MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf ·...

30
© 2009 Microchip Technology Inc. DS22186C-page 1 MCP2036 Features: Complete Inductance Measurement System: - Low-Impedance Current Driver - Sensor/Reference Coil Multiplexer - High-Frequency Detector Operating Voltage: 2.7 to 5.5V Low-Power Standby Mode Gain and Frequency set by external passive components Typical Applications: Harsh environment inductive keyboards Inductive rotational sensor interface Inductive displacement sensor interface Inductive force sensor interface Description: The MCP2036 Inductive Sensor Analog Front End (AFE) combines all the necessary analog functions for a complete inductance measurement system. The device includes: High-frequency, current-mode coil driver for exciting the sensor coil. Synchronous detector for converting AC sense voltages into DC levels. Output amplifier/filter to improve resolution and limit noise. Virtual ground reference generator for single supply operation. The device is available in 14-pin PDIP, SOIC and 16-pin QFN packages: Package Types 1 2 3 6 7 4 5 14 13 8 9 10 11 12 V REF LREF LBTN V DD DRVOUT DRVIN CLK V DET+ V DET- V DETOUT V SS CS REFSEL ISOL 9 10 11 12 6 7 5 8 1 2 3 4 LREF LBTN V DD DRVOUT 16 15 14 13 DRVIN CLK REFSEL CS V DET- V DETOUT V SS ISOL V DET+ V REF NC NC MCP2036 16-pin QFN MCP2036 14-pin PDIP, SOIC Inductive Sensor Analog Front End Device

Transcript of MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf ·...

Page 1: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036Inductive Sensor Analog Front End Device

Features:• Complete Inductance Measurement System:

- Low-Impedance Current Driver- Sensor/Reference Coil Multiplexer- High-Frequency Detector

• Operating Voltage: 2.7 to 5.5V• Low-Power Standby Mode• Gain and Frequency set by external passive

components

Typical Applications:• Harsh environment inductive keyboards• Inductive rotational sensor interface• Inductive displacement sensor interface• Inductive force sensor interface

Description:The MCP2036 Inductive Sensor Analog Front End(AFE) combines all the necessary analog functions fora complete inductance measurement system.

The device includes:

• High-frequency, current-mode coil driver for exciting the sensor coil.

• Synchronous detector for converting AC sense voltages into DC levels.

• Output amplifier/filter to improve resolution and limit noise.

• Virtual ground reference generator for single supply operation.

The device is available in 14-pin PDIP, SOIC and16-pin QFN packages:

Package Types

1

2

3

6

7

4

5

14

13

8

9

10

11

12

VREF

LREF

LBTNVDD

DRVOUT

DRVIN

CLK

VDET+

VDET-

VDETOUT

VSS

CS

REFSEL

ISOL

9

10

11

12

6 75 8

1

2

3

4

LREF

LBTNVDD

DRVOUT

16 15 14 13

DR

VIN

CLK

RE

FSE

L

CS

VDET-

VDETOUT

VSS

ISOL

VD

ET+

VR

EF

NC

NC

MCP2036 16-pin QFNMCP2036 14-pin PDIP, SOIC

© 2009 Microchip Technology Inc. DS22186C-page 1

Page 2: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

1.0 FUNCTIONAL DESCRIPTIONThe MCP2036 measures a sensor coil’s impedance byexciting the coil with a pulsed DC current andmeasuring the amplitude of the resulting AC voltagewaveform. The drive current is generated by theon-chip current amplifier/driver which takes thehigh-frequency triangular waveform present on theDRVIN input, and amplifies it into the pulsed DC currentfor exciting the series combination of the sensor coils.

The AC voltages generated across the coils, are thencapacitively coupled into the LBTN and LREF inputs.An input resistance of 2K between the inputs and thevirtual ground offsets the AC input voltages up to thesignal ground generated by the reference voltagegenerator, as shown in Figure 1-1.

FIGURE 1-1: MCP2036 Block Diagram

VoltageReference

REFSEL

VDETOUT

DRVIN

CLK

DRVOUT

LBTNLREF

VREFVDD

VSS

01Input MUX

CS

Key Inductor Driver

Mixer

VDET+

VDET-

+

-

10K

10K

Op. Amp. Block

ISOL

DS22186C-page 2 © 2009 Microchip Technology Inc.

