McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

20
LargeScale Cryogenic Detectors, and Sensi5vity to Solar Physics Dan McKinsey Yale University Future Solar Neutrino Detector at JinPing Workshop Lawrence Berkeley Na5onal Laboratory June 9, 2014

Transcript of McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Page 1: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Large-­‐Scale  Cryogenic  Detectors,  and  Sensi5vity  to  Solar  Physics  

Dan  McKinsey  Yale  University  

 Future  Solar  Neutrino  Detector  at  JinPing  Workshop  

Lawrence  Berkeley  Na5onal  Laboratory  June  9,  2014  

Page 2: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

References  for  noble  liquid  solar  neutrino  experiments    

CLEAN:    D.  N.  McKinsey  and  J.  M.  Doyle,  astro-­‐ph/9907314,  Journal  of  Low  Temperature        Physics  118,  153  (2000).    K.  J.  Coakley  and  D.  N.  McKinsey,  arXiv:physics/0309033,    Nuclear              Instruments  and  Methods  A  522,  504  (2003).  

             D.  N.  McKinsey  and  K.  J.  Coakley,  arXiv:astro-­‐ph/0402007,  Astropar5cle            Physics  22,  355  (2005).  

             M.  G.  Boulay,  A.  Hime,  and  J.  Lidgard,  arXiv:0410025,  Nucl.  Phys.  B,  Proc.  Suppl.  143  ,      486  (2005).    M.  K.  Harrison  et  al,  Nuclear  Instruments  and  Methods  A  570  (2007)  pp.  556-­‐560    W.  H.  Lippincoa,  Ph.  D.  thesis,  Yale  University  (2010);        hap://mckinseygroup.yale.edu/publica5ons  

 XMASS:  Y.  Suzuki,  arXiv:hep-­‐ph/0008296.    XAX:  K.  Arisaka  et  al,  arXiv:0808.3968,  Astropar5cle  Physics  31,  63  (2009).    DARWIN:  L.  Baudis  et  al,  arXiv:  1309.7024,  JCAP  01,  044  (2014).     6/9/14   2  

Page 3: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

pp  and  7Be  Solar  Neutrino  Measurements  in  LXe  

•  Proposed  experiments:  XMASS  (single-­‐phase),  XAX,  DARWIN,  XENON10T  (two-­‐phase)    

•  Main  background  is  two-­‐neutrino  double  beta  decay  from  136Xe  (T1/2=2.1e21  years)  

•  Requires  subtrac5on  of  this  background.  Can  also  consider  using  136Xe-­‐depleted  LXe  (expensive,  though  could  be  paired  with  a  dedicated,  separate    

         136Xe-­‐enriched  double  beta  decay  experiment?)  

6/9/14   3  

Page 4: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Solar  Neutrino  and  Background  Es5mates  in  DARWIN  21.4  ton  LXe  (14  ton  fiducial).  Kr/Xe  at  0.1  ppt.  

6/9/14   4  

Page 5: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Predicted  signal  and  background  rates  in  the  2-­‐30  keV  energy  region  as  a  func5on  of  fiducial  liquid  xenon  mass,  for  a  proposed  21.4  ton  (14  ton  fiducial)  DARWIN  experiment.  In  5  years,  have  5900  pp  neutrino  events,  3925  136Xe  double  beta  decay  events,  and  2825  85Kr  events  in  this  energy  window.  If  background  rates  perfectly  known,  have  a  pp-­‐solar  neutrino  precision  of  sqrt(5900+3925+2823)/5900  =  2.0%.  Use  136Xe-­‐depleted  LXe  instead?  

Solar  Neutrino  and  Background  Es5mates  in  DARWIN  (2-­‐30  keV)  

6/9/14   5  

Page 6: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

CLEAN    (Cryogenic  Low  Energy  Astrophysics  with  Noble  Liquids)  

Photomultipliers

Water tank

Outer vessel

Inner vessel

Liquid Neon

6/9/14   6  

Page 7: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Why  Liquid  Neon  for  low-­‐energy  solar  neutrinos?  

