Mc farland

27
Jason J. McFarland Arctic Vegetation Ecology 692 M.S. Biology Candidate Alaska Cooperative Fish and Wildlife Research Unit Department of Biology and Wildlife University of Alaska Fairbanks

Transcript of Mc farland

Page 1: Mc farland

   Jason  J.  McFarland  

Arctic  Vegetation  Ecology  692    M.S.  Biology  Candidate  

Alaska  Cooperative  Fish  and  Wildlife  Research  Unit  Department  of  Biology  and  Wildlife    

University  of  Alaska  Fairbanks        

Page 2: Mc farland

-­‐  Background  information,  project  introduction  -­‐  Description  of  study  area  and  site  -­‐  Research  objectives  and  preliminary  results  -­‐  Conclusions    

     

Page 3: Mc farland

-­‐  Worked  for  BLM  in  2009  and  2010  and  worked  on  Arctic  Coastal  Plain,  North  Slope  -­‐  Visited  many  different  watersheds  and  observed  many  fish,  but  disproportionate  amount  of  aquatic  food  resources  (i.e.  aquatic  invertebrates)  -­‐  Where  is  food  coming  from?      Could  surrounding  riparian  vegetation  be  providing  terrestrial  

subsidies  (i.e.  terrestrial  invertebrates)  to  stream  fish???  

Page 4: Mc farland

   Jason  J.  McFarland  M.S.  Biology  Thesis  

     

Page 5: Mc farland

-­‐  Threats  to  ecological  processes  in  aquatic  ecosystems  in  the  Arctic  

-­‐  Small,  lower  order  streams  are  potentially  most  susceptible  climate  change  and  land  use  impacts    -­‐  Beaded  streams  are  important  habitat  for  fish  and  other  biota    -­‐  Project  focuses  on  terrestrial/aquatic  linkages  in  a  beaded  stream  

-­‐  Baseline  study  to  better  understand  basic  ecological  processes  in  order  to  evaluate  future  ecological  changes  

Page 6: Mc farland

Camp Black Gold Spike

Page 7: Mc farland
Page 8: Mc farland
Page 9: Mc farland
Page 10: Mc farland

438 D. A. WALKER AND K. R. EVERETT Ecological Monographs Vol. 61, No. 4

1 56? 152? 1BO A4048?

O 100 km aBarrow b d (

Beaufort Sea

PrudhoePBayhtundra

F v :. fM ~~~..... ...

70 ........~ A S A L L A

ty- /i Atkasoeo ___ FOO > ;~adoesest

t .. wit ...............moisthmi 70 1......... .. . ,g ,.

g.... . . . . . . . . . . . . . ........ . . . . . . ,

) t-4 ~~Lowland loess with B wet minerotrophic tundra

Lowland loess with wet

'68? m ~~~~~~~~~~~~~~~~~mainersitsohi and caysdi

'680 ~~~~~~~~~~~~~~~tundra B>. 8arrow.. Beaufort Sea F- with wet and moist acidic

L =01 1 m ~~~~~~~~~~~~~Upland loess deposits FIG. 1. Extent of minerotrophic tundra

satll e T I C o r L n t A t L a Upland loess deposits p.CF 0 O T .-.p (Carter 1988) with moist mixed

> / ~ ~ ~ _ ~ '-8 R 0 ? 0 acidic and minerotrophic tundra ,Marine silts and clays I with wet acidic tundra

FIG. 1. Extent of minerotrophic and acidic tundras on the Alaskan North Slope based on Carter (1988) and AVHRR satellite-derived imagery. Upland loess occurs in the Arctic Foothills. Lowland loess occurs on the Arctic Coastal Plain.