Page 3: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

FIGURE 1-2: MCP2036 Typical ApplicationThe coil voltages are then multiplexed into theSynchronous Detector section by the LBTN/LREFmultiplexer. This allows the microcontroller to selectwhich signal is sampled by the detector. The detectorconverts the coil voltages into a DC level using afrequency mixer, amplifier, and filter.

The mixer is composed of two switches driven by theclock present on the CLK signal input. The switchestoggle the amplifier/filter between an inverting andnon-inverting topology, at a rate equal to the clock inputfrequency. This inverts and amplifies the negative sideof the signal, while amplifying the positive side. Theresult is a pulsed DC signal with a peak voltage,proportional to the amplitude of the AC coil voltage.

The gain of the detector is set by two pairs of resistors;one pair are the internal fixed series resistors betweenthe frequency mixer and the amplifier. The secondresistor pair are the two external gain set resistors(RGAIN). The two capacitors (CFILTER) in parallel withthe external gain setting resistors form a low pass filterwhich converts the pulsed DC output signal into asmooth DC voltage which is proportional to the ACsensor voltage input. The output of the system ispresent on the VDETOUT pin, which drives themicrocontroller’s ADC input for conversion into a digitalvalue.

The virtual ground reference for the detector/amplifieris generated by a second internal op amp whichproduces a virtual ground equal to ½ the supplyvoltage. The virtual ground is available externally at theVREF output and used internally throughout thedetector circuit, allowing single supply operation. Asmall external capacitance is required to stabilize thisoutput and limit noise.

The ISOL input is used to isolate the detector frompotential noise sources during the measurement of thevirtual ground reference during a button measurement.

MCP2036

LREF

LBTN

LREF

DRVOUT10Ω

10nF

REFSEL

10nF

I/O

I/OI/O

0123

01

32

CD4052

Key Coils

PIC® Microcontroller

CS

I/O

VDET-

VDETOUT

VDET+

VREF

CLK

DRVIN

PWM

ADC

CFILTER

CFILTER

RGAIN

RGAIN

CRGNDRIN

CIN

RADC

CADC

ISOL

I/O

© 2009 Microchip Technology Inc. DS22186C-page 3

Page 4: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

1.1 Coil Driver The coil driver produces the excitation current for thesensor coils.

The coil driver input is derived from the digital clocksupplied to the CLK input. The digital signal is firstfiltered through a low-pass filter, composed of RIN andCIN, and passed to the DRVIN input. The driver willcreate a triangular current in phase and proportionalwith the input voltage. Because the digital drive into theRIN-CIN filter has a 50% duty cycle, the voltage on theDRVIN input will be centered at VDD/2. The relationshipbetween voltage, current, inductance and frequency isshown in Equation 1-1.

EQUATION 1-1:

1.2 Synchronous Detector and Output Amplifier

The Synchronous Detector has two inputs, LREF andLBTN, selectable by REFSEL. This routes either signalinto the frequency mixer of the detector. The frequencymixer then converts the AC waveform into a pulsed DCsignal which is amplified and filtered.

The gain of the amplifier is user-settable, using anexternal resistor, RGAIN (see Equation 1-2).

EQUATION 1-2:

An ADC plus firmware algorithm then digitizes thedetector output voltage and uses the resulting data todetect a key press event.

1.3 Virtual Ground Voltage Reference Circuit

To create both an inverting and non-inverting amplifiertopology, a pseudo split supply design is required. Togenerate the dual supplies required, a rail splitter isincluded, which generates the virtual ground by creat-ing a voltage output at VDD/2. The output is used by theexternal passive network of the Detector/Amplifier sec-tion as a reference on the non-inverting input. A bypasscapacitor of 0.1 uF is required to ensure the stability ofthe output. For reference accuracy, no more than 3 mAshould be supplied to, or drawn from the referenceoutput pin.

ΔVOUT ΔIDRV LCOIL• 2 FDRV••( )=

VOUT Pulsed Output Voltage=

ΔIDRV AC Drive Current Amplitude=

FDRV AC Drive Current Frequency=

LCOIL Inductance of the Sensor Coil=

Note: These equations assume a 50% duty cycle.

Note: The output amplifier/filter uses adifferential connection, so its output iscentered to VREF (VDD/2). The amplitudeof the detected signal should be calculatedas the difference between voltages at theoutput of the detector and the referencevoltage.

Gain RGAIN 10kOhm⁄∼

DS22186C-page 4 © 2009 Microchip Technology Inc.

