  x  pTa  =  2-­‐4  x  1-­‐2  GeV/c

20-­‐30%

Page 61: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

High  pT  correla1ons

2013/11/06 pre-­‐Defense 61

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.0050.010.0150.02

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

0

0.1

0.2

-1 0 1 2 3 4

(o)

0

0.1

0.2

-1 0 1 2 3 4

(t)

00.0050.010.0150.02

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

0

0.1

0.2

-1 0 1 2 3 4

(n)

0

0.1

0.2

-1 0 1 2 3 4

(s)

00.0050.010.0150.02

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

0

0.1

0.2

-1 0 1 2 3 4

(m)

0

0.1

0.2

-1 0 1 2 3 4

(r)

00.0050.010.0150.02

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

0

0.1

0.2

-1 0 1 2 3 4

(l)

0

0.1

0.2

-1 0 1 2 3 4

(q)

00.0050.010.0150.02

-1 0 1 2 3 4

0-10%(a)4-10×:4-10t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)2-4×:4-10t,a

Tp

0

0.1

0.2

-1 0 1 2 3 4

(k)1-2×:4-10t,a

Tp

0

0.1

0.2

-1 0 1 2 3 4

(p)0.5-1×:4-10t,a

Tp

Page 62: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Intermediate  pT  correla1ons

2013/11/06 pre-­‐Defense 62

) subtracted4Ψ(4 & v3

, v2

Au+Au 200GeV, v

[rad]trigφ- assoφ = φΔ

φΔ

/dta

dN

t1/

N

00.010.020.03

-1 0 1 2 3 4

40-50%(e)

0

0.05

0.1

-1 0 1 2 3 4

(j)

00.050.10.15

-1 0 1 2 3 4

(o)

00.020.040.06

-1 0 1 2 3 4

(t)

0

0.05

0.1

-1 0 1 2 3 4

(y)

00.010.020.03

-1 0 1 2 3 4

30-40%(d)

0

0.05

0.1

-1 0 1 2 3 4

(i)

00.050.10.15

-1 0 1 2 3 4

(n)

00.020.040.06

-1 0 1 2 3 4

(s)

0

0.05

0.1

-1 0 1 2 3 4

(x)

00.010.020.03

-1 0 1 2 3 4

20-30%(c)

0

0.05

0.1

-1 0 1 2 3 4

(h)

00.050.10.15

-1 0 1 2 3 4

(m)

00.020.040.06

-1 0 1 2 3 4

(r)

0

0.05

0.1

-1 0 1 2 3 4

(w)

00.010.020.03

-1 0 1 2 3 4

10-20%(b)

0

0.05

0.1

-1 0 1 2 3 4

(g)

00.050.10.15

-1 0 1 2 3 4

(l)

00.020.040.06

-1 0 1 2 3 4

(q)

0

0.05

0.1

-1 0 1 2 3 4

(v)

00.010.020.03

-1 0 1 2 3 4

0-10%(a)2-4×:2-4t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(f)1-2×:2-4t,a

Tp

00.050.10.15

-1 0 1 2 3 4

(k)0.5-1×:2-4t,a

Tp

00.020.040.06

-1 0 1 2 3 4

(p)1-2×:1-2t,a

Tp

0

0.05

0.1

-1 0 1 2 3 4

(u)0.5-1×:1-2t,a

Tp

Page 63: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Ψ2  dependence  of  PTY

2013/11/06 pre-­‐Defense 63

)> by ZYAM4Ψ-2Ψ(n=2,3,4) + <cos4(n=200GeV, Pure Flow: vNNsAu+Au

[rad]tφ-aφ = φΔ

1-2

GeV

⊗),

2-4

φΔ

dep

ende

nt P

TY(

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.240-50%(e)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.230-40%(d)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.220-30%(c)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.210-20%(b)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.20-10%

/8π<-32Ψ-tφ/8<π-4

(a)

/8π<-22Ψ-tφ/8<π-3

/8π<-2Ψ-tφ/8<π-2

<02Ψ-tφ/8<π-

Page 64: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Ψ2  dependence  of  PTY  (Polar)

2013/11/06 pre-­‐Defense 64

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

10-20%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

20-30%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

30-40%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

<02Ψ-tφ/8<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.160-10%

/8π<-2Ψ-tφ/8<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1610-20%

/8π<-2Ψ-tφ/8<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1620-30%

/8π<-2Ψ-tφ/8<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1630-40%

/8π<-2Ψ-tφ/8<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1640-50%

/8π<-2Ψ-tφ/8<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

/8π<-22Ψ-tφ/8<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

10-20%

/8π<-22Ψ-tφ/8<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

20-30%

/8π<-22Ψ-tφ/8<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

30-40%

/8π<-22Ψ-tφ/8<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

/8π<-22Ψ-tφ/8<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.160-10%

/8π<-32Ψ-tφ/8<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1610-20%

/8π<-32Ψ-tφ/8<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1620-30%

/8π<-32Ψ-tφ/8<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1630-40%

/8π<-32Ψ-tφ/8<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1640-50%

/8π<-32Ψ-tφ/8<π-4

Page 65: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Ψ3  dependence  of  PTY

2013/11/06 pre-­‐Defense 65

)> by ZYAM4Ψ-2Ψ(n=2,3,4) + <cos4(n=200GeV, Pure Flow: vNNsAu+Au

[rad]tφ-aφ = φΔ

1-2

GeV

⊗),

2-4

φΔ

dep

ende

nt P

TY(

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.240-50%(e)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.230-40%(d)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.220-30%(c)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.210-20%(b)

-1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.20-10%

/12π<-33Ψ-tφ/12<π-4

(a)

