MCF Korea-2012

49
1 “Inventing Plastic Microcapillary Films” BY MALCOLM MACKLEY. With Acknowledgement to; Dr Bart Hallmark Dr Christian Hornung Dora Medina Sina Bonyadi and Hui Cheah Nuno Reis Frederik Scheiff, David Agar and Matthais Mendorf DEPARTMENT OF CHEMICAL ENGINEERING AND BIOTECHNOLOGY. UNIVERSITY OF CAMBRIDGE. LG. Korea 2012

description

This presentation on Plastic Microcapillary Films (MCF) was given in Korea in 2012

Transcript of MCF Korea-2012

Page 1: MCF Korea-2012

1

“Inventing Plastic Microcapillary Films”

BY

MALCOLM MACKLEY.With Acknowledgement to;

Dr Bart HallmarkDr Christian Hornung

Dora MedinaSina Bonyadi and Hui Cheah

Nuno ReisFrederik Scheiff, David Agar and Matthais Mendorf

DEPARTMENT OF CHEMICAL ENGINEERING AND BIOTECHNOLOGY.

UNIVERSITY OF CAMBRIDGE.

[email protected]

LG. Korea 2012

Page 2: MCF Korea-2012

2

Plastic Fantastic

Sub millimetre Process Engineering

Page 3: MCF Korea-2012

3

Plastication of polymer

Band heaters

hopper

high pressure gas

metering device

static mixer nucleationPolymer

Polymer/gas solution formation

Nucleation and Cell growth

plasticating screw

Conventional Foaming Processing

Page 4: MCF Korea-2012

4

Background. Plastic Micro Capillary Films

(MCFs)

Bart Hallmark and Malcolm Mackley 2005

Page 5: MCF Korea-2012

5

Page 6: MCF Korea-2012

6

Haul off

Hollow extrudate

Heatedbarrel

Gear pumpT1 T2 T3 T4

T5 T6Motor

Hopper

Screw

Flange with filter

P2

Nitrogen supply

Gas flow control

Primary pressureregulator

Secondary pressureregulator

F

Rotameter

Die

T7

P1

Gas injector

Convergent die

Edge of quartz window

Early experiments 2002

PE

Page 7: MCF Korea-2012

7

Heatedbarrel

Gear pumpT1 T2 T3 T4

T5 T6Motor

Hopper

Screw

Flange with filter

P2

Die

T7

P1

Haul off

Hollow extrudate

Gas entrainment

Convergent die

Edge of quartz window

MCF Process Development

Hallmark et al. J. Non-Newtonian Fluid. Mech (2005)

Page 8: MCF Korea-2012

8

Quench bath

Melt drawing length, L

Extrudate to haul off

Polymer flow

Die land

MCF extrudate

Brass ‘roller’

Gas entrainment – die and injector design

Page 9: MCF Korea-2012

9

Low voidage MCF

Page 10: MCF Korea-2012

10

Die design

Page 11: MCF Korea-2012

11

T1 T2 T3 T4

T5 T6P2

Single screw extruder

MCF extrusion

die

Chilled rollers

Spooling

Guide rollers

Gear pump

MCF

PLAN VIEW

MCF

Chill rollers

Direction of flow

Array of 19 entrainment nozzles

Entrainment body

Air inlet

Polymer melt

Die exit

Quenching length, L

The MCF process

Hallmark et al Adv. Eng. Mat., (2005).

Page 12: MCF Korea-2012

12

A1

A2 A3

1

322 A

AA

31

21 AA

A

= 9.6 %

= 10.3%

Initial die voidage

Page 13: MCF Korea-2012

13

Low Voidage MCF

Standard MCF

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Capillary number

Hyd

rau

lic d

iam

eter

m)

340 μm

MCF voidage ≈ 9-11 %

Page 14: MCF Korea-2012

14

Drawing Low Voidage MCF

D. I. Medina B. Hallmark T. D. Lord M. R. Mackley The development of voidage and capillary size within extruded plastic films. J Mat Sci, in press

Page 15: MCF Korea-2012

15

MCF

Fixedlowerclamp

Upper Clamp

Mechanical Drawing of MCFs (using stable Microsystems texture analyser)

MCF

Upper Clamp

Fixedlowerclamp

RoomTemperature

Mechanical drawing process - Increases orientation but limits drawability

Page 16: MCF Korea-2012

16

Diameters after Mechanical Drawing of MCFs

0102030405060708090

100110120130140150160170180190200210

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Capillary number

Hyd

rau

lic d

iam

eter

m)

Standard MCF

Diameters after Mechanical Drawing

Page 17: MCF Korea-2012

17

COLD DRAWN

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Capillary number

Hyd

rau

lic d

iam

eter

m)

MCF voidage ≈ 8.5 %

Necking

Post-neckmaterial

Material in neck

Undrawn material

Page 18: MCF Korea-2012

18

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Capillary number

Hyd

rau

lic

dia

met

er (

μm

)

HOT DRAWN

MCF voidage ≈ 9-11 %

Optic micrograph of top view MCFs

Drawing direction

Page 19: MCF Korea-2012

19

V2

Extrusion die

Chilled rolls 9 °C

Hot roll T = 60-120°C

MCF

Quenching

Extruder

Hot drawing - Second stage Hot draw-

Molecular orientation

Melt T=170 °C

little

orie

nta

tion

Hig

h o

rien

tatio

n

V1

Draw ratio λ = V1/V2

Solid

Thermal camera image

X-Ray diffraction

Page 20: MCF Korea-2012

20

MCF Product from continuous drawing

Optic micrograph of top view MCFs

100 μm

Drawing direction

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Capillary number

Hyd

rau

lic

dia

met

er (

μm

)