Page 5: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

2.0 PIN DESCRIPTIONDescriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

2.1 Chip Select (CS)The circuit is fully enabled when a logic-low is appliedto the CS input. The circuit enters in Low-Power modewhen a logic-high is applied to this input. DuringLow-Power mode, the detector output voltage falls toVREF and the supply current is reduced to 0.5 μA (typ.).

This pin has an internal pull-up resistor to ensureproper selection of the circuit.

2.2 Voltage Reference (VREF)VREF is a mid-scale reference output. It can source andsink small currents and has low output impedance. Aload capacitor between 100 nF and 1 μF needs to belocated close to this pin.

2.3 Power Supply (VDD, VSS)The VDD pin is the power supply pin for the analog anddigital circuitry within the MCP2036. This pin requiresan appropriate bypass capacitor of 100 nF. The voltageon this pin should be maintained in the 2.7V-5.5V rangefor specified operation.

The VSS pin is the ground pin and the current returnpath for both analog and digital circuitry of theMCP2036. If an analog ground plane is available, it isrecommended that this device be tied to the analogground plane of the PCB.

2.4 Inductor Inputs (LREF, LBTN)These pins are inputs for the external coils (referenceand sensor). The inputs should be AC coupled to thecoils by a 10 nF ceramic capacitor.

2.5 Input Selection (REFSEL)Digital input that is used to select between coil inputs(reference and sensor).

2.6 Detector Isolate (ISOL)Digital input that is used to isolate the detector circuitwhile measuring the system virtual ground. Pulling theinput high disables the detector input multiplexers,isolating the op amp circuitry from the coils inputs.Pulling the input low reconnects the inputs formeasuring both reference and button coil inputs.

2.7 Clock (CLK)The external clock input is used for synchronousdetection of the AC waveforms on the coils. The clocksignal is also used to generate a triangular waveformapplied to coil driver input.

Pad Name Pin Number I/O Type Description

14 Pins 16 Pins

VREF 1 16 OUT AN Voltage ReferenceLREF 2 1 IN AN Reference Inductor InputLBTN 3 2 IN AN Active Inductor InputVDD 4 3 PWR AN Power Supply

DRVOUT 5 4 OUT AN Current Driver Output for InductorsDRVIN 6 5 IN AN Current Driver Input

CLK 7 6 IN CMOS Clock SignalREFSEL 8 7 IN CMOS Detector Select Input

CS 9 8 IN CMOS Chip Select, Active lowISOL 10 9 IN CMOS Detector Isolation Control Input,

high = isolateVSS 11 10 PWR AN Power Supply Return

VDETOUT 12 11 OUT AN Detector Output VoltageVDET- 13 12 IN AN Negative Input for Output DetectorVDET+ 14 13 IN AN Positive Input for Output Detector

NC 14 — — No connectNC 15 — — No connect

© 2009 Microchip Technology Inc. DS22186C-page 5

Page 6: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

2.8 Inductor Driver Input (DRVIN)The analog input to the coil driver. The triangularwaveform applied to this input should be in phase withthe clock signal for best performance.

2.9 Inductor Driver Output (DRVOUT)Driver output used to excite the sensor coils. It is acurrent-mode output designed to drive small inductiveloads.

2.10 Detector Output Voltage (VDETOUT)The amplifier/filter output from the detector. This is alow-impedance analog output pin (VOUT) for driving themicrocontroller ADC. The detector output is rail-to-rail.

2.11 Inputs for Output Detector (VDET+, VDET-)

The non-inverting and inverting inputs for theamplifier/filter op amp. The two inputs are connected tothe output of the mixer circuit through two internal10KΩ resistors.

DS22186C-page 6 © 2009 Microchip Technology Inc.

Page 7: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

3.0 APPLICATIONS The MCP2036 is an Analog Front End device that usesthe electromagnetic interaction between a conductivetarget and a sensing coil to detect the pressure appliedby the user on the surface of a touch panel. The deviceincorporates all analog blocks for a simple inductorimpedance measurement circuit.

For an inductive touch system, two methods are usedfor switching the driver and measurement circuitrybetween the different sensor coils: analog multiplexersand GPIO grounding (see Figure 3-1 and Figure 3-2).The MCP2036 is designed to work with bothconfigurations:

FIGURE 3-1: Using Analog-Multiplexer for Key Selection (Example)

MCP2036

LREF

LBTN

LREF

DRVOUT10Ω

10nF

REFSEL

10nF

I/OI/OI/O

0123

01

32

CD4052

Key Coils

PIC® Microcontroller

ISOL

I/O

© 2009 Microchip Technology Inc. DS22186C-page 7

Page 8: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

FIGURE 3-2: Using NPN transistors for Key Selection (Example)

LREF

MCP2036

LBTN

LREF

DRVOUT

REFSEL

I/O

I/O

10Ω

10nF

I/O

I/O

10nF

4K7

4K7

PIC® Microcontroller

I/O

4K7

4K7

Key Coils

ISOL

I/O

DS22186C-page 8 © 2009 Microchip Technology Inc.