•  Unlike  Ar,  Kr,  and  Xe,  Neon  is  completely  free  of  long-­‐lived  radioac5ve  isotopes.  

•  Neon  is  a  bright  scin5llator    •  Liquid  Neon  has  high  density  (1.2  g/cm3),  allowing  excellent  

self-­‐shielding  against  gamma  ray  and  neutron  backgrounds.  •  In  fact,  CLEAN  was  the  first  proposed  self-­‐shielding  noble  

liquid  detector  for  low-­‐energy  rare  events,  an  approach  that  in  recent  years  has  proven  very  effec5ve  in  direct  searches  for  WIMP  dark  maaer  interac5ons.  

6/9/14   7  

Page 8: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

•  The  CLEAN  detector  will  be  a  spherical  vessel  filled  with  ~40  tons  of  purified  LNe  at  a  temperature  of  27  K.    

•  The  center  of  the  vessel  will  be  viewed  by  2000  PMTs  immersed  in  the  liquid.  In  the  center  of  the  spherical  vessel  will  be  mounted  a  soccer-­‐ballshaped  array  of  acrylic  plates,  with  light  guides  connected  to  the  PMTs.  

•  Tetraphenyl  butadiene  (TPB),  a  wavelength  shining  fluor,  will  be  evaporated  onto  the  inward-­‐poin5ng  surface  of  each  plate.  Light  from  each  wavelength  shiner  plate  will  be  transported  to  the  nearest  PMT  via  an  acrylic  light  guide.  

•  Ionizing  radia5on  events  within  the  wavelength  shiner  plate  array  will  cause  scin5lla5on  in  the  vacuum  ultraviolet  (80  nm),  which  is  shined  to  440  nm  by  the  wavelength  shiner.  The  photon-­‐to-­‐photon  conversion  efficiency  of  TPB  is  about  130%  for  LNe  scin5lla5on.  The  blue  light  will  then  be  detected  by  the  PMTs.    

•  We  have  calculated  the  signal  yield  in  CLEAN  from  detailed  Monte  Carlo  studies  of  scin5lla5on  photon  propaga5on  and  detec5on,  and  es5mate  a  signal  strength  about  5.6  photoelectrons/keV  in  CLEAN.  

The  CLEAN  Technical  Approach  

6/9/14   8  

Page 9: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Projected  pp  neutrino  flux  uncertainty  for  a    200  cm  radius  (40  ton)  CLEAN  experiment  

With  a  pp  neutrino  flux  of  ~6e10  cm-­‐2s-­‐1,  you  get  about  1  event/tonne/day.  So  you  don’t    need  a  huge  detector  to  build  up  adequate  sta5s5cs.    Above  analysis  assumes  a  radial  systema5c  uncertainty  of  0.5%  (2  5mes  beaer  than  in  SNO),    leading  to  a  volume  uncertainty  of  1.5%.    Analysis  threshold:  35  keV  6/9/14   9  

Page 10: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Solar  neutrino  signal  in  10-­‐ton  fiducial  mass  

6/9/14   10  

Page 11: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

pp-­‐solar  neutrino  flux  measurement  with  a  300-­‐cm  radius  CLEAN  detector  

(140  tonnes  LNe)  

M.  G.  Boulay,  A.  Hime,  and  J.  Lidgard,  arXiv:0410025,  Nucl.  Phys.  B,  Proc.  Suppl.  143  ,  486  (2005)  

6/9/14   11  

Page 12: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Space  Requirements  

•  A  40  (140)-­‐tonne  CLEAN  experiment  would  have  a  liquid  neon  volume  about  4  (6)  meters  in  diameter.    

•  With  PMTs  immersed  in  the  LNe,  this  might  be  a  cryostat  5  (7)  meters  tall.    

•  About  2  meters  of  water  shielding  is  needed  to  bring  the  gamma  ray  and  neutron  flux  down  to  PMT  levels.    

•  So  a  40-­‐140  tonne  CLEAN  experiment  would  need  a  ceiling  height  of  9-­‐11  meters.    