tundra ecological information is from study sites un- influenced by loess. For example, Barrow (Fig. 1), which was long the center of vegetation research in northern Alaska and the main United States study site for the International Biological Programme (IBP) Tundra Bi- ome, is on acidic marine sediments (Britton 1967, 1973, Tieszen 1978, Brown et al. 1980). Similarly, none of the other IBP Tundra Biome sites is in an area with much modern influx of loess (Bliss et al. 1981). The Atkasook site for the RATE program (Research on Arctic Tundra Environments, Batzli 1980) is on sta- bilized eolian sands with low pH (4.3 to 5.5), and other major study sites in northern Alaska are also in areas without modern influx of loess (e.g., Cape Thompson [Wilimovsky and Wolfe 1966], Umiat [Bliss 1956, Cantlon 1961], Atkasook [Batzli 1980], Toolik Lake [Chapin and Shaver 1981, 1985, Shaver and Chapin 1986, Chapin et al. 1988], Imnavait Creek [Oechel 1989], Colville River [Bliss and Cantlon 1957], and Okpilak River [Brown 1962]).

The most extensive area of modem loess deposition in arctic Alaska occurs near the Sagavanirktok and Canning rivers. Here, calcareous loess (pH 6.0 to 8.4) downwind of the rivers favors development of miner- otrophic plant communities. For example, Dryas in- tegrifolia, Eriophorum triste, and Tomenthypnum ni- tens occur in moist sites, and Carex aquatilis, Drepanocladus spp., and Scorpidium scorpioides occur in most wet areas. In addition, the loess has important, and as yet poorly understood, effects on other ecosys- tem processes and components, such as production and mineralization rates, invertebrate populations, shore- birds, and mammals. Throughout this paper, areas with circumneutral to alkaline soils are referred to as miner- otrophic tundra, in contrast to the acidic tundra regions which generally have soils with pH <6.0.

This paper summarizes recent studies of loess eco- systems in the Prudhoe Bay region and much other relevant information, focusing on soil and vegetation toposequences and ecological gradients downwind of

Crea  Creek  Study  Site  

(Walker,  D.A.,  and  Everett,  K.R.  1991)  

Page 11: Mc farland

Willows  (Salix  pulchra)  

Aquatic  Sedge  (Carex  aquatilis,  

Eriophorum  angustifolium)  

Mixed (willows/sedge)

Page 12: Mc farland
Page 13: Mc farland

U.S. ARMY CORPS OF ENGINEERS – ALASKA DISTRICT P.O. Box 6898, Elmendorf AFB, AK 99506-0898

http://www.poa.usace.army.mil

U.S. Army Corps of Engineers issues permit for CD-5 ANCHORAGE – Today, the U.S. Army Corps of Engineers, Alaska District issued a permit under Section 404 of the Clean Water Act to ConocoPhillips Alaska, Inc. for the CD-5 Alpine Satellite Development Project. This decision culminates nearly a year-long review process that included an in-depth analysis of engineering alternatives along with an examination of supplemental technical information provided by state and federal agencies. In a detailed 134-page record of decision, the Corps is requiring ConocoPhillips to use the least environmentally damaging practicable alternative as required by law. “Today’s decision is entirely consistent with the mission of the Corps of Engineers’ Regulatory Program, which is to protect the Nation's aquatic resources while allowing reasonable development,” said Kevin Morgan, Regulatory Chief for the Alaska District. “It’s indicative of a program that is fair, flexible and balanced." The CD-5 permit authorizes construction of a drill pad, six-mile long access road, four bridge crossings, two valve pads with access roads, and new pipeline support structures. It also includes 22 special conditions intended to minimize the impact to the environment within the Arctic Coastal Plain. In addition, ConocoPhillips agreed to pay mitigation fees to the Conservation Fund to compensate for unavoidable losses to aquatic resources. During the review process, the Corps evaluated four practicable alternative proposals that included both above and below ground pipelines. Additional information provided by ConocoPhillips, combined with opinions from agencies responsible for pipeline oversight in Alaska, documented that an above ground pipeline, in this particular situation, presented a lesser risk of damage to the aquatic ecosystem. “The clarifying information we reviewed and conditions agreed to by ConocoPhillips cleared the way for us to issue this permit,” said Col. Reinhard Koenig, Commander of the Alaska District. It’s testament to the Corps’ permit evaluation process and our ability to make balanced and independent decisions.” “The ConocoPhillips proposal will provide year-round quick and effective pipeline monitoring, leak detection, and spill response,” Koenig said. The Record of Decision is available on the Alaska District’s website at: http://www.poa.usace.army.mil.