Page 9: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

3.1 Application exampleFigure 3-3 shows an example for a 4-key InductiveTouch keyboard with key controlled by the IO pins ofthe PIC® MCU.

FIGURE 3-3: MCP2036 Typical ApplicationThe PIC® microcontroller is used to generate a squarewave signal and to do all the necessary operations forproper detection of the key press event.

Then, RIN-CIN filter converts the square wave output ofthe PWM into a quasi-triangular waveform.

To calculate the amplitude of the triangular signal, thestandard charging time equation for an RC network willbe used, as shown in Equation 3-1:

EQUATION 3-1:

For the first half of the square wave, the capacitor CINis charged through RIN, for the second half, it isdischarged through RIN, and assuming that clocksignal has a 50% duty cycle factor, we can consider:

EQUATION 3-2:

When the PWM signal switches from low-to-high orfrom high-to-low, the step voltage applied to thecapacitor CIN will be:

EQUATION 3-3:

MCP2036

LREF

LBTN

LREF

DRVOUT10Ω

10nF

REFSEL

10nF

I/O

I/OI/O

0123

01

32

CD4052

Key Coils

PIC® Microcontroller

CS

I/O

VDET-

VDETOUT

VDET+

VREF

CLK

DRVIN

PWM

ADC

CFILTER

CFILTER

RGAIN

RGAIN

CRGNDRIN

CIN

RADC

CADC

ISOL

I/O

V t( ) Vstep 1 t RC⁄–( )exp–[ ]•=

Vstart VDD 2⁄ -ΔV=

Vstop VDD 2⁄ +ΔV=

Vstep VDD 2⁄ ΔV+( )=

© 2009 Microchip Technology Inc. DS22186C-page 9

Page 10: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

Substituting in the equation for an RC network:

EQUATION 3-4:

The peak-to-peak amplitude of the resulting triangularwaveform, at the coil driver input, is shown inEquation 3-5:

EQUATION 3-5:

From the previous equation, the designer shouldchoose values for VPKPK and RIN. Using the equationabove, the value of CIN will be:

EQUATION 3-6:

The amplitude of the pulsed current applied to keyinductors will be:

EQUATION 3-7:

This current produces a pulsed voltage to key inductorsends. The amplitude of this voltage will be:

EQUATION 3-8:

The total voltage across both the reference and sensorcoils would be double (two series inductors). For aspecific power supply voltage, half of this power supply,relative to the voltage reference, is available for outputamplifier/detector. Assuming a 30% margin, thedesired gain for the detector should be about:

EQUATION 3-9:

The gain of the amplifier is user-settable, using anexternal resistor, RGAIN. The value of that resistor willbe determined using the following equation:

EQUATION 3-10:

With a 10-bit ADC, using oversampling and averagingtechniques, the effective resolution is close to 11 bits.As shown in AN1239, “Inductive Touch SensorDesign”, the typical shift in sensor impedance is typi-cally 3-4%, so the actual number of counts per press istypically between 20 and 40 counts. In this way, themicrocontroller firmware could easily detect pressevent.

Note: VPKPK should not exceed specified value(600mV) for best performance.

Note: Assuming a power supply of 5V andVPKPK=500mV, for RIN=3.9KΩ, CIN shouldhave about 320pF. A 330pF capacitor willbe used.

ΔVVDD

2-----------

1 t–RINCIN------------------⎝ ⎠⎛ ⎞exp–

1 t–RINCIN------------------⎝ ⎠⎛ ⎞exp+

-------------------------------------------•=

2ΔV VDD 2⁄ ΔV+( ) 1 t RC⁄–( )exp–[ ]•=

VPKPK 2ΔV=

VPKPK VDD

1 t–RINCIN------------------⎝ ⎠⎛ ⎞exp–

1 t–RINCIN------------------⎝ ⎠⎛ ⎞exp+

-------------------------------------------•=

CINt

RIN lnVDD VPKPK–

VDD VPKPK+----------------------------------------⎝ ⎠⎜ ⎟⎛ ⎞

------------------------------------------------------------------- 1

2 F RINVDD VPKPK–

VDD VPKPK+----------------------------------------⎝ ⎠⎜ ⎟⎛ ⎞

ln•••

-------------------------------------------------------------------------------------==

ΔI VPKPK GDRV•=

GDRV - Gain of Coil Driver

Note: For a PWM frequency of 2 MHz andinductor value of 2.7µH, the amplitude ofpulsed voltage will be:

Note: For a power supply of 5V and ΔU = 10mV,the resulted gain is 81. To obtain this gain,RGAIN = 820kOhm should be used.

