MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y....

49
1 MCB 140 11/27/06 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 1965 1966
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    2

Transcript of MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y....

Page 1: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

1MCB 140 11/27/06

E. coli = E. lephant ?

F. JacobJ. MonodA. Pardee

D. HawthorneH. DouglasY. Oshima

1965 1966

Page 2: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

2MCB 140 11/27/06

Analogy and homology as tools in genetic investigation

AnimalMandibular Arch (ventral)

Mandibular Arch (dorsal)

Hyoid Arch(dorsal)

Shark Meckel's cartilagePalatoquadrate cartilage

Hyomandibular cartiliage

Amphibian Articular (bone) Quadrate (bone) Stapes

Mammal Malleus Incus Stapes

Page 3: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

3MCB 140 11/27/06

Page 4: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

4MCB 140 11/27/06

a cells produce a pheromone and receptor

cells produce pheromone and a receptor

diploid (a/) cells produce none of the above

Page 5: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

5MCB 140 11/27/06

ShmooAl Capp (1948) – Li’l Abner

Page 6: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

6MCB 140 11/27/06

Marsh and Rose diagram

Page 7: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

7MCB 140 11/27/06

The phenotype of a haploid yeast cell with respect to mating is determined by

transcription factors

An cell produces two transcription factors, Mat1p and Mat2p, that ensure expression of specific genes, including the pheromone and receptor, and repress expression of a specific genes.

In an a cell, Mat1p and Mat2p are not expressed, and a different transcription factor is expressed, Mata1p. The genes are off, and the a genes (pheromone and receptor) are on.

Page 8: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

8MCB 140 11/27/06

A.9

Page 9: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

9MCB 140 11/27/06

Amazing but true

A wild-type haploid yeast cell contains THREE copies of mating type-determining genes:

• Copy #1: the 1 and 2 genes (silent).• Copy #2: the a1 and a2 genes (also silent).• Copy #3: An additional copy of genes in item 1,

or of the genes in item 2, but active.

Whichever genes are contained in copy #3 determines the mating type.

Page 10: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

10MCB 140 11/27/06

A.11

A.12

Page 11: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

11MCB 140 11/27/06

“An easily understood, workable falsehood is more useful than an incomprehensible truth.”

Page 12: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

12MCB 140 11/27/06

cen MATHML HMRa

a1a2

cell

active silentsilent

Page 13: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

13MCB 140 11/27/06

Loss of silencing at the silent mating type cassettes creates a “nonmater” – a haploid

that is a/ and that thinks it’s a diploid.

cen MATHML HMRa

a1a2

cell

active activeactive

Page 14: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

14MCB 140 11/27/06

Screen for silencing mutants

A sample “screen”:

1. Take haploid cells.2. Mutate them.3. Screen for those that don’t mate.

Problem: mating is so much more than proper silencing of mating type loci!!

Page 15: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

15MCB 140 11/27/06

The mating pheromone response

Jeremy Thorner

Thorner diagramAlso see Fig. A.13.

Page 16: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

16MCB 140 11/27/06

How to screen for silencing mutants

cen MATHML HMRa

a1a2

a cell

a1a2

active silentsilent

Jasper Rine and Ira Herskowitz (1987) Genetics 116: 9-22.

Page 17: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

17MCB 140 11/27/06

How to screen for silencing mutants

cen mata1-1HML

a1a2

active silentsilent

Jasper Rine and Ira Herskowitz (1987) Genetics 116: 9-22.

HML

Note: mata1-1 is a special allele of the a gene – it is recessive to

Page 18: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

18MCB 140 11/27/06Jasper Rine and Ira Herskowitz (1987) Genetics 116: 9-22.

Rine schematic

mate to a cells

Page 19: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

19MCB 140 11/27/06

The data

• Colonies screened: 675,000

• Colonies that mated to a: 295

• Major complementation groups: 4

silent information regulators:

SIR1, SIR2, SIR3, SIR4

Jasper Rine and Ira Herskowitz (1987) Genetics 116: 9-22.

Page 20: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

20MCB 140 11/27/06

Question

What molecular mechanisms are responsible for silencing at the mating type loci?

heterochromatin formation in metazoaprostate cancer breast cancer ageing “normal” gene regulation in mammals

Page 21: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

21MCB 140 11/27/06

Homework

Page 22: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

22MCB 140 11/27/06

How can one explain the evolution of two distinct mating

types in budding yeast?Surely a pathway could have just

evolved for the fusion of two identical haploid cells?