NEWS RELEASE BUILDING STRONG ® U.S. ARMY CORPS OF ENGINEERS

For Immediate Release: Dec. 19, 2011

Contact: Pat Richardson, 907-753-2520

[email protected]

Page 14: Mc farland

Map  Credit:    Matthew  Whitman  (BLM)  

Page 15: Mc farland
Page 16: Mc farland

1)  Measure  riparian  invertebrate  subsidies  (i.e.,  fish  prey)  to  streams  from  different  riparian  plant  communities,  in  Crea  Creek,  NPRA.  

2)  Determine  how  riparian  vegetation  influences  Arctic  grayling  foraging.  

Page 17: Mc farland

Hypothesis:    The  riparian  community  composition  of  invertebrates  differs  between  willow,  sedge    and  mixed  willow/sedge  dominated  communities  

 -­‐  Deployed  floating  pan  traps  and  to  quantify  invertebrates  landing  or  falling  into  the  stream  from  riparian  vegetation  

-­‐  Pan  traps  were  located  in  the  2  largest  patches  of    each  dominant  vegetation  type  (willows,  sedge,  mixed    willow/sedge)  and  sampled  in  June,  July,  and  August    

-­‐  Contrasted  species  richness,  abundance,  and  biomass  of    invertebrates  falling  into  stream      

Page 18: Mc farland

No

Dat

a N

o D

ata

-­‐  Invertebrates  falling  into  or  landing  in  Crea  Creek  varied  by  plant  type  and  season.      

-­‐  Flies,  beetles,  aphids  and  caddisflies  were  the  most  common  taxa.  

Page 19: Mc farland

-­‐  Used  aerial  photography  overlaid  with  grid  cells  to  estimate  relative  composition  of  riparian  vegetation  communities  in  10  equal  sized  stream  reaches  

 

Page 20: Mc farland

Crea  Creek  Total  Community  Composition:  Sedge-­‐52%,  Willow-­‐33%,  Mixed  willow/sedge-­‐14%,  and  Tussock  tundra-­‐<1%  

1 2 3 4 5 67

89 10

Page 21: Mc farland

Objective  goal  is  to  contrast  fish  diets  from  stream  reaches  with  differences  in  riparian  vegetation  composition  

 Diet  Sampling  

 -­‐Gastric  lavage  to  remove  stomach  contents    -­‐Fishing  efforts  will  be  divided  into  10  stream  sections  (same  sections  

as  vegetation  sampling)      

Page 22: Mc farland

-­‐  Terrestrial  invertebrates  were  relatively  important  for  juvenile  grayling,  but  surprisingly  not  adults  

-­‐  What  were  the  adults  eating?      

Ninespine  stickleback!  

Page 23: Mc farland

1 2 3 4 5 67

89 10

0  

10  

20  

30  

40  

50  

60  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

June

 July  

August  

1   2   3   4   5   6   7   8   9   10  

Num

ber  of  Grayling  Ca

ptured

 

Reach  Number  and  Month  

2011  Grayling  Capture  in  Crea  Creek  

Juvenille  

Adult  

No

Dat

a N

o D

ata

-­‐  Cluster  analysis  and  NMDS  ordination  to  show  invertebrate  communities  associated  with  riparian  vegetation  and  fish  diet  

Page 24: Mc farland

-­‐  Climate  change  and  increased  oil  and  gas  development  on  the  NPRA  pose  threats  to  ecological  processes  in  aquatic  ecosystems    

-­‐  Beaded  streams  provide  important  habitat  for  fishes    

-­‐  Riparian  vegetation  plays  a  vital  role  in  stream  food  webs  by  supporting  terrestrial  and  aquatic  invertebrates—the  primary  food  source  for  grayling  and  other  fishes  