ΔU L ΔIΔt------• L VPKPK GDRV•• 2F•==

F - PWM Frequency

L - Inductance of Key Inductor

ΔU 10.8mV=

Gain70%

VDD2-----------⎝ ⎠

⎛ ⎞•

2 ΔU•---------------------------------=

Gain RGAIN/10kOhm∼

DS22186C-page 10 © 2009 Microchip Technology Inc.

Page 11: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

4.0 ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum RatingsAmbient temperature under bias.................-40°C to +125°C

Storage temperature.................................. -65°C to +150°CVoltage on VDD with respect to VSS............. -0.3V to +6.5VAnalog Inputs (VDET+, VDET-).............VSS-1.0V to VDD+1.0VVoltage on all other pins with respect to VSS ..................................... -0.3V to (VDD + 0.3V)Current at Output and Supply Pins.............................±30 mAHuman Body ESD Rating............................................2000 VMachine Model ESD Rating ..........................................200 VMaximum Junction Temperature ……………………....+150°C

4.2 SpecificationsTABLE 4-1: DC CHARACTERISTICSElectrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND.

Parameters Sym. Min. Typ. Max. Units ConditionsGeneral Device ParametersSupply Voltage VDD 2.7 — 5.5 VPower-Down Current IPD — 12 — nA CS = 1, VDD = +2.7V, (Note 1)

IPD — 25 — nA CS = 1, VDD = +5.5V, (Note 1)Quiescent Current IDD — 2 — mA VDD = +2.7V,

DRVIN = 0V, CLK = LowIDD — 3.7 — mA VDD = +5.5V

DRVIN = 0V, CLK = LowActive Current IDD — 3.4 — mA VDD = +2.7V,

CLK = 2 MHzIDD — 6.8 — mA VDD = +5.5V

CLK = 2 MHzDigital IO ParametersDigital Input High Voltage VIH 0.7VDD — — VDigital Input Low Voltage VIL — — 0.3VDD VInput Pins Leakage Current ILKG — — ±100 nA CS, CLK, REFSEL, LREF, LBTNOutput Amplifier/Filter Specific ParametersSystem ParametersDC Open Loop Gain AOL 90 110 — dBPower Supply Rejection Ratio PSRR — 86 — dBCommon Mode Rejection Ratio CMMR 60 76 — dBAmplifier Input CharacteristicsInput Offset Voltage VOS — — ±7 mVInput Bias Current IB — — ±20 pA (Note 1)

— — — ±1 nA (Note 1)

Input Offset Current IOS — — ±1 pA (Note 1)Input Impedance ZIN — 1013||6 — Ω||pF Common mode impedance

— — 1013||6 — Ω||pF Differential impedance

Amplifier Output CharacteristicsMinimum Output Voltage VOMIN VSS+20 — — mVMaximum Output Voltage VOMAX — — VDD-20 mV

© 2009 Microchip Technology Inc. DS22186C-page 11

Page 12: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

TABLE 4-2: AC CHARACTERISTICS

Short Circuit Current ISC — ±6 — mA VDETOUT, VDD = 3V— — ±10 — mA VDETOUT, VDD = 5V

Voltage Reference Specific ParametersOutput Voltage VREF — VDD/2 — mVOutput Short Circuit Current ISC — 6 — mA VDD = 3V

— — 10 — mA VDD = 5V

Maximum Output Capacitance COUT — — 1 µF (Note 1)Series Output Resistance RSER — 250 — Ω Internal resistor used to stabilize

op amp output for pure capacitive loads

Coil Driver Specific Parameters System ParametersAmplifier Current Gain AOL — 3 — mA/V VDD = +2.7V

AOL — 3.6 — mA/V VDD = +5.5VPower Supply Rejection Ratio PSRR 60 — — dBInput CharacteristicsInput Voltage Range VMAX VDD/2