Page 21: MCF Korea-2012

21

High Voidage MCF

D Medina J Mat Sci 2008

Page 22: MCF Korea-2012

22

T1 T2 T3 T4

T5 T6P2

Compressed air

Isolationvalve

Conventional extrusion line MCF extrusion die

Chilled rollers

High-speed air quench

Needlevalve

Mass flow control valve

Spooling

Guide rollers

TP P

P Pressure sensor

T Temperature sensor

Manual valve

Control valve

High Voidage MCFsBy rapid cooling and or injecting air under pressure into capillaries during melt processing it is possible to produce “High voidage MCFs”

Develop orientation

Page 23: MCF Korea-2012

23

High voidage MCFs

100 μm

MCF-MCF hv2- big voidage

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Capillary number

Hyd

rau

lic

dia

met

er (

μm

)

200 m

Hydraulic diameter varies from 150 μm to 417 μm

Page 24: MCF Korea-2012

24

(110)

(200)

Orientation present

X-Ray

Extrusion direction

Solid MCF

Air entrainmentneedle

SolidificationInterface zone

Die exit

Air quench jet

Air quench jet

MoltenMCF Chill rollers

Extrusion direction

Solid MCF

Air entrainmentneedle

SolidificationInterface zone

Die exit

Air quench jetAir quench jet

Air quench jetAir quench jet

MoltenMCF Chill rollersChill rollers

Melt residence time << 1 sMelt relaxation time < 1 s

Page 25: MCF Korea-2012

25

Extrusion direction

Solid MCF

Air entrainmentneedle

Solidificationinterface

Die exit

Air quench jet

Air quench jet

MoltenMCF

Chill rollers

To << Ti

ηo

ηi

To

Ti

u1A1, u2A2,

ηo >> ηi

High-voidage MCF

Asymmetry in temperature profile Asymmetry in viscosity profile Asymmetry in the velocity profile

Symmetry planeInjector needle

2D schematic

Page 26: MCF Korea-2012

26

Ultra High Voidage MCF

D. I. Medina B. Hallmark T. D. Lord M. R. Mackley The development of voidage and capillary size within extruded plastic films. J Mat Sci, in press

Page 28: MCF Korea-2012

28

Upper Clamp

MCF

Fixedlowerclamp

MCF

Fixedlowerclamp

Upper Clamp

Mechanical drawing of MCFs Transverse direction

Page 29: MCF Korea-2012

29

HV-MCF is unfolded to form

the UHV-MCF

Dora Medina

Go to MCF UHV movie

Page 30: MCF Korea-2012

30

ULTRA HIGH VOIDAGE MCFs

1000 μm

1000 μm

1000 μm

SEM UHV-MCF

Page 31: MCF Korea-2012

31

High Voidage die

Bart Hallmark 2008

Page 32: MCF Korea-2012

32

A1

A2 A3

1

322 A

AA

31

21 AA

A

= 30%

= 60%

Initial die voidage

Page 33: MCF Korea-2012

33

High Voidage Die – some interesting results

Melt draw, chill rollers, haul off

Die quench, haul off

Page 34: MCF Korea-2012

34

Microcapillary Monoliths

Page 35: MCF Korea-2012

35

An addition to the MCF family – Microcapillary Monoliths (MCMs)

500μm

200μm

7mm

Christian Hornung

Page 36: MCF Korea-2012

36

Plastic Fantastic

MCF applications

Page 37: MCF Korea-2012

37

MCF Development; Pressure Drop

Christian Hornung

Page 38: MCF Korea-2012

38

MCF Development RTD

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30t [min]

c [m

g/l]

inletoutlet

length = 20 mflow rate = 0.5 ml/min

PE, EVOH and FEP

Page 39: MCF Korea-2012

39

MCF Commercialisation

2 flat silicon heaters (200 W each) PID control - Temperature monitoring at top and bottom heater

plates

Tmax = 150 °C developed by

Lamina Dielectrics Ltd.& Cambridge University

Teflon coatedhot plates

Temperature control

Reactor disk tray

Patrick Hestor Lamina Ltd

Page 40: MCF Korea-2012

40

MCF Development; Microflow

Organic.Kerosene, 1.8 mPasOil, 27 mPasVegetable oil. 50 mPas

Water, 1 mPas, glycerol 10-50 mPas or methanol

Video,Methanol into Veg oil

Nuno Reis

Page 43: MCF Korea-2012

43

MicrocapillaryFlow disc

Vegetable oil

Glycerol

Biodiesel

Methonal pluscatalyst

Input Output

MCF Development; Biodiesel Microreactor

Page 44: MCF Korea-2012

44

MCF Microreactor; BiodieselMethanol

Veg oil

Methanol pluscatalyst

Glycerol

Glycerol

Biodiesel

Page 45: MCF Korea-2012

45A Edwards et al Lab on a Chip 2011

MCF Protein Assay Nuno Reis and Al Edwards

FEP/EVOH

Page 46: MCF Korea-2012

46

Bore fluid

NitrogenGas

Cylinder

Polymer Solution

Die

External Coagulant

Haul-off

Single Capillary,MCF membranes

Air-gap

Glass Water Bath

MCF Development. Microporous MCF membranes

Sina Bonyadi

PVDF/NMP (18/82 wt%)

Page 47: MCF Korea-2012

47

Water coagulation

bath

Bore Fluid

Polymer Solution

Air-gap

MCF Membrane Fabrication Concept

Page 48: MCF Korea-2012

48

Microporous MCFs

2 µm

100 µm

2 µm

1 µm

Bonyadi et al. Journal of Membrane Sci 2012

Page 49: MCF Korea-2012

49

Plastic Fantastic

Microcapillary Films (MCFs)

•Polymer processing lessons learnt.

•A new material form looking for the right application.