Page 23: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

23MCB 140 11/27/06

Two mating types have evolved under selective pressure to avoid inbreeding

M

D1

D2

D1

D2

One evolutionary advantage of mating is the production of novel genotypic combinations via the fusion of two

genomes with different life histories.

x

Page 24: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

24MCB 140 11/27/06

Granddaughters of any given mother can switch mating type

Page 25: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

25MCB 140 11/27/06

Page 26: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

26MCB 140 11/27/06

[email protected]

Page 27: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

27MCB 140 11/27/06

cen MATHML HMRa

a1a2

cell

cen MATHML HMRa

a1a2

a cell

a1a2

active silentsilent

Page 28: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

28MCB 140 11/27/06

Epigenetic inheritance

• In an strain, the genetic information at MAT and at HML is identical.

• The one at MAT is expressed, but the one at HML is not – it is epigenetically silenced.

Epigenetic: mitotically stable (persists through cell division) change in gene expression state that is not associated with a change in DNA sequence.

Examples: X chromosome inactivation; imprinted genes; transgene silencing in gene therapy.

Page 29: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

29MCB 140 11/27/06

> 1 metre< 10-5 metres

15,000x compaction

Compaction into chromatin brings the eukaryotic genome to life

Page 30: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

30MCB 140 11/27/06

“Beads on a string”

Page 31: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

31MCB 140 11/27/06

The Nucleosome Core Particle:8 histones, 146 bp of DNA

Page 32: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

32MCB 140 11/27/06

Histones: Conserved and Charged

H.s. = Lycopersicon esculentum

Page 33: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

33MCB 140 11/27/06

Page 34: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

34MCB 140 11/27/06

“Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing

the silent mating loci in yeast” (M. Grunstein)

Kayne et al. (1988) Cell 55: 27-39.

Fig. 3 kayne

Page 35: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

35MCB 140 11/27/06Kayne et al. (1988) Cell 55: 27-39.

Fig. 6 and 7 of Kayne.

Page 36: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

36MCB 140 11/27/06Kayne et al. (1988) Cell 55: 27-39.

Page 37: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

37MCB 140 11/27/06

Acetylation of lysine in histone tail neutralizes its charge (1964)

Page 38: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

38MCB 140 11/27/06

“Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent

mating loci in Saccharomyces cerevisiae”

Johnson et al. (1990) PNAS 87: 6286-6290.

Reverse genetics: introduce point mutations in H4 tail!!

Page 39: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

39MCB 140 11/27/06Johnson et al. (1990) PNAS 87: 6286-6290.

Table 2

Page 40: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

40MCB 140 11/27/06

Page 41: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

41MCB 140 11/27/06

And 5 years later …

Sir3p and Sir4p bind H3 and H4 tails

Hecht et al. (1995) Cell 80: 583.

Page 42: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

42MCB 140 11/27/06

Houston, we have a …

Every nucleosome in the cell has an H3 and H4 tail (two of each, actually).

Why do the SIRs bind only where they bind?

Page 43: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

43MCB 140 11/27/06

The silencers

“Hawthorne deletion” (1963) and onwards:

two silencers flank the mating type loci:

Page 44: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

44MCB 140 11/27/06

The key question

How do the SIRs spread from the silencer and over the mating type loci genes?

= how do the SIRs actually silence txn?

Page 45: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

45MCB 140 11/27/06

Roy Frye (Pitt)

“Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity” BBRC 260: 273 (1999).

1. Bacteria have proteins homologous to Sir2.

2. So do humans (>5).

3. The bacterial proteins are enzymes, and use NAD to ADP-ribosylate other proteins.

Page 46: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

46MCB 140 11/27/06

J. Denu: Sir2p is a NAD-dependenthistone deacetylase (HDAC)

Tanner et al., PNAS 97: 14178 (2000)

Sir2p

Page 47: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

47MCB 140 11/27/06Rusche L, Kirchmaier A, Rine J (2002) Mol. Biol. Cell 13: 2207.

Page 48: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

48MCB 140 11/27/06

acetylation

Histone tail acetylation promotes chromatin unfolding (somehow)

Page 49: MCB 140 11/27/06 1 E. coli = E. lephant ? F. Jacob J. Monod A. Pardee D. Hawthorne H. Douglas Y. Oshima 19651966.

49MCB 140 11/27/06

Next time: the genetics of heterochromatin

in metazoa