-300— VDD/2

+300mV VDD = 5V

Input Bias/Leakage Current IB — — ±20 pA T = 85°C (Note 1)IB — — ±1 nA T = 125°C (Note 1)

Input Impedance ZIN — 1013||6 — Ω||pF Common mode impedance— — 1013||6 — Ω||pF Differential impedance

Output CharacteristicsMinimum Output Voltage VOMIN VSS+20 mVMaximum Output Voltage VOMAX — — VDD-20 mVShort Circuit Current ISC — ±6 — mA DRVOUT, VDD = 3V

ISC — ±10 — mA DRVOUT, VDD = 5V

Resistor SpecificationsResistance Value of R1 R1 — 8 — KΩ Resistor between pass gates

and output amplifier input Resistance Value of R2 R2 — 2 — KΩ Resistor between LBTN and

LREF inputs and voltage reference

Electrical Characteristics: Unless otherwise indicated, VDD = +2.7V to +5.5V, and VSS = GND.

Parameters Sym. Min. Typ. Max. Units ConditionsOutput Amplifier/Filter Specific ParametersGain Bandwidth Product GBWP — 1 — MHzSlew Rate SR — 0.6 — V/µsCoil Driver Amplifier ParametersGain Bandwidth Product GBWP — 17.8 — MHzVoltage Reference Specific ParametersGain Bandwidth Product GBWP — 1 — MHzSlew Rate SR — 0.6 — V/µs

TABLE 4-1: DC CHARACTERISTICS (CONTINUED)Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND.

Parameters Sym. Min. Typ. Max. Units Conditions

DS22186C-page 12 © 2009 Microchip Technology Inc.

Page 13: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

TABLE 4-4: TIMING DIAGRAM

TABLE 4-3: TEMPERATURE SPECIFICATIONSElectrical Characteristics: Unless otherwise indicated, VDD = +2.7V to +5.5V, and VSS = GND.

Parameters Sym. Min. Typ. Max. Units ConditionsTemperature RangesIndustrial Temperature Range

TA -40 — +85 °C

Extended Temperature Range

TA -40 — +125 °C

Operating Temperature Range

TA -40 — +125 °C

Storage Temperature Range TA -65 — +150 °CThermal Package ResistancesThermal Resistance, 14L-PDIP

θJA — 70 — °C/W

Thermal Resistance, 14L-SOIC

θJA — 120 — °C/W

Thermal Resistance, 16L-QFN

θJA — 47 — °C/W

Electrical Characteristics: Unless otherwise indicated, VDD = +2.7V to +5.5V, and VSS = GND.

Parameters Sym. Min. Typ. Max. Units ConditionsInput Clock Frequency FCLK — 2 — MHzDuty Factor D — 50 — %Device Turn-On Time tON — 4 10 µs Time from CS= 0 to valid

VDETOUT output (Note 1)Device Power-Down Time tOFF — 1— — µs Time from CS= 1 to High-Z

outputs on all drivers (Note 1)

Note 1: Not tested in production but it ischaracterized.

© 2009 Microchip Technology Inc. DS22186C-page 13

Page 14: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

NOTES:

DS22186C-page 14 © 2009 Microchip Technology Inc.

Page 15: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

5.0 TYPICAL PERFORMANCE CURVES

5.1 Performance Plots

FIGURE 5-1: Driver Input Waveforms

© 2009 Microchip Technology Inc. DS22186C-page 15

Page 16: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

FIGURE 5-2: Inductor Driver Transfer Function (Rload = 100 Ohm)

FIGURE 5-3: Pulsed Voltage on Active Key Inductor (I/O Configuration)

DS22186C-page 16 © 2009 Microchip Technology Inc.

Page 17: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

FIGURE 5-4: Pulsed voltage on Reference Inductor Series with Active Inductor

© 2009 Microchip Technology Inc. DS22186C-page 17

Page 18: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

FIGURE 5-5: Output Detector Response Time

DS22186C-page 18 © 2009 Microchip Technology Inc.

Page 19: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

14-Lead PDIP

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

YYWWNNN

Example

MCP2036-I/P0610017

14-Lead SOIC (.150”)

XXXXXXXXXXXXXXXXXXXXXX

YYWWNNN

Example

MCP2036-I/SL

0610017

XXXXXXX

16-Lead QFN

XXXXXXXYYWWNNN

MCP2036

Example

-I/MG0610017

Legend: XX...X Customer-specific informationY Year code (last digit of calendar year)YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)* This package is Pb-free. The Pb-free JEDEC designator ( )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line, thus limiting the number of availablecharacters for customer-specific information.