-­‐  Understanding  energy  and  nutrient  flow  between  streams  and  their  riparian  communities  is  paramount  to  understanding  how  Arctic  aquatic  habitats  and  ecosystems  will  respond  to  changes  in  climate  and  land  use    

   

Page 25: Mc farland

A  big  thanks  to  our  collaborators  for  their  financial  and  logistical  support:    Matthew  Whitman  with  BLM,  Chris  Arp  with  UAF,  Mary  Beth  Lowen  with  US  Fish  and  Wildlife  Service,  UAF  Department  of  Biology  and  Wildlife,  Field  Technician  Katie  Hayden,  and  helicopter  pilot  Keelan  McNulty.  

 

Page 26: Mc farland

Allan,  J.D.,  M.S.  Wipfli,  J.P.  Caouette,  A.  Prussian,  and  J.  Rodgers.  2003.  Influence  of  Streamside  Vegetation  on  Inputs  of  Terrestrial    Invertebrates  to  Salmonid  Food  Webs.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences.  60:  309-­‐320.  

Cadwallader,  P.L.,  Eden,  A.K.,  and  Hook,  R.A.  1980.  Role  of  streamside  vegetation  as  a  food  source  for  Galaxias  olidus  Günther  (Pisces:    Galaxidae).  Freshwater  Resources.  31:257-­‐262.  Frey,  K.  E.,  and  J.  W.  McClelland.  2009.    Impacts  of  permafrost  degradation  on  arctic  river  biogeochemistry.  Hydrological  Processes.  23:  169-­‐  182.  IPCC,  2001  Climate  change  2001:  impacts,  adaptation,  and  vulnerability.  In:  Contribution  of  Working  Group  II  to  the  Third  Assessment    Report  of  the  Intergovernmental  Panel  on  Climate  Change  (Eds  J.J.  McCarthy,  O.F.  Canziani,  N.A.  Leary,  D.J.  Dokken  &  K.S.    White),  Cambridge  University  Press,  Cambridge,  U.K.  Kawaguchi  Y.  &  Nakano  S.  2001.  Contribution  of  terrestrial  invertebrates  to  the  annual  resource  budget  for  salmonids  in  forest  and  

 grassland  reaches  of  a  headwater  stream.  Freshwater  Biology.  46.  303–31  Nielson,  J.L.    1992.    Microhabitat-­‐specific  foraging  behavior,  diet,  and  growth  of  juvenile  coho  salmon.    Transactions  of  American  Fisheries    Soceity.  121:617-­‐634.  Peterson,  K.  M.  and  Billings,  W.  D.  1980.  Tundra  vegetational  patterns  and  succession  in  relation  to  microtopography  near  Atkasook,  

 Alaska.  Arctic  and  Alpine  Research.  12:  473-­‐482.  Rouse,  W.,  M.  Douglas,  R.  Hecky,  A.  Hershey,  G.  Klin,  L.  Lesack,  P.  Marsh,  M.  McDonald,  B.  Nicholson,  N.  Roulet,  and  J.  Smol.  1997.  Effects    of  Climate  Change  on  the  Freshwaters  of  Arctic  and  Subarctic  North  America.  Hydrological  Processes.  11:  873-­‐902.  Tape,  K.,  M.  Sturm,  and  C.  Racine.  2006.  The  evidence  for  shrub  expansion  in  northern  Alaska  and  the  pan-­‐Arctic.  Global  Change  Biology    12:  686-­‐702.  Walker,  D.A.,  Everett,  K.R.  1991.  Loess  ecosystems  of  northern  Alaska:  regional  gradient  and  toposequence  at  Prudhoe  Bay.  Ecological  Monographs.  61:(4):437-­‐464.  Wipfli,  M.S.  1997.  Terrestrial  Invertebrates  as  Salmonid  prey  and  Nitrogen  Sources  in  Streams:  Contrasting  Old-­‐growth  and  Young-­‐growth    Riparian  Forests  in  Southeastern  Alaska,  USA.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences.  54:  1259:1269.  

 

Page 27: Mc farland