•  Space  needed  for  purifica5on  and  cryogenic  systems,  control  room  (200  square  meters,  three-­‐level  structure  next  to  the  experiment).    

6/9/14   12  

Page 13: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Neon  purifica5on  •  Neon  has  lower  binding  energy  to  ac5vated  charcoal  than  all  other  contaminants  

other  than  Helium.  Binding  5me  (adsorp5on  coefficient)  is  exponen5ally  dependent  on  the  ra5o  of  this  binding  energy  over  temperature.  

•  This  results  in  highly  effec5ve  purifica5on  using  charcoal  columns.  •  The  charcoal  will  remove  impuri5es  that  can  absorb  scin5lla5on  signal,  as  well  as  

muon  spalla5on  products  like  7Be,  3H,  and  14C.  •  With  proper  calibra5on,  the  charcoal  may  be  periodically  warmed  and  sampled,  to  

determine  the  level  of  impuri5es.  •  Studies  completed  on  gaseous  neon  purifica5on  (see  M.  K.  Harrison  et  al,  Nuclear  

Instruments  and  Methods  A  570,  556  (2007).)  •  Studies  needed  on  liquid-­‐phase  purifica5on,  which  would  allow  lower  heat  load  on  

the  detector,  faster  circula5on.  

6/9/14   13  

Page 14: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Charcoal  column  adsorp5on  

6/9/14   14  

Page 15: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Adsorp5on  coefficients  in  gaseous  neon  M.  K.  Harrison  et  al,  Nuclear  Instruments  and  Methods  A  570,  556  (2007).  

6/9/14   15  

Page 16: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Cryogenics  •  Though  the  CLEAN  approach  requires  a  cryogenic  apparatus  (the  boiling  

temperature  of  neon  is  27  K),  this  would  not  make  the  experiment  overly  complex  or  costly.  For  example,  a  commercial  Gifford-­‐McMahon  cooler  opera5ng  at  27  K  with  a  cooling  power  of  75  W  costs  only  $34,000.  With  a  total  es5mated  heat  load  of  200  W  in  the  full-­‐sized  CLEAN,  the  apparatus  described  above  would  derive  liale  of  its  cost  from  its  cooling  requirements.  

•  A  custom-­‐designed  refrigerator,  with  gaseous  neon  used  as  its  refrigerant,  should  also  be  considered  for  higher  efficiency.  

•  The  tank  could  be  supported  from  below  with  stainless  steel  or  5tanium  tubes,  as  is  done  commonly  with  large  liquid  helium-­‐cooled  accelerator  magnets.    

•  Such  a  large  cryogenic  detector  would  not  cons5tute  a  substan5ally  new  technical  challenge;  for  example,  the  ICARUS  collabora5on  has  successfully  built  and  tested  a  5me  projec5on  chamber  filled  with  600  metric  tons  of  liquid  argon  at  90  K.  Also,  ICARUS  now  uses  photomul5plier  tubes  immersed  in  liquid  argon,  the  same  basic  technology  to  be  used  in  CLEAN.  

6/9/14   16  

Page 17: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Neon  purchase  and  transport    The  cost  of  neon  was  last  determined  to  be  $90,000/ton  in  large  quan55es,  more  than  an  order  of  magnitude  less  expensive  than  xenon.  Given  the  total  cost  of  neon  (~$4M)  the  neon  purchase  itself  would  require  substan5al  management  oversight.  Note,  however,  that  the  neon  could  be  sold  back  to  the  market  at  the  end  of  the  experiment.      Three  methods  may  be  considered  for  transpor5ng  the  neon  underground:  

 1.  Neon  could  be  brought  underground  as  a  liquid,  in  standard  storage    dewars.  This  would  allow  efficient  use  of  lin,  but  result  in  a  rela5vely  high    neon  cost.    2.  Neon  could  be  transported  in  high-­‐pressure  gas  cylinders.  This  would    result  in  a  somewhat  lower  neon  cost,  but  require  more  extensive  use  of    the  lin.    3.  Neon  could  be  carried  to  the  underground  laboratory  through  a  1-­‐inch    gas  line  connec5ng  the  surface  to  the  CLEAN  gas-­‐handling  system.  This    would  allow  the  neon  to  be  brought  to  the  lab  by  tanker  truck  and  would    avoid  the  use  of  the  lin,  but  would  require  the  gas  line  to  be  installed.  