3e

3e

© 2009 Microchip Technology Inc. DS22186C-page 19

Page 20: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

6.2 Package DetailsThe following sections give the technical details of the packages.

���������� ������������������������������

�� �� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%��%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"�����.���� �"���� ��&�� ��������"�%���������������-�/���0��

1�+2�1� �����&�� ���� ���%��������#��%����!�� �)��)�%�!%�%������ �

�� � 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

6��% �7+8-���&�� ���9�&�% ��7 7:� ��;

7!&(��$���� 7 ����%�� � �����1�+ ��%����%��������� � < < ������"�"����4���� ���4�� �� ���0 ��,� ���01� ��%����%��������� �� ���0 < <��!�"��%���!�"��=�"%� - ���� �,�� �,�0��"�"����4����=�"%� -� ���� ��0� ��>�:������9���%� � ��,0 ��0� ���0 ���%����%��������� 9 ���0 ��,� ��0�9��"� ���4�� � ���> ���� ���06����9��"�=�"%� (� ���0 ��?� ����9)��9��"�=�"%� ( ���� ���> ����:�������)����������* �1 < < ��,�

N

E1

D

NOTE 1

1 2 3

E

c

eB

A2

L

A

A1b1

b e

������� ������� ��)��� +�����01

DS22186C-page 20 © 2009 Microchip Technology Inc.

Page 21: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

���������� ��!����"� �����!�����##�$%�&'��������!"�(�

�� �� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"���� ��&�� ��������"�%���������������-�/���0��

1�+2 1� �����&�� ���� ���%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

�� � 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

6��% ��99��- -����&�� ���9�&�% ��7 7:� ��;

7!&(��$���� 7 ����%�� � �����1�+:������8����% � < < ���0��"�"����4���� ���4�� �� ���0 < <�%��"$$��* �� ���� < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ,����1�+:������9���%� � >�?0�1�++��&$��@�%����A � ���0 < ��0�3%�9���%� 9 ���� < ����3%���% 9� ������-33%������ � �B < >B9��"� ���4�� � ���� < ���09��"�=�"%� ( ��,� < ��0���"���$%������� � � 0B < �0B��"���$%�������1%%& � 0B < �0B

NOTE 1

N

D

E

E1

1 2 3

b

e

A

A1

A2

L

L1

c

h

h α

β

φ

������� ������� ��)��� +����?01

© 2009 Microchip Technology Inc. DS22186C-page 21

Page 22: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

�� � 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

DS22186C-page 22 © 2009 Microchip Technology Inc.

Page 23: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

© 2009 Microchip Technology Inc. DS22186C-page 23

Page 24: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DS22186C-page 24 © 2009 Microchip Technology Inc.

Page 25: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

APPENDIX A: REVISION HISTORY

Revision A (05/2009)Original release of the document.

Revision B (09/2009)Replaced the 4X4 QFN Package with the 3X3 QFNPackage; Replaced ML with MG in the 16-Lead QFNExample; Added SOIC (SL) Land Pattern.

Revision C (11/2009)Updated the Package Types, adding ISOL; UpdatedFigures 1-1, 1-2 and Table 2-1; Added Section 2-6(Detector Isolate); Updated Figures 3-1, 3-2 and 3-3;Other minor edits.

© 2009 Microchip Technology Inc. DS22186C-page 25

Page 26: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

NOTES:

DS22186C-page 26 © 2009 Microchip Technology Inc.

Page 27: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X /XX XXX

PatternPackageTemperatureRange

Device

Device: MCP2036 VDD range 2.7V to 5.5V

Temperature Range:

I = -40°C to+85°C (Industrial)E = -40°C to+125°C(Extended)

Package: MG = QFN SL = SOICP = PDIP

Pattern: QTP, SQTP, Code or Special Requirements (blank otherwise)

Examples:MCP2036-I/P 301 = Industrial temp., PDIPpackage, QTP pattern #301.

© 2009 Microchip Technology Inc. DS22186C-page 27

Page 28: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

MCP2036

NOTES:

DS22186C-page 28 © 2009 Microchip Technology Inc.