/12π<-23Ψ-tφ/12<π-3

/12π<-3Ψ-tφ/12<π-2

<03Ψ-tφ/12<π-

Page 66: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Ψ3  dependence  of  PTY  (Polar)

2013/11/06 pre-­‐Defense 66

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

10-20%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

20-30%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

30-40%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

<03Ψ-tφ/12<π-

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.160-10%

/12π<-3Ψ-tφ/12<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1610-20%

/12π<-3Ψ-tφ/12<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1620-30%

/12π<-3Ψ-tφ/12<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1630-40%

/12π<-3Ψ-tφ/12<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1640-50%

/12π<-3Ψ-tφ/12<π-2

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

0-10%

/12π<-23Ψ-tφ/12<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

10-20%

/12π<-23Ψ-tφ/12<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

20-30%

/12π<-23Ψ-tφ/12<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

30-40%

/12π<-23Ψ-tφ/12<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.16

40-50%

/12π<-23Ψ-tφ/12<π-3

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.160-10%

/12π<-33Ψ-tφ/12<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1610-20%

/12π<-33Ψ-tφ/12<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1620-30%

/12π<-33Ψ-tφ/12<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1630-40%

/12π<-33Ψ-tφ/12<π-4

Arbitrary unit-0.3 -0.2 -0.1 0 0.1 0.2 0.3

in P

olar

Coo

rdin

ate

PTY

w.r.t

.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Offset: 0.1640-50%

/12π<-33Ψ-tφ/12<π-4

Page 67: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Glauber  Model •  Woods-­‐Saxon  Distribu)on  –  Nucleon  density  distribu)on  

•  Collision  range    •  Number  of  nucleons  par)cipated  in  a  collision  

•  Number  of  binary  nucleons  collisions  in  a  collision

2013/11/06 pre-­‐Defense 67

1.2. RELATIVISTIC HEAVY ION COLLISIONS 5

Figure 1.3: A schematic idea of the space-time evolution of relativistic heavy-ion collisions.

• Nucleons keeps flying straight on initial orbit,

• Nucleus collisions are built up from inelastic nucleon interactions,

• Cross-section of inelastic nucleon interaction is independent of number of collisions Ncoll.

The analytical formulation of Grauber Model is given by the calculations based on Wood-Saxon Potential of nucleons in a nucleus at A = 197 as

⇢A(r) =⇢A0

1 + e(r�RA

)/aA

. (1.4)

where RA=6.38 fm is a radius and aA=0.54 fm is a di↵usion parameter of Au nuclei, and ⇢A

satisfiesR

dr⇢A(r) = A. �0 = 42 mb atp

sNN =200 GeV [5]. The nucleon density function iscalculated by the integral of ⇢A(x, y, z) in z direction as

TA(x, y) =Z 1

�1dz⇢A(x, y, z). (1.5)

The desisty function of number of participantNpart of a nucleus collision of mass number A andB with a impact parameter b is given as

npartA(x, y; b) = TA(x + b/2, y)

(

1�✓

1� �0TB(x� b/2, y)B

◆B)

(1.6)

+ TB(x + b/2, y)

(

1�✓

1� �0TA(x + b/2, y)A

◆A)

, (1.7)

and Npart can be given by the integral of npart in x-y direction as

Npart(b) =Z

dxdynpart(x, y; b). (1.8)

Page 68: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Path-­‐Length  based  on  Glauber  MC •  Path-­‐Length  :  distance  from  center  to  surface  as  a  func)on  of  angle  form  the  event-­‐planes

2013/11/06 pre-­‐Defense 68

x [fm]-15 -10 -5 0 5 10 15

y [fm

]

-15

-10

-5

0

5

10

15

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016=200-240part rotation, N2Ψ

)part2

Ψ-φL(

part2Ψ

φ

x [fm]-15 -10 -5 0 5 10 15

y [fm

]-15

-10

-5

0

5

10

15

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016 rotation3Ψ

)part3

Ψ-φL(

part3Ψ

φ

Page 69: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Eccentricity  by  Glauber  Model  

2013/11/06 pre-­‐Defense 69

Npart0 50 100 150 200 250 300 350 400

>2/<

r2 > pφ

sinn

2+<

r2 > pφ

cosn

2<r

=

0

0.2

0.4

0.6

0.8

1

Page 70: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Path  length  dependence  of  PTY

•  Near  &  Away-­‐Side  of  both  Ψ2, Ψ3  dependent  correla)ons  do  not  form  a  universal  curve  

2013/11/06 pre-­‐Defense 70

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

-2-101234567

-310×

=200 GeVNNsAu+Au :2-4x1-2 GeV/c

Tp

) fm2

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

-2-101234567

-310×

0-10%10-20%20-30%30-40%40-50%

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<φ

Δ :

|co

llN

ear S

ide

Yiel

d/N

0

1

2

3

4

-310×

) fm3

Ψ-φPath Length L(2 3 4 5 6 7

/4π|<π-φ

Δ :

|co

llAw

ay S

ide

Yiel

d/N

0

1

2

3

4

-310×

Page 71: Measurements*of*Two/Par1cle*Correla1ons ...utkhii.px.tsukuba.ac.jp/report/2014/Todoroki_D/PreDefenseTodoroki2… · 2013/11/06 pre/Defense 4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Boost  by  v4

•  Boost  by  v4  to  out-­‐of-­‐plane  direc)on  in  central  collisions  •  Boost  by  v2  to  in-­‐plane  direc)on  in  peripheral  collisions 2013/11/06 pre-­‐Defense 71

v2

v4

Central  Collisions  v2  =  v4

Peripheral  Collisions  v2  >  v4  

v2

v4