6/9/14   17  

Page 18: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Safety  •  The  ac5ve  media  in  CLEAN  are  liquid  neon  and  water.  •  Neon  is  inert  and  poses  no  environmental  hazard.  However,  like  all  inert  gases,  it  is  

an  asphyxiant  and  can  be  dangerous  if  released  in  large  quan55es.  The  possibility  of  unintended  cryogen  release  would  have  to  be  be  studied  very  carefully  prior  to  approval  and  construc5on  of  CLEAN.  

•  Below  are  listed  two  neon  release  scenarios  and  the  resul5ng  boiloff  rates:      –  1.  Failure  of  vacuum  insula5on  in  the  CLEAN  cryostat.  Assuming  a  cryostat  area  of  140  m2,  a  gap  

between  77  K  and  27  K  of  2  cm,  and  a  gaseous  neon  conduc5vity  of  2  x  104  W  cm−1  K−1,  the  heat  load  at  27  K  is  7  kW.  This  corresponds  to  a  gaseous  neon  boiloff  rate  of  5.4  m3  per  minute.  The  gas  would  start  off  at  27  K,  warming  as  it  rises  in  the  cavity.  This  boiloff,  unless  stopped,  would  con5nue  for  460  hours.  

–  2.  Severing  of  the  line  pumping  liquid  neon  to  the  CLEAN  purifica5on  system,  as  well  as  failure  of  the  system  that  would  shut  off  flow.  For  a  liquid  neon  flow  rate  of  1  kg/s,  a  boiloff  rate  of  67  m3  per  minute  would  result.  

•  The  dangers  posed  by  large  quan55es  of  cryogenic  liquids  have  been  well  studied,  notably  at  CERN  and  other  accelerators  in  which  large  numbers  of  superconduc5ng  magnets  are  connected  by  liquid  helium  jumpers.  In  the  CERN  safety  risk  analysis,  the  most  disastrous  event  that  could  release  helium  from  the  LHC  is  a  ”jumper  connec5on  break”,  severing  the  connec5on  between  two  adjacent  superconduc5ng  magnets.  This  would  spill  28  kg/s  of  liquid  helium,  giving  a  helium  boiloff  rate  of  9400  m3  per  minute.  This  is  considerably  higher  than  the  volume  displacement  rate  associated  with  either  neon  release  scenario  considered  above.  

•  Also  note  that  CLEAN  is  small  in  comparison  to  the  ICARUS  and  LBNE  experiments,  which  use  extremely  large  liquid  argon  detectors  underground.  6/9/14   18  

Page 19: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Power  requirements  

•  Electronics:  5  kW.  •  Power  for  refrigerators:  50  kW  once  cold,  300  kW  while  neon  is  

being  liquefied  during  the  cooldown.    •  The  experiment  will  require  10  kW  of  emergency  power  to  

maintain  the  neon  temperature  in  the  case  of  a  power  interrupt.  (The  main  heat  load  on  the  liquid  neon  will  come  from  liquid  neon  circula5on,  which  would  cease  in  this  event.)  

6/9/14   19  

Page 20: McKinsey JinPing workshop Author Daniel McKinsey Created Date 6/9/2014 5:51:25 PM ...

Summary  •  For  pp-­‐neutrino  detec5on  via  electron  scaaering,  LNe  is  s5ll  the  

way  to  go.    •  No  show-­‐stoppers;  LNe  scin5lla5on  is  a  robust  signal,  and  Ne  has  

the  crucial  advantages  of  no  long-­‐lived  isotopes  and  easy  purifica5on,  while  being  dense  enough  to  provide  good  self-­‐shielding.  

•  CLEAN  could  certainly  be  built  at  JinPing;  detector  size  matches  the  hall  size,  and  there  is  plenty  of  depth.  

•  This  is  a  unique  experiment,  and  an  excellent  opportunity.  

6/9/14   20