Page 29: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such actsallow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding deviceapplications and the like is provided only for your convenienceand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications.MICROCHIP MAKES NO REPRESENTATIONS ORWARRANTIES OF ANY KIND WHETHER EXPRESS ORIMPLIED, WRITTEN OR ORAL, STATUTORY OROTHERWISE, RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY, PERFORMANCE, MERCHANTABILITY ORFITNESS FOR PURPOSE. Microchip disclaims all liabilityarising from this information and its use. Use of Microchipdevices in life support and/or safety applications is entirely atthe buyer’s risk, and the buyer agrees to defend, indemnify andhold harmless Microchip from any and all damages, claims,suits, or expenses resulting from such use. No licenses areconveyed, implicitly or otherwise, under any Microchipintellectual property rights.

© 2009 Microchip Technology Inc.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

DS22186C-page 29

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Page 30: MCP2036 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/devicedoc/22186c.pdf · MCP2036 Features: • Complete Inductance Measurement System: - Low-Impedance Current

DS22186C-page 30 © 2009 Microchip Technology Inc.

AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: http://support.microchip.comWeb Address: www.microchip.comAtlantaDuluth, GA Tel: 678-957-9614 Fax: 678-957-1455BostonWestborough, MA Tel: 774-760-0087 Fax: 774-760-0088ChicagoItasca, IL Tel: 630-285-0071 Fax: 630-285-0075ClevelandIndependence, OH Tel: 216-447-0464 Fax: 216-447-0643DallasAddison, TX Tel: 972-818-7423 Fax: 972-818-2924DetroitFarmington Hills, MI Tel: 248-538-2250Fax: 248-538-2260KokomoKokomo, IN Tel: 765-864-8360Fax: 765-864-8387Los AngelesMission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608Santa ClaraSanta Clara, CA Tel: 408-961-6444Fax: 408-961-6445TorontoMississauga, Ontario, CanadaTel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFICAsia Pacific OfficeSuites 3707-14, 37th FloorTower 6, The GatewayHarbour City, KowloonHong KongTel: 852-2401-1200Fax: 852-2401-3431Australia - SydneyTel: 61-2-9868-6733Fax: 61-2-9868-6755China - BeijingTel: 86-10-8528-2100 Fax: 86-10-8528-2104China - ChengduTel: 86-28-8665-5511Fax: 86-28-8665-7889China - Hong Kong SARTel: 852-2401-1200 Fax: 852-2401-3431China - NanjingTel: 86-25-8473-2460Fax: 86-25-8473-2470China - QingdaoTel: 86-532-8502-7355Fax: 86-532-8502-7205China - ShanghaiTel: 86-21-5407-5533 Fax: 86-21-5407-5066China - ShenyangTel: 86-24-2334-2829Fax: 86-24-2334-2393China - ShenzhenTel: 86-755-8203-2660 Fax: 86-755-8203-1760China - WuhanTel: 86-27-5980-5300Fax: 86-27-5980-5118China - XiamenTel: 86-592-2388138 Fax: 86-592-2388130China - XianTel: 86-29-8833-7252Fax: 86-29-8833-7256China - ZhuhaiTel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFICIndia - BangaloreTel: 91-80-3090-4444 Fax: 91-80-3090-4080India - New DelhiTel: 91-11-4160-8631Fax: 91-11-4160-8632India - PuneTel: 91-20-2566-1512Fax: 91-20-2566-1513Japan - YokohamaTel: 81-45-471- 6166 Fax: 81-45-471-6122Korea - DaeguTel: 82-53-744-4301Fax: 82-53-744-4302Korea - SeoulTel: 82-2-554-7200Fax: 82-2-558-5932 or 82-2-558-5934Malaysia - Kuala LumpurTel: 60-3-6201-9857Fax: 60-3-6201-9859Malaysia - PenangTel: 60-4-227-8870Fax: 60-4-227-4068Philippines - ManilaTel: 63-2-634-9065Fax: 63-2-634-9069SingaporeTel: 65-6334-8870Fax: 65-6334-8850Taiwan - Hsin ChuTel: 886-3-6578-300Fax: 886-3-6578-370Taiwan - KaohsiungTel: 886-7-536-4818Fax: 886-7-536-4803Taiwan - TaipeiTel: 886-2-2500-6610 Fax: 886-2-2508-0102Thailand - BangkokTel: 66-2-694-1351Fax: 66-2-694-1350

EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828 Fax: 45-4485-2829France - ParisTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79Germany - MunichTel: 49-89-627-144-0 Fax: 49-89-627-144-44Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781Netherlands - DrunenTel: 31-416-690399 Fax: 31-416-690340Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91UK - WokinghamTel: 44-118-921-5869Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09